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We present the details and the derivation of density-functional-based expressions for the total en-

ergy and pressure for random substitutional alloys (RSA) using the Korringa-Kohn-Rostoker
Green s-function approach in combination with the coherent-potential approximation (CPA) to
treat the configurational averaging. This includes algebraic cancellation of various electronic core
contributions to the total energy and pressure, as in ordered-solid muffin-tin-potential calculations.
Thus, within the CPA, total-energy and pressure calculations for RSA have the same foundation
and have been found to have the same accuracy as those obtained in similar calculations for ordered
solids. Results of our calculations for the impurity formation energy, and for the bulk moduli, the
lattice parameters, and the energy of mixing as a function of concentration in fcc Cu, Zn&, alloys
show that this generalized density-functional theory will be useful in studying alloy phase stability.

I. INTRODUCTION

Most commercially useful alloys are complex multi-
phase mixtures containing ordered and disordered
phases. Thus, an understanding of alloy phase stability in
terms of first-principles, microscopic theory is not only of
academic interest but a matter of practical importance in
modern alloy-design efforts. Although much effort in
electronic-structure theory is oriented toward under-
standing the energetics of ordered solids from
parameter-free, microscopic methods, this effort provides
information of only a few possible points in a typical
phase diagram. Also, these ordered-phase calculations
give invaluable insight, but they cannot provide a general
understanding of phase stability without a concomitant
theory for treating the various disordered solid-solution
phases.

In recent years it has become clear that Hohenberg-
Kohn-Sham density-functional theory (DFT) in the local
approximation' (LDFT) provides a sound theoretical
basis for calculating the ground-state properties of pure
metals and ordered compounds. Consequently, LDFT
provides a logical starting point for a general theory of al-
loy phase stability, provided that it can be extended to
the tractable calculation the energetics of disordered solid
solutions.

To this end, we present LDFT-based expressions for

calculating the total energy and pressure of random sub-
stitutional alloys. These expressions rely on the charge
self-consistent Korringa-Kohn-Rostoker coherent-
potential approximation (KKR-CPA) for calculating the
electronic structure of random alloys. To exhibit their
usefulness in studying alloy energetics, we present results
for o.-phase Cu, Zn, , random alloys for the equilibrium
lattice spacings, the bulk moduli, and the heats of mixing
as a function of the copper concentration (c), and also
the unrelaxed zinc impurity formation energy in copper.

In order not to obscure the subtleties and approxima-
tions involved, in Secs. II—VI we detail the various steps
necessary to obtain generalized density-functional-theory
expressions for random solid solutions within the muffin-
tin KKR-CPA. Section II deals with LDFT and its limi-
tations in the alloy problem. Section III addresses the
problem of configurationally averaging the total energy.
The use of the CPA to obtain a configurationally aver-
aged total-energy expression is outlined in Sec. IV. The
local-density-functional theory for disordered alloys is
presented in Sec. V. This section also includes the deriva-
tion of the pressure expression for disordered alloys. At
the same time, mathematical details are relegated to the
Appendixes in order not to obscure the logical develop-
ment of the formalism. In Sec. VI, the numerical details
of the calculations are given. In Sec. VII we present the
results of our calculations and in Sec. VIII we present a
summary of our work.
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II. DENSITY-FUNCTIONAL THEORY

Density-functional theory is based on the Hohenberg-
Kohn theorem' which states that the total energy
E[p(r)] is a unique functional of the electron density
p(r), and that E [p(r)] is a minimum for the true
ground-state po(r). The minimization condition (with the
number of particles in the system constrained) yields a
single-particle Euler's equation which allows one to ob-
tain p(r) by solving, self-consistently, a set of single-
particle Schrodinger-like equations.

In LDFT the effective potential u(r) entering the
Schrodinger equation (or Kohn-Sham equations) is local;
furthermore, for ordered systems, u (r) is periodic. Taken
together these properties allow use of modern high-speed
band-structure-theory algorithms to solve the single-
particle equations. For systems without long-range or-
der, such as random substitutional alloys (RSA), two ma-
jor obstacles render an exact treatment of the LDFT
equations intractable. Firstly, the effective potential
U (r; [g, ) ) is not periodic, since it depends on the alloy
configuration specified by the set of random site-
occupation variables g; (e.g. , for an A Bbinary -alloy g, is
I or 0 if the site i is occupied by atom A or 8 ). This
configurational dependence alone makes a direct solution
of Schrodinger s equation impossible. Secondly, experi-
mentally one measures configurationally averaged prop-
erties. Consequently, comparison of the calculated ener-

gy of formation, for example to experimental data, re-
quires the calculation of the configurationally averaged
energy E given by

E=g P([g, ))E[p(r;[g, j)],

where E [p(r; [g, ) )] is the total LDFT energy in a
configuration specified by [ g; ), P ( [ g, ) ) is the probability
of occurrence of a given configuration, and the summa-
tion is over all possible configurations compatible with
the given concentration. Note that P( [g; ) ) for an ideal
solid solution binary alloy would be a binomial distribu-
tion. Although the applicability of LDFT has not been
altered by the loss of translational symmetry, an alternate
route for solution must be found, because the large num-
ber of possible configurations makes a direct calculation
unfeasible.

III. THERMODYNAMIC IDENTITY

The energy E [p] is a known functional of the electron-
ic charge density, except for the exchange and correlation
contributions. One way to compute the configurationally
averaged energy E embodied in Eq. (I) is to average the
expression for E [p] in some approximation. For exam-
ple, the Hartree contribution to E requires the average of
a product of charge densities, and hence Green's func-
tions. Given our use of the CPA which only obtains the
average of a single Green's function directly, how does
one approximate this average product? How does one es-
timate the errors involved, and are systematic improve-
ments possible? It is not clear how to answer these ques-
tion directly. Our goal in this paper is to produce a gen-

eralized LDFT expression for E[p], within the muffin-tin
approximation, which resolves these problems.

The pathway to a solution is provided by recourse to
quantum statistical mechanics within the grand-canonical
ensemble. For a statistical system in equilibrium (at fixed
temperature and volume), the thermodynamic identity,

BQ(T, Vp)
C)P

=A'(p ),

equates the number of electrons, Ã(p), to the partial
derivative of the thermodynamic grand potential 0 with
respect to the chemical potential p. Noting that

JV(p)= f de n(s)f (s —p), (3)

where f (e —p) is the Fermi function and n (c. ) is the den-
sity of states, we may integrate Eq. (2) to obtain
Q(T, V,p) at constant temperature and volume. By tak-
ing the zero-temperature limit, averaging over all
configurations, and using the functional chain rule, we
obtain the fundamental equation for the configurationally
averaged ground-state energy, i.e.,

E, @JAN(p)
=——f ds N(s;p)e(p —s)

+ f dp' J de 6(p' —e)

where N denotes the configurationally averaged integrat-
ed density of states per site (at constant temperature and
volume) and 8 is the unit-step function. We note that
the first term is the usual single-particle contribution, and
the second term is the so-called double-counting contri-
bution. Also, be aware that E, contains only the contri-
butions of the electrons in an external potential. It does
not yet include the energy of the ion-ion interactions;
when these interactions are combined with E„it will be-
come the total energy E of the system.

