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Calculation of Invar anomalies
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We present a thermodynamic two-state model based on energy-band results at T 0 K and on

a Debye approximation of the phonon contribution to the free energy in order to calculate various
Invar anomalies. The band results for some Fe-based systems suggest that the nonmagnetic and
ferromagnetic total energies are almost degenerate and that Invar behavior occurs when the aver-

age number of electrons per atom is near 8.5. Our model invokes fluctuations between the fer-
romagnetic and nonmagnetic states at equal volume and does not invoke large volume fluctua-
tions.

The so-called Invar alloys, characterized by invariant
thermal expansion up to room temperature, have been of
technological importance for a long time. ' In recent years
there have been theoretical efl'orts for a microscopic un-
derstanding of the mechanisms behind the Invar behav-
ior. The early model of Weiss proposed that a transi-
tion from a ferromagnetic ground state to an antiferro-
magnetic excited state at increased temperatures leads to
the Invar effect. Electronic structure calculations have
established the closeness between nonmagnetic (NM) and
ferromagnetic (FM) states in Fe3Ni (Refs. 2 and 5). In
the present work we first determine the total energies of
some Invar systems and show, subsequently, that thermal
fluctuations between the FM and NM states at the same
volume (other magnetic configurations have not been
studied here) produce several typical Invar properties.
Our thermodynamic model is valid for temperatures lower
than the temperature at which the magnetic moment
starts to disorder;

The electronic structure and total energies are calculat-
ed using the linear-muffin-tin-orbital method together
with local-spin-density (LSD) potential. s Most LSD cal-
culations9 give fcc NM as the ground state of pure iron,
instead of the experimentally found bcc FM state, while
the LSD band structure results of Moruzzi et a!. '0 give
bcc FM as the ground state. However, here we consider
only configurations of the same structure (fcc) and the
LSD approximation should be more reliable. The calcula-
tions are done for ordered Fe3Ni in Cu3Au structure. The
fact that Fe3Pt exists and has Invar behavior both as or-
dered and disordered phases' shows that disorder is not
essential for the Invar behavior. Our results of the total
energies for the NM and FM states calculated for a large
range of lattice constants have been fitted to Murnaghan's
equation of state.

In Fig. I we show our calculated total energies of Fe3Ni
as a function of the radius of the Wigner-Seitz cell. As
shown, we find a FM ground state but the energy dif-
ference between the two minima is very small (-0.5
mRy/atom) (FeNi is found to have larger separation,
about 7 mRy/atom). The two states have slightly
different equilibrium lattice constants and different bulk
moduli. fcc Fe3Ni exhibits a large magnetic Griineisen

coefftcient. The magnetic moment (M), the hyperfine
field (H), and their pressure derivatives have been calcu-
lated for fcc-ordered Fe-Ni systems at several lattice con-
stants and are given in Table I. The calculations show
that the pressure derivatives are indeed largest near the
Invar composition as in Fe3Ni. Quantitatively, the calcu-
lated values agree well with experimental results on
Fe68.sNi3l. s at 4.2 K."

The most known Invar anomalies are temperature
dependent and they have been investigated in this work in
terms of a two-state thermodynamic model combined with
the band results at T 0 K. Theoretical models of the In-
var behavior often involve fluctuations between the total-
energy minima of the FM and NM states. ' Alternative-
ly, we consider magnetic fluctuations between the two
states occurring at equal volume in order to avoid the
problem of having regions of different volume coexisting
in the solid (it would cause structural instabilities, melt-
ing, etc.). Further, since the two states differ in electronic
structure, it is likely that fluctuations between them follow
an electronic time scale, i.e., they are more likely to be
magnetic (rapid) rather than accompanied by (slow)
volume or structure modifications. This means in Fig. I
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FIG. 1. Calculated total-energy curves (jn mRy/atom) of
nonmagnetic and ferromagnetic states for fcc Fe3Ni in the
Cu3Au structure as a function of the Wigner-Seitz radius. The
magnetic fluctuation is represented schematically by the arrow.
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TABLE I. Calculated moments M, hyperfine fields H, and

logarithmic pressure derivative of the hyperfine field and mag-
netic moment per atom for ordered fcc Fe, Fe3Ni, and FeNi sys-
tems. In Fe65Ni35 and Fe68.&Ni». 5 at 4.2 K the experimental
values (Ref. 11) of the pressure derivatives of M and H vary
from —4.4 to —15 (Mbar) '. Our calculations confirm the ex-
perimental observation of a large magnetic Griineisen coef5cient
near the Invar range.

Lattice constants (a.u. )
M (ps/atom)

Hf (kG)
bin M (Mb )

BP
81nH

(Mbar
BP

Fe (fcc)

6.8

2.45

NiFe3

6.58 6.34

1.37 0.26

NiFe

6.60

1.43
—399 —257 —55 —304

-0.48 —4.25 -10.06 —0.72

—0.56 —3.72 —7.87 —0.74

that we exclude transitions which are not vertical, since
such fluctuations would require an additional energy to
make up for elastic or other energies confined in some
kind of domain walls between the regions of different
volumes. We assume that nearly "vertical" transitions are
possible between FM and NM states without passing a
high-energy barrier and that some scattering in energy ~
around the two states is allowed, as is indicated by the ar-
row and the "energy windows" in Fig. 1. The quantity ~
determines how many FM and NM states are accessible
in the fluctuations (see later). As long as the energy win-

