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Structure analysis of the Cu(110)-(1 X 2) surface reconstruction induced
by alkali-metal adsorption
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The structure of the alkali-metal-induced reconstructed Cu(110)-(1 X 2) surface has been analyzed

by use of low-energy electron diffraction. A missing-row model, a row-pairing model, and a
sawtooth model have all been examined. The results confirm the missing-row model for the recon-
struction with no long-range order for the alkali-metal atoms. The top interlayer spacing of the
reconstructed Cu(110) surface is contracted by 11% and the second layer exhibits a lateral pairing
displacement of 0.10 A.

INTRODUCTION

The (1 X2) reconstruction has been observed on nearly
all fcc metal (110) surfaces. This interesting phenomenon
has stimulated a great number of experimental and
theoretical works in recent years. ' ' It has been known
that for the 5d metals Ir, Pt, and Au, the (1X2) recon-
struction is established on an annealed, clean surface.
Low-energy electron diffraction (LEED) analysis and
theoretical calculations confirmed a missing-row model
with paired rows in the second layer and buckled rows in
the third layer for all three 5d metals. ' For the 4d fcc
metals, Pd and Ag, the (1X2) reconstruction was ob-
served after a small amount of alkali-metal adsorption on
the (110) surface. A missing-row model without multilay-
er relaxation or reconstruction was suggested, even
though no exact structure was identified. ' For the 3d
metal Ni, a multilayer reconstructed Ni(110)-(1X2) sur-
face was found after exposure of Ni(110) to Hz at low
temperature. The exact surface structure was reported to
be a row-pairing model with second-layer buckling.

Within the fcc metal (110) surface the adsorbate-
induced reconstruction of Cu(110)-(1X2) is one of the
most attractive subjects for study. Many experimental

techniques have been applied to it; ' however, the ex-
act structure of the reconstructed surface has not yet
been reported. On the other hand, numerous theoretical
efforts have been devoted to explain the fcc metal recon-
struction mechanism, especially for the Cu(110)-(1X2)
surface. For example, studies have been undertaken in
the phonon-softening model within a lattice-dynamical
approach, " a chemisorption-energy calculation, ' and a
structural-energy calculation within the linear combina-
tion of atomic orbitals (LCAO) formulation. ' Past re-
cent work on alkali-metal adsorption of the Cu(110) sur-
face has shown a 1 X 2 alkali-metal-induced reconstruc-
tion for the Cu(110) surface. Structural analysis by
LEED has been, therefore, undertaken in an attempt to

more fully understand the mechanism of surface recon-
struction and the driving force that initiates it.

EXPERIMENT

The experimental procedure was described in detail
elsewhere; only a brief description will be given here.
The experiments were carried out in an UHV chamber
with a four-grid LEED optics with data acquisition via a
video camera interfaced to a personal computer. The
Cu(110) surface was cleaned by cycles of Ar-ion bom-
bardment and annealing until there was no indication of
impurities in the Auger-electron spectra (AES), and the
LEED pattern showed sharp, high-contrast spots. The
temperature was measured by Chromel-Alumel thermo-
couple. Potassium and cesium sources used in this study
were Sacs-Getters thermal cells.

When the evaporation of K or Cs onto the Cu(110) sur-
face was conducted at 80 K, the alkali-metal overlayer
formed a disordered structure or a quasihexagonal struc-
ture depending on the coverage. No obvious surface
reconstructions were observed. The evaporation of po-
tassium at room temperature produced, however, a se-
quence of changes in the LEED pattern. At first, streaks
in the (001) direction passing through diffraction spots
appeared. As the coverage increased, the streaks
coalesced into spots which identified a (1 X 3) superstruc-
ture. At a coverage of 8)0.12, the (1X2) pattern ap-
peared. Here, coverage is defined as the ratio of the num-
ber of adatoms to the number of substrate atoms per unit
area.

It is very interesting to note that the I-V curves of all
beams for the K-adsorbed surface are the same as those
of the Cs-adsorbed surface despite the large difference in
the K and C atomic sizes. This fact supports a recon-
struction model for the two structures: the reconstructed
Cu(110) substrate produced the (1X2) and (1X3)
diffraction patterns, not the alkali-metal overlayer.

Seven LEED intensity spectra for the (1 X 2) structure,
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FIG. 3. Best parameters d» and d&3 defined by R-factor
analysis for each individual diffraction beam; missing-row mod-

el, row-pairing model, and sawtooth model.
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0 0
FIG. 1. The three main structure models considered for the

reconstructed Cu(110)-(1X2) surface with the definitions of the
interlayer spacings d» and d23 and the lateral shift parameter 5.
(a) missing-row model, (b) row-pairing model, and (c) sawtooth
model.

consisting of three integral-order beams and four
fractional-order beams, were collected at normal in-
cidence at a coverage of 0.15 for both K and Cs.

ANALYSIS

A dynamical LEED analysis accompanied by reliabili-

ty (R } factor evaluation' was applied to obtain the atom-
ic structure of the alkali-metal-induced reconstructed
Cu(110)-(1 X2) surface.