Several comments on Eq. (4) are noteworthy. Firstly,
as it stands, it is an exact expression for the electronic en-
ergy of both ordered (see Appendix A) and disordered
systems. Usually, however, some approximation is made
for X, which may make the calculation of E tractable, al-
beit approximate. Secondly, N, and therefore E, is relat-
ed to the average of a single Green's function within
LDA. Thus, within LDA we eliminate the need to con-
struct explicitly an approximation to an average of a
product of Green's functions, which resolves the ques-
tions that arose in connection with our previous discus-
sion of the average of the Hartree terms. (In general, re-
call that the many-body Green's functions are dependent
upon all higher-order Green's-function products. ) Third-
ly, to obtain a generalized DFT, one then only requires a
density-functional-theory-based approximation to X for
the disordered alloy. Finally, within the KKR-CPA an
approximation to X exists and it has been used in many
studies of the electronic structure of random substitution-
al alloys.
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IV. THE KRR-CPA METHOD

A. Overview

Charge neutrality requires

~M+
Zo=poQO=Z —4w dr r c p r

a
(6)

B. Charge self-consistency

The self-consistent KKR-CPA method makes the
single-site electron densities p, (r) consistent with the po-
tentials u (r). In keeping with the single-site nature of
the CPA, u (r —R, ; I g, I ) is assumed to be independent of
configuration, i.e., equal to u, (r —R;;g;), which depends
only on the occupancy of the site i and the average con-
centration. Henceforth we denote this potential as
u (r —R; ). In metallic alloys, this is not such a drastic
approximation because of the local nature of the impurity
screening. The potential v (r —R, ) is regarded as being
an appropriate single-site averaged potentia1. It is ob-
tained by associating with each site i the nuclear density
Z 5(r —R, ) and an electronic charge density

p (r), r RM~
p (r —R, )= .

Po, RM~ (r & unit-Cell bOundary,

where R~+ is the radius of the muffin-tin sphere and the
constant po is the average electron density in the intersti-
tial region. In addition, for the purpose of calculating the
total energy and reconstructing the single-site potentials,
the average nuclear and electronic densities associated
with the site i, i.e., Z6(r —R )=g c Z 5(r —RJ ) and

P(r —R, }=+ c p (r —R, ), are placed on all sites j Wi

The modern ab initio theory of the electronic structure
of random alloys is based on the KKR-CPA method.
The method is currently based on a Hamiltonian which
consists of a random array of nonoverlapping, muffin-tin
potentials v (r —R, ) centered on the lattice sites R, , with
as many different kinds of potentials as there are atomic
species a. The essence of the CPA is to approximate, on
the average, the scattering properties of a random array
of real muffin-tin wells v, described by its single-site
scattering matrices t, by the scattering properties of an
ordered array of effective scatterers, each described by a
single-site scattering t, matrix. The scattering properties
of this CPA effective medium" are then determined
self-consistently from the requirement that an electron
traveling in an infinite array of these effective scatterers
does not, on the average, scatter when a single t, is re-
placed by a t . This CPA condition leads to the best
single-site or mean-field theory describing disordered sys-
tems. Once the scattering properties of a single t, are
known, quantities such as the averaged integrated density
of states (DOS} N(e), site-restricted average density of
states n (s), and charge densities p (r) can be calculat-
ed. The partial averaged, single-site charge density p
for example, is defined to be the single-site charge density
at a site i, when the site i is occupied by the species a, and
the average is taken over all possible environments. In
the rest of this paper, such restricted averages will be
denoted as single-site averages and will be discussed fur-
ther in the derivation of the kinetic energy given in Ap-
pendix C.

where QO=O —4~8&+/3 is the interstitial volume, and
0 is the volume of the unit cell. We specify the poten-
tials for the muffin-tin approximation to be

u (r}= 2Za ~ 1 1+8'f dss ———P (s)
r 0 T S

MT+8n. ds sp (s)+p„,(r;p )
0

CZO
(7)

In most transition-metal alloys and in the Cu-Zn system
that we will report on here, the interstitial charge densi-
ties for each species differ by less than 0.05 electron, and
the missing Coulomb energy contribution is negligible.
Thus, for the present we will proceed within the frame-
work of Eq. (6). We will return to the effect of the above
Coulomb correction in a later publication.

The above self-consistent KKR-CPA method has been
applied to a number of alloy systems with considerable
success. " These results, taken together with the results
of earlier, non-self-consistent calculations, lead to the
conclusion that the method may be of sufficient accuracy
to allow for the calculation of total energies, etc. Howev-

where C is a constant that depends on the crystal struc-
ture, ' a is the lattice spacing, and p„, is the LDFT
exchange-correlation potential. This choice for the
single-site potential and its corresponding zero gives u (r)
in Eq. (7) the usual form in the pure limits, and, as we
shall see in a later section, leads explicitly to the varia-
tional nature of the total energy.

Note, other implementations of the charge-neutrality
condition, Eq. (6), are possible. For example, we could
require the individual cell to be charge neutral. Such a
choice is clearly unphysical since no charge transfer
would be possible. We have constructed the potentials
[Eq. (7)] as if the charge located in the interstitial for all
species is the same, i.e., the average interstitial charges.
This simplifies the form of the potentials and is the sim-
plest choice that would allow a properly variational total
energy to be obtained within the muffin-tin approxima-
tion (see Sec. VB). However, if the interstitial charges
from different species a differ significantly, we have im-
properly described a portion of the Coulomb energy in-
volving the interstitial region. Essentially, we have ig-
nored our initial choice of dividing up space and assign-
ing the charge within that space. With p defined as the
interstitial electron density in a cell occupied by a species
a, the correction to the present description of the
Coulomb energy that must be included for more general
applications is

b, Uc,„,= pc [(p ) —(po) ]f dr' ~r —r'~

a

+g c [(Z —
p Qv)(p~ —po)] f dr' ~r'~

a
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er, an important difFiculty with the method is that the
self-consistency step (and, therefore, the variational step
in LDFT) and the configurational-averaging step are
inextricably mixed together. Consequently, until the in-
troduction of the CPA, it had not been possible to begin
with the LDFT equations for the configurational average
of the total energy and to derive a set of equations that in
a single-site approximation would require only the
single-site charge densities. It is the advantage of the
thermodynamic relation that we only require N(e;p) to
determine E, and, within the KKR-CPA, N is the one
salient quantity obtained. ' The intertwined nature of the
configurational averaging and the charge self-consistency
is implicit in N through the potentials. This means that
from N (which is obtained via the KKR-CPA set of self-
consistency equations) we are able to derive the corre-
sponding expression for the configurationally averaged
total energy which is DFT-based and charge self-
consistent.

V. GENERALIZED DENSITY-FUNCTIONAL THEORY

A. Total energy

Before presenting a rigorous derivation of the muffin-
tin total energy, we give an intuitive feeling for what
should be expected. In Appendix A, we show that the
usual total-energy expression for a system [Eq. (A8)] can
be obtained via the Green's function and for ordered sys-
tems gives the expected form. If one uses this functional
form for the energy of the disordered state and follows
the basic assumptions of the single-site CPA (i.e., u s are
configuration independent, averages are performed with
respect to a single site, and the scattering of the effective
medium is determined only after concentration averag-
ing), then one can arrive at a proper expression for the al-

loy total energy (with no muffin-tin approximations).
Another procedure for obtaining the same expression for
the electrostatic energy is to place the charge densities p
and potentials u (both with their full angular depen-
dence) at the site i, their concentration weighted values
(e.g. , p) on all other sites, and evaluating the integrals
over all space. For the band-energy contribution, one
could use the partial densities of states for each species,
appropriately averaged.

Immediately two concerns about these approaches
come to mind. Firstly, the band energy terms may not be
correct for the alloy (a proper definition of the kinetic en-

ergy is necessary); secondly, the energy may no longer be
properly variational (required for various properties

within LDA). Notably, the results from a formal deriva-
tion from the KKR-CPA equations are unchanged from
these intuitive ways of proceeding, which attests to the
underlying beauty of the CPA in its description of
configurational averaging in disordered systems.

Since the solution of the KKR equations for ordered
potentials with no shape approximations is still under de-
velopment and it is computationally much more demand-
ing, we initially chose to use the muffin-tin approximation
to the energy. This method of solution has been in use
for many years. The well-known results of Moruzzi,
Janak, and Williams (henceforth MJW) attest to its use-
fulness. In this case, the CPA equations are simple to
solve, and, thereby, make the muffin-tin KKR-CPA
method a worthwhile pursuit. However, it should be not-
ed that even though the muffin-tin approximation
simplifies greatly the solution of the KKR-CPA method,
it does produce certain problems due to its unphysical
description of the system. For example, the variational
nature of the total energy is difficult to ensure in the
muffin-tin approximation.

It is the purpose of this section to derive carefully the
KKR-CPA alloy total energy within the muffin-tin ap-
proximation. From the details given here, the results for
potentials without shape approximations may be deter-
mined straightforwardly.

To evaluate the general result for a configurationally
averaged total energy [Eq. (4)], it is necessary to have
some expression for the total number of particles (in this
case, electrons) in the system. The integrated density of
states, N(c, ;p), is related to the total number of electrons
via Eq. (3), and, within the KKR-CPA, is given by the
generalized Lloyd formula'

N(s;p)= Nu(E) —
m 'Im[lndet~t, '(E)—g(s)~]

+g c In det
~
I+ [t ' (s) —t, '(s)]r, (s)~, (8)

where t and t, are t matrices which describe the scatter-
ing properties of scatterers of type o.'and the CPA
effective scatterer, respectively, g is the real-space
structure-constant matrix, ~, is the site-diagonal part of
the total scattering path operator for an ordered lattice of
effective scatterers, ' and No is the free-electron contribu-
tion. Note, that in this equation, matrices have indices in
both the angular-momentum variable L = ( I, m ) and the
site index n, and det( ) denotes a determinant. Mak-
ing use of this equation, we recast the electronic total en-

ergy for the muffin-tin CPA, Eq. (4), in the form

RMT
E, pN(p}= —f ™

d—E N(s;p)8(p —s}—f dr' g c p (r')u (r')
a

RMT dp (r')
+ f dp'f dr'6(p, —p'}pc u (r')

—oc 0 dp
(9)

where the r-space integrals are over a single unit cell. Both p and v depend on p', since p' controls the band filling.
The derivation of Eq. (9) is given in Appendix B. With use of integration by parts, another useful form is obtained:
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RMv
E, = pN(p) —f dE(E —p) gc n ( E) —f dr' pc p (r')v (r')

a a

dp (r)+f dp'f dr'e(p, —p')gc v (r')
—oo Q dp

(10)

As shown in Appendix C the ffrst three terms of Eq. (10) give the conffgurationally averaged kinetic energy T. Adding
the ion-ian Coulomb energy to the last term, the configurationally averaged potential energy and exchange-correlation
energy U = UH, „„„+E„,is obtained. Within the muffin-tin approximation it can be written as

RM RMvU= Sn—gc Z f dssp (s) 4~—f dssp (s) f'dr'r' p (r')
a

CZQ
2

+4m dr r gc~p (r)e„,[p ]+DOE„,[po],
2Q 0

where E„, (e„,) is the exchange-correlation energy (densi-

ty), and the last two terms give its contribution to the to-
tal energy.

In this derivation of the muffin-tin CPA energy, we
have made a similar muffin-tin approximation to that of
Janak in his derivation' of the energy functional for an
ordered system. As is perhaps not surprising, the energy
may be written as

E =g c EJ[p,p o,
' n ], (12)

a

where EJ is an expression of the same form as that ob-
tained by Janak [see Eq. (25) of Ref. (14)] except that the
pure-metal muffin-tin and interstitial charge densities p(r)
and pv are replaced by p (r) and pv, and that the density
of states is calculated within the KKR-CPA.

Equation (12) is an appealing result for several reasons.
Firstly, once a self-consistent KKR-CPA calculation has
been performed, an accurate evaluation of the total ener-

gy is straightforward. In addition, all of the subtle
single-particle and double-counting cancellations in
Janak's original formulation apply, i.e., the large elec-
tronic core contributions may be algebraically canceled.
This endows the calculation of the alloy total energies
with the same precision usually encountered in the calcu-
lations of ordered systems. Secondly, this equation is val-
id for any number of components. Thirdly, in the pure
metal limit, Eq. (12) reduces to Janak's expression. Final-
ly, the simple form of the CPA total-energy expression is
primarily due to the fact that N(e) is stationary with
respect to variations of the CPA scattering matrices'
t, '. Therefore, na explicit't dependence an the CPA
scattering matrices is obtained (see Appendix 8). For
other approximations ta the configurational averaging,
such as the Korringa average-t-matrix approximation
(ATA), this may not be the case and the ensuring

simplification wauld not follow. Thus, it is the mean-field
potential construction method embodied in Eq. (7) and
the mean-field CPA condition for determining t„etc.,
that have together produced a result with a large number
of desirable properties.

B. Variational nature

The energy functional constructed in usual DFT has
the property that the first variation of E[p] about the

5I E[p]—pN I /5p (r) =0, (13)

where E corresponds ta an extremum for a given solu-
tion, [p I, to the effective single-particle Schrodinger
equations. We note in passing that the potential obtained
by variation of the kinetic energy is the same potential
obtained via the variation of the potential energy only for
the true ground-state electron density. In a self-
consistent calculation care must be taken ta maintain this
variatianal property of the energy. We give more details
of this in Sec. VI. Thus, the theory is self-consistent in
analogy ta usual DFT.

ground-state charge density vanishes' subject to the con-
dition that fdrp(r)=N, i.e., 5[E[p] pNI/—5p, (r)=0.
This property establishes the charge self-consistency pro-
cedure since it implies 5U[p]/5p (r) =e v (r). In other
words, variationally one may obtain a single-particle
Schrodinger s equation and the e6'ective potential neces-
sary to calculate p(r) and, therefore, E[p]. In the disor-
dered alloy, once the CPA has been used, it is not clear
how to apply the standard DFT and therefore we have
taken a different approach. We have determined the
functional form of the alloy total energy by constructing
an effective potential compatible with the CPA assump-
tions. We now show that the theory has a stationarity
property and therefore establishes a self-consistency pro-
cedure for disordered alloys. Recall that the potential, al-
though compatible with the CPA assumptions, was con-
structed by ad hoc method. We have already given some
possible alternatives regarding the interstitial electron
density. In addition, there is some arbitrariness in the
choice of the interstitial exchange-correlation potential.
For example, it could have been chosen for a binary A-8
alloy as c„lM„,[p„]+cap,„,[p~], instead of p„,[pv], where

p0, pz, and pz are the average interstitial charge density
and interstitial charge densities on a site A and 8, respec-
tively. Unless the expression for the muffin-tin E is care-
fully constructed, the variation of E with respect to p (r)
does not necessarily vanish.

It is straightforward to show from Eq. (11) that indeed
5U[p]/5p (r) =c v (r). Similarly, from Appendix D, it
is true that 5T[p]/5p (r) = —c v (r). It is then obvious
that
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C. Pressure

Even though the pressure may be obtained by numeri-
cal differentiation of the calculated total energy with
respect to lattice spacing, there are good reasons for ob-
taining expressions that allow direct computation of the
pressure from the results of a self-consistent field calcula-
tion at a single lattice spacing. As was pointed out by
Janak, ' there are also numerical advantages in calculat-
ing the pressure which are associated with the algebraic
cancellation of large contributions from the core states.
Furthermore, obtaining consistency between the pressure
calculated directly and by numerical differentiation of the
total-energy curve provides a stringent test of the numeri-
cal implementation of the whole self-consistent total-
energy formalism.

In what follows, we cannot simply use the derivations
of Slater' or Janak' as a basis for finding the expression
for the pressure in the case of a disordered random alloy.
Those derivations relied on manipulations of wave func-
tions. Within the CPA, the average "wave function" is
not defined. This forces an alternative approach. We
relegate the details to Appendix E and only sketch the
approach below.