Three main substrate reconstruction models, including
the missing-row model, the row-pairing model, and the
sawtooth model (Fig. 1), were tested. In the theoretical
calculations, seven phase shifts were used. The real part
of the inner potential ( Vo) was determined to be 15 eV
after varying Vo by a rigid shift of the energy scale to op-
timize the comparison between theoretical and experi-
mental I-V spectra. A constant imaginary part of optical
potential of 5 eV was used. The bulk Debye temperature
used in the calculation was 343 K, and an enhancement
factor of 1.4 was used for the surface layer mean-square
vibrational amplitudes. The alkali-metal overlayer was
assumed to have no long-range order thus resulting in
only a reduction of intensity of all beams and an increase
in background, but no other effect on the I-V pro61es.
Therefore, in theoretical calculations, no special attempt
was made to incorporate the disordered alkali-metal
overlayer except to extend the inelastic part of the poten-
tial above the top Cu layer to account for absorption in
the overlayer.

The layer-doubling method and the reverse scattering
perturbation (RSP} methods were used in the theoretical
calculations. ' The energy range in the calculations was
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FIG. 2. The R factor as a function of d» for the missing-row
model ( ), the row-pairing model ( ——.—~ ), and the
sawtooth model ( ———). d» is the interlayer spacing be-
tween top and second Cu layers.

FIG. 4. The R factor as a function of 5 (lateral shift parame-
ter) for the missing-row model with row pairing in second layer
and d»=1.13 A, d»=1.28 A.
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further consideration.
The above analysis for the alkali-metal-induced

Cu(110)-(1X2) surface reconstruction defines the struc-
0

ture as a missing-row model with d&&=1.13 A and

d23 =1.28 A, that is, with top interlayer spacing contract-
ed 11.7% and the second interlayer spacing the same as
that of the bulk. This is very different from the clean un-

reconstructed Cu(110) surface which has oscillatory rnul-

tilayer relaxation. ' In order to obtain a more exact
structure, a missing-row model with paired rows in the
second layer was considered. The lateral shift parameter
25 (Fig. 1) was varied for the second layer from —0.18 to
+0.36 A, while d~2, d23 were varied independently. Fig-
ure 4 shows R for d»=1.13 A, and d»=1.28 A as a
function of 5. R reaches a minimum of 0.17 at 25=0.10
A. This R is the smallest value obtained for all structures
and is supported by minimum in each of the individual R
factors.

Finally, buckling was introduced in the third layer as
done in previous work. ' ' The vertical displacement of
third layer atoms 2p was varied from —0.10 to 0.80 A,
while 25 was 0.10, to 0.40 A, and d &p and d23 were varied
independently. Here P is defined such that if the atoms
underneath the missing row move up and the atoms un-
derneath the row of the top layer move down, the vertical
displacement 2p is positive. The R factor was seen to be
very sensitive to the value of p, however, the smallest
value of R, 0.17 was found for 0~PRO.02 A (with the
remainder of the parameters as in the above paragraph)
indicating that third-layer buckling is so small that it can
be neglected. There has been some recent renewed in-
terest in a buckled-row model for (1 X 2) reconstruction
in fcc (110) surface. For the present case, however, the
very poor agreement of the calculated fractional order I-
V curves with experiinent at values of p (buckling) away
from =0 and 25 away from 0. 1 A, and the general poor
fit of the integer beams as 2p is increased, negates a
buckled-row model for the Cu(110)-(1X 2) reconstruction.
Figure 5 shows the comparison of the theoretical I-V
curves with the experimental spectra for this model. The
most probable model for the reconstructed Cu(110)-
(1 X 2) surface is, therefore, described by the following
structural parameters: d, 2 =1.13 A, 1.23 A d» 1.28
A, 25=0.1 A and 0 p(0.02 A. This structural model
is the missing row with second-layer pairing model.

CONCLUSION AND DISCUSSION

The most probable structure of the alkali-metal-
induced reconstructed Cu(110)-(1X2) surface as defined

by dynamical LEED calculations is a missing-row model
with an 11.7% contraction in the top interlayer spacing
and a row-pairing lateral shift of 3% in the second layer.
There is no clear translational symmetry between the
alkali-metal atoms on the surface which induce the
reconstruction, however, they are most probably located
in the missing-row surface channels. The confirmation of
the semidisordered structure of the alkali-metal overlayer
and determination of the interlayer spacing between the
overlayer and substrate will be described in another pa-
per. "

It is very interesting to compare the present results
with that of all other fcc(110) surfaces. The Cu(110)-
(1 X 2) reconstruction is the same type (missing row) as
that for all 5d metals and perhaps 4d metals as well [the
Pd(110) structure has not yet been definitively described].
However, the 5d metal reconstruction is established on
clean (110) surfaces, while the 4d and 3d metals need ad-
ditional adsorbates, e.g. , alkali-metal adsorbates, to in-
duce the reconstruction. In the (110) surface reconstruc-
tion of 5d metals, there are large contractions in the top-
most interlayer spacing (20% for Au, 18.4% for Pt,
12.3% for Pd) which smooth the surface corrugations
and result in multilayer relaxation and reconstruction.
For the Cu(110) surface with an alkali-metal overlayer on
the surface, contraction of the topmost interlayer spacing
is smaller than for the 5d metals, and only one layer re-
laxation and two layers reconstruction is detectable. It
seems the electrons transferred from the alkali metal mi-

tigate the strain in surface region. On the other hand, the
structure of the reconstructed Cu(110) is very different
from that of the reconstructed Ni(110) surface which is a
row-pairing structure. This difference may come from
the full d-shell character of Cu and the unfilled d-shell
character of Ni. It is suggested that the structure
analysis of the 4d metals Rh(110) and Pd(110), would be
very helpful to further clarify fcc (110) surface recon-
struction.
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