Consider [R„j to be the lattice for which we are to cal-
culate the pressure and denote the energy for this lattice
to be E0. As the lattice is contracted to [(R„IA,) I by a
scaling factor A, , the energy changes from ED to E .
Clearly, the pressure is given by the derivative of the en-

ergy with respect to A, , evaluated at A, = 1:

p dE 1 dE
dQ 0=00 300 dk

(14)

D. Discussion

Several specific comments on the preceding section are
in order. (i) In the muffin-tin approximation our particu-
lar choice of the interstitial exchange-correlation poten-
tial is necessary in order to obtain certain cancellations
leading to Eq. (13), and hence a variational expression for
the alloy energy. (ii) Performing the variation with

where 00 is the volume at A, =1. From this expression, it
is evident that if the energy scales with A, in a simple
fashion, then the pressure may be calculated concomi-
tantly with the energy. '

The A, dependence of E is investigated in Appendix E,
where its various contributions, i.e., kinetic, electrostatic,
and exchange-correlation energies, are found to behave
similarly to their counterparts in ordered LDA energy
expressions. The derivative in Eq. (14) can be formally
evaluated and a pressure expression results that can be
written as a straightforward generalization of Janak's ex-
pression for ordered systems, i.e.,

P=ge PJ[p,pa, n ],
a

where PJ is Janak's expression for the pressure, ' except-
ing that the average site-restricted density of states, n

and the electron densities obtained from a self-consistent
KKR-CPA calculation are to be used.

respect to the single-site charge densities p, and not, say,
p=g e P, is in accord with the CPA, in that the site-
restricted averages exist for each species separately, and
hence may be varied independently. (iii) It is not neces-
sary to separate E into kinetic- and potential-energy con-
tributions, but having done so, one can take advantage
of the algebraic cancellations of the large electronic core
contributions. (iv) This theory is straightforward to gen-
eralize for multisublattice crystal structures, or to mag-
netic alloys (using the local-spin-density approxima-
tion ). (v) Although derived for the muffin-tin Hamil-
tonian, the theory is straightforwardly applicable to the
atomic-sphere approximation (ASA). (vi) If the KKR
method were to be generalized to the case of nonspherical
scatterers, this theory could be easily extended to include
this generalization. (vii) Since the theory is a mean-field
theory of the electronic structure and is readily extend-
able to finite temperatures, it fits logically into a theory of
alloy concentration fluctuations, ' in which the entropy
contributions are also treated within a mean-field approx-
imation. Finally, the strength of the formulation given in
this appear lies in the internal consistency of its com-
ponents, i.e., the CPA, the muffin-tin potential, the total
energy, and the pressure.

VI. NUMERICAL CONSIDERATIONS

Our implementation of the theory presented in this pa-
per relies on a number of numerical details which lead to
stable and precise results. Therefore, before we provide
an example of its application, we include, for complete-
ness' sake, a description of those numerical details. In
addition, the major approximations made in the solution
of the KKR-CPA equations (beyond the assumed muffin
tins) are stated.

Because of the analytic properties of the KKR-CPA
theory, use was made of contour integration in the com-
plex energy plane. That is, the calculations, and there-
fore the integrals over energy [such as those required for
calculating the band energies (involving densities of
states) and charge conservation (involving Green's func-
tions)], were performed in the complex energy plane,
using a rectangular contour. Typically, only 120—150 en-
ergies around the contour are required to obtain conver-
gence of the total energy and charge density. The bottom
of the contour was perpendicular to the real energy axis
and was located typically 0.3—0.4 Ry below the muffin-tin
zero. The long side of the contour ran parallel to the real
axis and about 0.8 Ry away. The top of the contour
again ran perpendicular to the real energy axis and inter-
sected it at the Fermi energy (sF). On the first two legs
of the contour the real-space formulation of the CPA
equations was used. Typically our implementation of the
real-space method includes only the multiple-scattering
contributions to the fifth-nearest-neighbor shells;
nonetheless, the solution along these two portions of the
contour is essentially exact due to the large damping of
the scattered waves produced when the imaginary part of
the energy is relatively large.

On the final portion of the contour we used the
momentum-space formulation. The necessary Brillouin-
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zone integrals are performed using a directional prism
method. At imaginary energies of 0.8 Ry, or greater,
the real-space and the momentum-space solution of the
multiple-scattering equations match to a precision of 1

part in 10, hence our choice of contour and method of
solution around the contour. In the concentrated alloys,
we have found that 10 directions in the reduced —,', th of
the Brillouin zone were sufficient to yield an uncertainty
in the total energy of 0.1 mRy. Using 36 directions, we
obtained an order-of-magnitude improvement in the pre-
cision. For the dilute alloys and the pure elements, it was
necessary to use 136 directions to arrive at a k-converged
total energy, since the absence of disorder and its associ-
ated smearing increases the sharpness of states. Along
each direction we evaluated the Brillouin-zone integrand
using 20-50 points, with the number of points adjusted
to increase as the real axis was approached. Each ele-
ment of the inverse of the KKR determinant in the in-
tegrand (i.e., w, (s)=Q&z fdk [t, '(s) —g(s)] ') was

split into a cofactor and a determinant. Along a particu-
lar k direction, a cubic interpolation is used for both the
cofactor and the determinant. Within an interval, the in-
tegral was obtained from an analytic expression evaluated
with coefficients obtained from the cubic interpolation.
Thus, along a given direction the contribution to the in-
tegral is determined accurately; as indicated earlier, how-
ever, care must be taken with the angular dependence of
the integrand, hence the large number of directions for
the pure elements. The procedure outlined above works
well as long as some broadening of states exists, either
from disorder or because the energy has at least a small
imaginary part.

A further important numerical feature involves the
solution of the CPA equations. Far off in the complex
plane only a few nearest-neighbor shells contribute to the
solution. In fact, as Im(s}-+ ~ it is physically intuitive
and easy to show rigorously that the CPA equations are
solved by the average —t-matrix approximation (ATA).
In this case, no iterations of the CPA equations are neces-
sary. Even when Ims is a few hundredths of rydbergs,
only 1-2 iterations of the CPA self-consistency equations
are necessary to obtain an accurate solution. On the real
axis, 10-16 iterations may be necessary when the Fermi
energy lies within the d bands. Thus, performing the cal-
culation over a contour in the complex c. plane minimizes
the number of iterations necessary to solve the CPA
equations. A further consideration is that several
equivalent forms of the CPA equations are possible.
However, we have found one form to be particularly
useful since it is related to a Newton-Rap h son
numerical-integration procedure, yet requires no evalua-
tion of the derivatives of the ~, matrices (which are cost-
ly}. We have found in all instances investigated thus far
that iterating this equation, starting always with the
ATA, yields only the physically relevant solution of the
CPA throughout the complex energy plane, including the
real energy axis. We have also incorporated a conver-
gence accelerator in its solution, such as that used in con-
verging charge densities in the charge self-consistency
step, which can, in some instances, reduce by a factor of 2
the number of necessary iterations. Derivations and fur-

ther details of this CPA equation are given in Ref. 27.
In calculating the t matrices and Green's functions,

etc., we have truncated the angular-momentum sums at
1,„=3 (f symmetry). Our predominant interest to date
has been the third- and fourth-row transition-metal al-
loys. The contributions from higher-order angular-
mornentum components to these quantities should be
small. The effect of this approximation will be briefly dis-
cussed in Sec. VII. For the exchange-correlation poten-
tial, we have used the von Barth-Hedin functional form,
as parametrized by Moruzzi, Janak, and Williams.

Furthermore, one must be careful in the handling of
the core electron densities. For the evaluation of the en-

ergy and pressure, it is important to use the subtle alge-
braic cancellation of terms involving the core contribu-
tions affected in Janak's' original muffin-tin formulas.
These cancellations are exact only when the core charge
density vanishes at the muffin-tin radius, a condition
which is not met by shallow bound states. Consequently,
we have combined the electron density from these weakly
bound states (or "semicores") within the valence density,
and designate only the charge from deeply bound states
as "core." Having made this designation, we evaluate the
energy and pressure using the functional forms derived
earlier, which incorporate the aforementioned cance11a-
tions. For some elements, such as palladium, failing to
properly define the core states can give rise to a 10—100-
mRy error in the total energy.

The final detail of note, which was not discussed in
Janak's original formulation for ordered systems, is the
inclusion of terms to make the total energy stationary
during the self-consistency cycle. This stationarity re-
sults from the evaluation of the expectation value of the
underlying Hamiltonian. In a self-consistent-field (SCF)
iteration cycle, care must be taken to maintain the in-
tegrity of this expectation value. In particular, the out-
put electron densities (u,„,) must be used to construct the
electrostatic energy and the input potentials (u;„}must be
used to calculate the kinetic energy. In Janak's formula-
tion, the algebraic cancellations of the core contributions
do not preserve this property and two terms must be add-
ed to ensure stationarity of the energy, namely,

fdr p„„,(u,„,—u;„) and fdr rp„„d(v,„,—v;„)/dr
Clearly, at convergence these terms are zero, as suggested
in the discussion of the variational property of the alloy
total energy, Sec. V B.

VII. RESULTS

For both historical and pedagogical reasons we have
chosen the fcc Cu-Zn alloys to demonstrate the general
features of this density-functional approach to the ener-
getics of disordered alloys. Although stable fcc Cu-Zn (a
phase) alloys exist only in a limited range of Zn concen-
trations (0—38 at. %%uoZn ), metastabl e fccalloy sexis t up to
55 at. % Zn. From a pedagogical viewpoint, the Cu-Zn
system exhibits most of the troublesome features that are
found in more complex alloy systems and that are the
driving force for some of the technical developments de-
scribed in the preceding section. In the following subsec-
tions, we show results for the fcc equilibrium lattice con-
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stants, bulk moduli, and energies of formation (enthal-
pies) as a function of concentration, and the unrelaxed Zn
impurity formation energy in pure Cu.

A. Equilibrium lattice constants

0.10

0.05

a = 6.933 a.u.

A = 141 Mbar

The equilibrium lattice constant (or volume) is among
the quantities which are least sensitive to numerical de-
tails, e.g., angular-momentum truncation and spherical
approximation to the potentials. Typical agreement be-
tween theory and experiment for pure elements and com-
pounds is 0.5 —3 %, the larger error applying to magnetic
systems where the spin-polarization effects are described
less accurately by the exchange-correlation functions
used. As we have pointed out earlier, there are two
means of obtaining the equilibrium lattice constant: ei-
ther from the minimum in the energy or from zero pres-
sure. There is typically a small difference between these
lattice constants in all methods, whether based on full or
spherical potentials; the pressure method usually results
in a smaller lattice constant by about 0.5%.

In Fig. I, we show the energy versus lattice constant
for the fcc Cuo 5Zno 5 alloy. These results are typical of
fcc Cu-Zn alloys. The lattice constant obtained via the
energy is az =6.962 a.u. , and is within 0.5% of the exper-
imental value. On the other hand, the pressure curve
(Mbar), see Fig. 2, yields a~=6.933 a.u. , which is 0.5%
smaller than aE. To note the general trend of error, we
find for pure Cu that aE=6.765 a.u. , whereas from ex-
periment one finds a,„pt 6 809 a.u. at T=O K; the
difference is less than 0.7%. From the pressure curve, we
find that a~ =6.743 a.u. ; this may also be compared to a
calculation by Moruzzi, Janak, and Williams for pure
Cu, which gave a lattice constant of a =6.767 a.u. from a
similar muSn-tin KKR calculation but with L,„=4
truncation. Thus, equilibrium lattice constants for the
disordered alloys are seen to be determined with accuracy
similar to calculations for ordered alloys, i.e., within
0.5 —3 /o of experimental values.

000'-
OJ
La

-0.05

-0.10
6.7 6.S 6.9 7.0 7. 1

Lattice Constant (a.u. )

7.2

FIG. 2. The variation of the alloy pressure (Ry) with lattice
constant (a.u. ) for fcc Cuo 50Zno 50 alloy. The zero of pressure is
found at 6.933 a.u. , along with a bulk moduli of 1.41 Mbar.

The equilibrium lattice constants were determined via
a cubic, least-squares fit to the energies calculated at (typ-
ically) five lattice constants. Figure 3 shows the variation
of the calculated lattice constant with concentration.
The salient feature is the deviation from Vegard's rule
(linear variation of the lattice constant with concentra-
tion for the same Bravais lattice). The deviation from
Vegard's rule experimentally observed in e-phase alloys
is given correctly by the theory. The variation of the lat-
tice constant upon addition of Zn to Cu, in the dilute lim-
it, is found to be Ba/Bc~, o=0.0036/at. % Zn, whereas
the Vegard's rule obtained from our calculated lattice
constants is 0.0052/at. % Zn. This is to be compared
with the experimental value of 0.003 66+7/at. % Zn near

-3414.435
lf = 1.41 Ml);Ir
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FIG. 1. The variation of the alloy total energy (Ry) with lat-
tice constant (a.u. ) for fcc Cuo, OZno &0 alloy. A cubic least-
squares fit gives a minimum energy of —3414.45888 Ry at
6.962 a.u. and a bulk moduli of 1.41 Mbar. This plot is typical
for the fcc CuZn alloys.

6.7
u. 0 0.2 0.4 0.6 0.8 1.0

Zinc Concentration

FIG. 3. Concentration variation of the lattice constant (a.u. )

for the fcc CuZn alloys.
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300 K. The experimental value and its error were ob-
tained from a least-squares fit to the compiled data be-
tween O%%uo and 15% zinc. ' We note that the compar-
ison has been made between experiments at 300 K and
zero temperature calculations. The difference between
300- and 0-K lattice constants for pure Cu is
b,a = —0.010 a.u. (about —0. 15%). ' This small shift
should be approximately the same for the dilute alloys as
well, so the value Ba/Bc ~, 0 at T =0 K should differ lit-
tle from the value at 300 K.

B. Bulk moduli

The bulk modulus (P) of each system may be deter-
mined straightforwardly from either the curvature of the
energy or the slope of the pressure, a function of lattice
constant. As noted in the text, the pressure is more sensi-
tive to the convergence of the charge density because, un-
like the total energy, it is not variational with respect to
the charge density. We therefore obtained the bulk
moduli via the curvature of the energy. The bulk moduli
obtained from the pressure are usually within a few per-
cent of the energy results. For example, the bulk moduli
is 1.41 Mbar from both methods for the 50% alloy; how-
ever, for pure copper, P=1.67 and 1.70 Mbar from the
energy and pressure, respectively. In Fig. 4, we show the
concentration dependence of the bulk modulus, in the fcc
phase. The line is only a guide to the eye. We note that
not all of the bulk moduli were determined with as many
points as the pure elements or the 50% alloy; therefore
the relative error across the concentration range is about
0.05 Mbar.

Usually density-functional calculations for ordered
metals yield bulk moduli that are 10—20% in error. This
also is the case for these disordered alloy calculations.
For example, experimentally for pure copper P=1.42
Mbar, whereas we obtain from the energy Pz=1.67
Mbar (an 18% error), or PP=1.68 Mbar from the pres-

sure. The MJW result of 1.55 Mbar (a 9% error) via the
pressure is closer to experiment. This difference in the
theoretical results is not significant since both are within
the typical error. For the 50/50 alloy, the Pz=1.41
Mbar at a =6.962 a.u. (P =1.41 Mbar at a =6.933 a.u. )

Essentially, our results for the bulk moduli show a rigid
shift from the fcc ( T =0 K) experimental values, indicat-
ing that trends should be believable. For most other pure
elements that we have tested, our calculations agree well
with those of Moruzzi, Janak, and Williams.

As pointed out by MJW, the bulk modulus is deter-
mined primarily by the interstitial electron density, i.e.,
the most loosely bound electrons. The difference between
our theoretical bulk moduli of pure elements and that of
MJW results from a greater number (0.016) of interstitial
electrons in our calculations. This discrepancy, from two
very similar calculations, probably results from a number
of effects. (i) The states which we have defined as core
levels; that is, we (properly) define a core level to be that
which has a wave function that is zero at the muSn-tin
radius, otherwise the charge density from a shallow
bound state is combined with the valence charge density.
On the other hand, in their original calculations MJW re-
normalized the small amount of charge outside the muffin
tin due to the upper-lying core to be inside the muIn-tin
radius. However, we have performed, as a check, a simi-
lar renormalization within our code and obtain only a
0.003 reduction in interstitial electrons for copper. (ii)
We truncate our angular-momentum sums at 1,„=3,
whereas MJW truncated at 1,„=4. In hindsight, this is
probably the major source of the discrepancy because ele-
ments that have just filled a d shell of electrons, such as
copper, could easily have a small amount of charge relo-
cated to within the muffin-tin sphere with the increase in
variational freedom created from including more
angular-momentuin components. (iii) The numerical
methods used within each code are very different and
could also result in a small difference in charge arrange-
ment.

1.6

1.4
CC

-1

1.2
%3

1.0 4C4
L

4J

0.8
u. 0 0.2 0.4 0.6 0.8 1.0

Zinc concentration
-6
u. 0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Concentration variation of the bulk moduli (Mbar)
for the fcc CuZn alloys. Although the trend is given properly,
there is the usual 10—20% error compared to experiment.

Zine concentration

FIG. 5. Concentration variation of the heats of mixing
(m Ry) for fcc CuZn.
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Regardless of the explanation, the requirement of
charge neutrality [Eq. (6)] places a small amount of core
charge in the interstitial region, which is then distributed
equally throughout this volume, increasing P. In fact,
from the behavior of the bulk moduli versus r,
[r, =(4'/3) ' ] (see P versus r, plot on page 14 of Ref.
3), it is easy to show that our 1.67-Mbar result will be re-
duced to 1.55 Mbar by reducing the interstitial electron
number by 0.016. Although this does not explain the ori-
gin of the difference, it does show a consistency between
the two calculations.

It is interesting to observe that, quite generally within
LDA calculations, if one evaluates the curvature of the
calculated energy versus volume curve not at the theoret-
ical volume but at the experimental volume, one obtains
bulk moduli within a few percent of the experimental
values. This suggests that the curvature of the energy
versus volume curve obtained theoretically is rather accu-
rate, only slightly rotated so as to give a smaller volume.

C. Energy of mixing

The energies of mixing (b,E '"), or formation enthal-
pies, are important for determining phase stability. Obvi-
ously, for use in addressing materials questions, the accu-
racy of the calculated energies is important. In this paper
we show the fcc energies of formation of Cu, Zn, , We
leave a calculation of the relative stability of phases (e.g. ,
fcc and bcc) to a future paper.

In Fig. 5, we have plotted the concentration variation
of the energies of mixing for fcc Cu-Zn alloys. It should
be noted that the curve is not parabolic. This deviation
from the parabolic form will be especially important
when comparing the energetics of diff'erent crystallo-
graphic phases. The calculated formation energy for the
random solid solution is smaller in magnitude than the
experimental value. For example, at c =35%,
AE '"= —4.05 mRy, with experiment giving —6.0+0.5

mRy. ' ' Experimentally, ' it is known that substantial
short-range order exists. The affect of this is to lower the
formation energy. This is perhaps obvious since the
phase diagram of Cu-Zn shows the 82 phase is metasta-
ble at relatively low temperatures (and about 1.3 mRy
more favorable than the bcc disordered state '), while
near T =0 K the L10 phase becomes stable.

As mentioned, in these calculations we are investigat-
ing the totally random solid solution (without short-range
order), which, strictly, exists only at "infinite" tempera-
tures. Thus, we should not expect agreement with experi-
ment. For a direct comparison to experiment, either the
effects of short-range order should be subtracted from the
experimental results (if possible), or the effects of short-
range order added to the theory. The latter possibility
can be investigated within the theory of concentration
fluctuations ' or of the generalized perturbation
method. "

D. Impurity formation energy

In dilute alloys, the impurity formation energy (bE™)
is an important quantity for determining solubilities. If
we neglect charge redistribution on neighboring atoms

and local lattice relaxations, then the CPA is exact in the
single-impurity limit. Thus, our calculations provide a
means of obtaining this quantity. In fcc alloys, local re-
laxation effects account typically for less than 0.1 eV
( =7.4 mRy), particularly if the constituent atoms are
similar in size. (bcc alloys usually have much larger re-
laxation effects than fcc alloys since their local environ-
ments are less isotropic than the fcc alloys. ) As an exam-
ple of this type of calculation, we have investigated the
Zn impurity formation energy in fcc Cu, and compared it
to experiment.

The impurity formation energy of Zn in Cu is given by

d ( b Enil x
)

dczn cZ. =O
(16)

where we take the concentration derivative of the energy
of mixing at the pure-Cu limit. One could evaluate at
each concentration the energy versus lattice constant,
minimize the energy, fit the minimum energies, and then
take the numerical derivative. However, the most
straightforward means to obtain this quantity is to calcu-
late b.E '" for small concentrations with the volume fixed
at the calculated equilibrium volume of the pure element.
Obviously, the first method would increase the number of
calculations required and introduces more error into the
calculation of AE' ". Note, one requires the energies for
the two pure elements in order to calculate the energy of
mixing. These energies should be obtained for their
respective equilibrium lattice constants.

We have performed such calculations at cz„=2%,6%,
and, 10% at the volume of pure Cu and obtain the ener-
gies —3281.313 52, —3292.409 19, and —3303.504 77
Ry, respectively. For the pure elements, the energies
were Ec„=—3275.76569 Ry and Ez„=—3553.14290
Ry. Thus, the energies of mixing were 0.0, —0.32,—0.87, and —I.36 mRy for 0%, Z%%uo, 6%%uo, and 10%%uo, re-
spectively. A cubic, least-squares fit to these numbers
yields b,E™=—17 mRy ( —0.231 eV). Dederichs
et al. have calculated the Zn impurity formation ener-

gy in Cu via an impurity Green s-function method in
which the impurity energy is calculated directly (with or
without local relaxation). They obtained —0.26 eV
without and —0.33 eV with local relaxation. Experimen-
tally, AE' ~ is in the range of —0.24 to —0.40 eV from
Kubaschewski et al. and —0.23 to —0.34 eV from
Hultgren et al. -' The spread in values depends on
whether one looks at enthalpies of mixing or partial mo-
lar enthalpies; the experimental error ' quoted for the
enthalpies of mixing is about 0.05 eV. Thus, both sets of
calculations lie within the experimental range. Typically,
the experimental error is 10—20%%uo, since there are vari-
ous experimental methods, adiabatic or isothermal, to ex-
tract the impurity formation energies from enthalpies or
enthalpy derivatives; also, the experimental values do
reflect the possible short-range order of the alloys, be-
cause a range of concentrations is required to extract this
quantity. The overall agreement between AE' ~ from a
proper impurity calculation and the limit of an alloy cal-
culation is rather remarkable. For small concentrations
of Zn, the impurity formation energies are, as shown
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above, a few hundredths of rydbergs at most, which
means that to compare to experiment the energies of mix-

ing are needed to an accuracy of better than 0.01 mRy,
since it is the derivative that is desired. For this particu-
lar quantity, our internal consistency and relative accura-
cy is of great importance.

VIII. SUMMARY

As a step toward understanding general alloy phase
stability, we have presented a theory of the energetics of
metallic alloys which is equally applicable to ordered and
disordered phases. The results given here are particular
to the muffin-tin implementation of the KKR-CPA. But,
as we have suggested, the theory carries through for po-
tentials which involve no shape approximations. As
such, it wi11 be applicable, at least in principle, to nonme-
tallic disordered systems. The theory is applicable to an
arbitrary number of components and it is easily extend-
able to magnetic systems and systems in which it is useful
to consider multiple sublattices. Although we have only
considered a fcc random solid solution here, this first im-
plementation of this theory of alloy energetics of the
disordered binary Cu-Zn gives us considerable confidence
towards applying it to more general problems. For fcc
Cu, Zn, , alloys, the theory provides quantitatively accu-
rate results for lattice constant, bulk moduli, and energet-
ics, i.e., mixing and impurity energies.
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APPENDIX A

In this Appendix, we derive from the Green's function
the fundamental expression for the total energy, Eq. (4),
which yields, as expected, the usual results for ordered
elements. For simplicity, we deal only with the ground-
state ( T =0 K) case. Let E, pN =E, +E2, whe—re E, is
the single-particle contribution and E2 is the double-
counting corrections [see the discussion following Eq.
(4)]. The single-particle term can be partially integrated
and written as

E, = dc. c—p n c 8 p —c. (A 1)

which will be used later. The double-counting term, E2,
may be directly related to changes of the potential with
respect to the chemical potential by the chain rule. This
manipulation is worthwhile because the potential directly
governs the scattering properties of the system, affecting
N(c. ), and also the total energy is usually expressed as a
function at p (r) and v [r;p (r)]. Thus, by the chain
rule,

dN(s;p, ) f d
5N(s;p, ) dv(r)

dp — 5v(r) dp
(A2}

Quite generally, 6 =6 0+6 av 6 (using matrix notation)
which yields 5G=65U 6, where G0 is the free-space
Green's function. Using the closure property, i.e.,
f d r ~r)(r~ =1, and dG/de= —6, it is easily shown

that

5N(s)/5v(r)=m. '6(r, r;e) . (A4)

Combining Eqs. (A2) and (A4), we obtain

E2=ir 'Im f" dp' f ds f dr 6(rrs)

xe(.— )
"""
dp

(A5)

By performing the energy integral over c. and partially in-
tegrating with respect to p', it follows that

E~= —f drp(r)v[p(r)]+f dp' f drv[p(r)]
oo dp

(A6)
With the exchange-correlation potential given as
5E„,/5p(r) =p„,(r), the potential is

v(r)=v'"'(r)+2 f dr', +p„,(r), (A7), p(r')

where v'"'(r) =
+~it~

—2Zz /~r —R~ is the electron-ion
potential, and I RI denotes the ion positions.

By integrating over p and including the ion-ion contri-
bution, the total energy, E =E, +E2+E;,„;,„, for an ar-
bitrary arrangement of atoms forming a charge-neutral
system is

E=pN+ f ds(s —p)n(s)e(s —p) —fdrp(r)v(r)

+ —,
' f dr f dr'p(r), —2 g Z~ f dr

ZR ZR'+ &. iR-R~+'-[P]
I R,R'

I
(RWR')

(A8)

where N is the integrated density of states for the system.
The change in N(e) due to the change in v(r) can be
found starting from the definition of 5N( s) which can be
written as

5N(s ) = ~' Im—f de' f dr 56(r, r; s')e(p —s') .

(A3)
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When all the unit cells are equivalent, Eq. (AS) is the usu-
al expression for the total energy for an ordered system.
As usual, the single-particle kinetic energy is given by the
first three terms, the last term is the exchange-correlation
contribution, and the remaining terms comprise the po-
tential energy of the system.

APPENDIX B

Here we derive the functional form of the
configurationally averaged total energy within the CPA
in terms of eigenvalue sums, potentials, and charge densi-
ties. We begin with our fundamental equation for the to-
tal energy, Eq. (4) in the text. Since N(s; p) depends on )Lt

only through the scattering matrices t, ' and t ', it fol-
lows that

5N
, =tr

5p,
'

5N Bt, '
5N Bt

+
5t, ' ~p' 5t. ' ~p'

(B1)

where the trace (tr) is taken with respect to the angular-
momentum index L =(!,m) and site index n Due t.o the
property of the CPA that N is stationary' with respect to
variations in t, , the first term in Eq. (Bl) vanishes.
Thus, the expressions derived will have no explicit depen-
dence on the coherent potential v, . Since the scattering
properties are determined by the potentials, we use the
chain rule to expand Eq. (B1) to give

functions jt(r;E) are the irregular solution of the radial
Schrodinger equation which is singular at the origin. ' '

Note that the second term in Eq. (B5) is real for real ar-
guments and therefore does not contribute to the density
of states at real energies c. For our present purposes we
will neglect this term.

With the charge density given by the trace of the
Green's function, i.e.,

p(r)= —
m

' Im f ds G(r, r, s) (B6)

we may use Eqs. (B2) and (B5) with the initial form for
the energy, Eq. (4), and perform the integral over energy.
Finally, after a partial integration over r, we obtain the
form of the alloy total energy which is in terms of poten-
tials, electron densities, and one-electron sums, Eq. (9) of
the text.

APPENDIX C

To be able to separate the total energy into its kinetic-
and potential-energy contributions, we make use of the
definition of the kinetic energy T(s) for a given
configuration (in atomic units):

T(s)=n 'Im I dr lim [V~trG(r, r', e, I(, ])] . (Cl)
r'~r

The corresponding Green's function satisfies

5N 5N 5t, ' Bu (r)
, =tr dr

5p' 5t ' 5u (r) Bp'
(B2)

—V,'+g u, (r; tg, ] ) —e G(r, r', s, (g; I ) =5(r=r')

(C2)

Furthermore, for real spherically symmetric scatterers,
the variation of the single-site scattering matrices due to
changes in the local potential is given by

5t '(s) = —ZL(r, e)Zt (r, s)
5u r

(B3}

with ZL (r;s)=zt(r;s)Yt (r), z, (r;s) is the regular solu-
tion to the radial Schrodinger equation at energy c., and
Yt (r) is a real spherical harmonic. (There is of course
an appropriate definition of this variation for the non-
spherically symmetric scatterer which then could be used
to obtain the general non-muffin-tin result. ) Using the re-
lation ln(detA )=tr(lnA ) and the expression for the in-
tegrated density of states within the KKR-CPA, Eq. (8),
one finds

5N —a—c
= —m D (B4)

—5LL.ZL (r, e)Jt..(r', E )] . (B5)

with Jt (r; E)=j,(r; s) Y, (r) and the spherical Bessel

where D =[1+(t ' t, '}r,] ', — and
'r =Q,z' fdk[t, ' g) ' &a—z is t.he Brillouin-zone
volume. Also, within the CPA, the alloy Green's func-
tion is given by

GLL.(r, r', e)=pc [ Z(Lr, )EZL(r', s)(D r, )LL ~

where e. is the energy of interest. With the assumptions
used in the text for the potential, namely (i) the effective
potentials are spherically symmetric, and (ii) partially
averaged for a given configuration, and hence are in-
dependent of configuration, we obtain

—V„+gu;(r;g, ) —s G(r, r', s, tg;I)=5(r —r') .

(C3)

Equation (Cl) may now be rewritten as

T(s)=m. 'Imf dr lim G(r, r', s, I(;}) gu;(r;g;) —s
r' r

(C4)

The limit may be taken and, therefore, we require only
the site-diagonal Green s function, which is defined by
Eq. (B5).

Because the potentials depend only on the site occupa-
tion and are arranged on an ordered Bravais lattice, we

may derive an expression for the configurationally aver-
aged kinetic energy within the single-site approximation.
This can be accomplished by similar arguments leading
to the single-site CPA averages. ' ' Since T(e) depends
only on site-diagonal quantities, it is reasonable to first
average over the subset of structures in the ensemble that
leave the cell i fixed. Note, also, that upon
configurationally averaging, one obtains a translationally
invariant system and, therefore, we may replace an aver-
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age over the system by an average over a cell. Perform-
ing this site-restricted average yields

(T(e}); = ~ 'f dr[a —
v; (r;g, }]

X (ImG(r;s, {g;]));, (C5)

where ( . . ); indicates we have conditionally averaged
so that on the site i the potential is known to be v, and
( T(s) ); is the kinetic energy per cell.

The final step in the process consists of averaging over
the possible occupants of site i. We then obtain

(T(e))= ~ ' f drgc ([e—u (r;g;)](ImG(r;e, {g;]});) .
0

(C6)

—f dr'gc u (r')p, (r') .
0

(C7)

Using partial integration over c, the desired form for the
configurationally averaged kinetic energy is obtained, i.e.,

T pN= ——f ds N(s;p)B(p —e)

—f drgc v (r)p (r) .
0

Note that all the approximations used in the derivation
are consistent with the KKR-CPA.

We now use the single-site CPA to give the site-restricted
average of G, Eq. (B5). Thus, integrating over energy we
obtain

T pN=——f ds(s —p}e(p—e)gc n (s)

APPENDIX E

In Sec. VC we claimed that the energy behaved in a
simple way as the lattice is contracted. Here we discuss
this behavior in detail and show how the pressure defined
in Eq. (14) is reduced to the convenient form of Eq. (15).

As the lattice parameter is varied, the energy changes
for three reasons. First, the energy functional depends
explicitly on the nuclear positions through nucleus-
nucleus Coulomb repulsion; second, the nuclear positions
determine the "external potential" in which the electrons
move; and third, the electron density (which minimizes
the energy functional) must respond to the changes in the
"external potential. " The energy of the contracted lattice
can be expanded about an approximate electron density,

—Ek(l{j)
APPENDIX D

The first variation of T—pN with respect to the site-
restricted, configurationally averaged charge densities p
are necessary to establish the stationary property of the
total energy and can be obtained by arguments similar to
those outlined in Appendix A. Consider the functional
form of the kinetic-energy equation (C8), the variation is
given by

5(T pN) ~— 5Ndue p —s
5p. -" 5P.

5up(r)—c u (r) —f dr g c&p&(r)0 Pa

(D 1)

Since 5N/5t, '=0 within the CPA, the first term of Eq.
(Dl) yields

doe p —c
oo 6p

5N 5t&
' Bv&(r)

dc dr
1

. 02
n p pter

' 6vp gp

Using Eqs. (B3)—(B5) and performing the energy integral,
the first and third terms in Eq. (Dl) cancel and the result
stated in the text is obtained, namely 5( T pN )I—
5p = —c v (r ). Note, if {T minus the temperature mul-
tiplied by the entropy) replaces T and a Fermi factor
f (s —p) replaces the step function e(s —p), then this
derivation is equally valid at nonzero temperatures.

=E (p, {c ])+ f drgc hp (r)

+O((hp ) ) (El}

where p is the self-consistent electron density for the
contracted lattice, and Ap =p —

p . We chose not to
specify p at this point other than to impose the restric-
tion that as A, tends to 1, p goes smoothly to p '. The
second term on the right-hand side of Eq. (El) vanishes
since the energy is stationary, and, by construction, the
terms of second order (or higher) in bp do not contrib-
ute to the pressure. In this way, the stationarity of the
energy within the CPA is critical in establishing a pres-
sure formula.

To obtain the pressure, all that remains is to choose p
and take the derivative of the energy with respect to k.
For ordered metals, Slater chose to set p =p ' in
deriving the pressure in the Xa approximation. ' Janak
followed Slater's approach in generalizing the pressure
formula to include arbitrary forms of the exchange-
correlation energy. ' As can be seen in Slater's paper, this
leads to complicated algebra when evaluating the kinetic
energy. Another drawback of this choice is that the rna-
nipulations of the Schrodinger equation explicitly involve
wave functions. This is a handicap in the CPA formalism
because it is a theory of the configuration averaging of
the Green function and does not provide information
about the wave function.

Following the early work of Fock' and the recent
work of Martin, ' we choose the scaled set of densities p
defined by densities,
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p (r)=A, p (A,r), (E2)

i.e., we expand the energy about an electron density
which is "shrunk" with the lattice. The factor
preserves the total number of electrons. We are not con-
cerned about the accuracy with which this reference elec-
tron density approximates p; we are only concerned that

p is exact as A, tends to one and that the energy is easily
evaluated. '

The potential energy is easily evaluated by replacing

p by p in Eq. (11) and adjusting the limits of integra-
tion to RM~/A, . By changing the variable of integration,
we find

U( [P~ j ) =HUH„„ee( [p~ j )+Zvs„, (A~po)

+f dr g c~p (r)s„,()ip . )
0

(E3)

Referring to Eq. (C7), we can write the kinetic energy as

T (Iprj)= f" dssn, (s;[p"j)

—f,drgc p "(r)u [[p rj] . (E4)

T(p)= f" dssn(s;p) —f drpu[p], (E5)

where the relations

(
—V, + V[r;p] —e)G(r, r', s)=5(r —r'), (E6}

V[p]= g u(r —R, ;[p(r)]) (E7)

and

p(r)= n'Im f" de. G(r,—r, s) (E8)

define the potential v [p], while the density of states is
given by

Here we must be careful about the meaning of
n, (s, [p r j ) and u [ t p r j ]. As a preliminary step, consid-
er the kinetic energy in an ordered metal, which can be
expressed as

dependence of u, on t u j. This seemingly complex
dependence of the DOS on [p "j is simplified greatly by
the scaling properties of the CPA equations. If we can
find a set of potentials [ u (r) j such that the

'Im(G, ) =P (note the restricted average), then
the appropriate DOS, n(E, {p j), to use in Eq. (E4} to
evaluate the kinetic energy is n, (s). We now discuss how
such a set of potentials [ u (r) j can be constructed. .

Given a set of electron densities, it is diScult, or im-
possible, to find a [u (r) j that will generate them via the
CPA equation; this is true not only for the CPA but for
the Schrodinger equation in general. This is why one
usually evaluates the energy by using an electron density
found by solving the Schrodinger equation; the generat-
ing potential is then available. The resolution of this
problem lies in the choice of p (r). For the choice of
p (r) =A, p (A,r ), the generating potentials are [by scaling
of the Schrodinger equation, i.e., Eq. (E6)] easily shown
to be Av, (A,r)+ g, ;,~0~ v, (r —R;/A, ), where v and u, are
the self-consistent potentials for the uncontracted lattice
[R„j.

This simple scaling argument involving the
Schrodinger equation is independent of the nature of the
potential, and, for example, is valid for complex, energy-
dependent, and nonlocal potentials and, in particular, for
the coherent potential, U„as well as for any v embedded
in the coherent potential. Also, inspecting the CPA
equation, one observes that the coherent potential scales
in the same way as the potentials v~. That is, if v, (r) is
the coherent potential corresponding to [ u j, then
A2v, (Ar ) corresponds to [ A, u ( Ar }j . Furthermore,
l u, (A,r} embedded in a CPA medium obtained from
A, v, ()ir) has a restricted average electron density p "(r).
Therefore, the density of states, n, (c, [p j)., as deter-
mined from the imaginary part of the trace of the Green's
function in the CPA medium A, v, (A,r), is the appropriate
density of states to use in the evaluation of the kinetic en-

ergy, Eq. (E4).
We reiterate the three salient points of the above dis-

cussion: both [ u j and u, scale simply with the ap-
propriate choice of the scaled densities, and it follows
that n, is the required density of states to evaluate the
one-electron contributions to the energy. Therefore, the
sum of the one-electron eigenvalues, when properly
scaled, is

dean, E, p

n(e;p)= —m. 'Im f dr G(r, r, s) . (E9) vr 'Im f dEE—f drAG(kr, kr;A, E) . (E10)

To use Eq. (E5) for the kinetic energy T (p), we must find
a potential u[p] which in turn gives a Green function
whose imaginary trace is —~p. Only the density of states
obtained from this potential can be used in Eq. (E4) to
evaluate the kinetic energy.

Within the CPA, there is an additional level of com-
plexity. We need to know how the kinetic energy de-
pends on I p j through the density of states (DOS}. The
DOS itself depends only indirectly on [p j through the

Substituting for n, (E, Ip j), p", and u in Eq. (E4), the
kinetic energy is

(E1 1)

The pressure is now readily evaluated from the potential
and kinetic energy and pressure relation, i.e., Eqs. (E3),
(El 1), and (14), respectively, and yields
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3P00=2T+ UH~Jtlee
RMT—3 + c d r P [s„,(P ) —ls„,(P ) ]

0

3Zo [s (po) P (po ) ] (E12)

which is conveniently written as a sum over species [Eq.
(15)],i.e.,

P= pc PJ[p,po;n ],
a

(E13)

where PJ is the functional form for the pressure derived
by Janak' and p, p&, and n are the configurationall
averaged muffin-tin charge densities, interstitial charge
densities, and density of states, respectively.
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