dow AF. is small in comparison to the energy of the fluc-
tuations E M —E "M (arrow), we can approximately
reduce the problem of all transitions of different weights
between FM and NM states to a problem of a transition
between one FM and one NM state which have weights
given by the number of states within AF-. In other words,
we let &F. determine the range of volume fluctuation.
However, with the volume strain hV/V of about 2%,
which is realistic for normal materials at room tempera-
ture, '3 one is well below the fluctuations between the
total-energy minima. This defines ~ for the FM ground
state at about 0.2 mRy/atom. (With this AF- the NM ex-
cited state has smaller volume fluctuations since its total-
energy curve is steeper in the region of interest). In short,
the volume fluctuations due to thermal disorder are not
considered to be more important than for normal materi-
als and their effects are averaged out to give the proper
weights in a two-state model. The free energy for such a
two-state Invar system is approximately given by the sum
of the total electronic free energy and the free energy of
Debye lattice vibrations. The phonon energy and entropy
are functions of the Debye temperature 8D (Ref. 14) in
this approximation. This quantity can be determined
from the bulk modulus (assuming that the high-q phonons
scale as the low-q phonons) which, in turn, is calculated
directly from the band results. The total energy for given
V and T is expressed as the sum of the total energy of the
magnetic ground state and the nonmagnetic excited state

NM FM

E(V,T) g E'(V)p;(T, V,hV) . (1)

The populations of the NM or FM state are given by

p; (T, V,h V) b; (T, V)N; (V, /t V), (2)

where b; (T, V) is the Boltzmann factor and where
N~(V, hV) is the number of states within a window &F.

around the value of the total-energy E;. N~ can be related
to pressure or volume fluctuations since it corresponds to
including states which fluctuate around the averaged
state. As mentioned above we use a normal volume strain
of 2% at all T which corresponds to hP (hV/V)B(V) of
about 30 kbar. The variation of the bulk modulus of the
mixed system has been approximated via the relation

NM FM

B(V,T) g B'(V)p;(T, V,d V), (3)

200 400 600

10

0

~10
1.66

1.64-

gg 1.62

1.3

1.60
I I

200 400 600
Temperature (K)

1.0

0.9

0.8

0.7
u. Q 0. 1 0. 2 0.3 0.4 0.5 0.6

T/T,
FIG. 2. (a) Temperature dependence of the calculated

thermal expansion coefficient and (b) bulk modulus of ordered
fcc Fe3Ni. The two calculated curves (solid lines) are compared
with experimental data (open dots) (Refs. 15 and 16) for an
Fe65Ni35 Invar alloy. (c) Calculated relative spontaneous mag-
netization M(T)/M(0) vs the relative temperature T/T,
(T, 560 K) of ordered fcc Fe3Ni in comparison with the Bril-
Iouin function (BF) and the experimental data for Fe65Ni35
(taken from Ref. 17).

i.e., no volume derivative of p; is taken into account. The
total free energy of the Invar system is minimized with
respect to the volume at different temperature intervals in
order to find the equilibrium volumes.

The calculated curve a(T) and B(T) along with experi-
mental data' ' are shown in Fig. 2 for FesNi. The calcu-
hted thermal expansion coefficient is strongly reduced
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(compared to the normal behavior) for T less than about
room temperature and we obtain good agreement with ex-
periment. Local-density approximation calculations pre-
dict too large bulk modulus for separate NM and FM
states and therefore the bulk modulus of the fluctuating
system is not quantitatively comparable with experiment,
although the temperature dependence of 8 has a similar
shape. Namely, at T 0 K, 8 is determined by the rather
soft FM compressibility, while at larger T the NM state,
having larger 8, becomes populated. Another charac-
teristic of Invar property is the rapid decrease of the mag-
netic moment with temperature. Figure 2 shows the Bril-
louin function, the calculated relative magnetization for
FesNi, and the experimental data for FessNi35. '7 We find
that the decrease of the magnetization is more rapid com-
pared to the normal behavior of the ferromagnet (follow-
ing the Brillouin function) since at higher temperature the
NM state gradually becomes occupied. The behavior of
the hyperfine field H is different. Experiments show that
there is a dominant high-field peak which becomes
broadened with increasing temperature. 's The intensity
decreases somewhat at higher T and other zero or low-
field peaks appear. This behavior can be understood from
the coexisting FM and NM states in which the relative oc-
cupations change with temperature. On the other hand,
there is a strong pressure variation of hyperfine field and
magnetic moment which also is found from the calcula-
tions (see Table I).

A further qualitative indication of a mixture of two
states at higher T is found from spin-resolved photoemis-

sion. ' A mixture of our calculated FM and NM density
of states (DOS) following the occupations defined in Eq.
(2) follows very well the experimental results for Fe3Pt in
Ref. 19. A similar analysis was done using Fe (fcc ) DOS
(Refs. 19 and 20) which both agree well with the experi-
ments in Ref. 19. An alternative analysis based on disor-
dered local-moment models is also able to produce the
characteristic DOS structures without invoking a two-
state model. ' Therefore, comparisons with photoemis-
sion data do not seem to separate the different models.

In conclusion, our T-dependent results are interpreted
as consequences of the magnetic fluctuations between
low-energy FM state and high-energy NM state, without
invoking large volume fluctuations (such as fluctuations
between the total-energy minima' ). This allows a quali-
tative explanation of Invar properties for T up to about
room temperature. Calculated total-energy curves for fcc
Fe„Co(i —,) show small energy separation at x 0.5 and
the same behavior is found for Fe3Pt assuming the or-
dered Cu3Au lattice, which confirm that the Invar behav-
ior of Fe-based fcc alloys occurs when the number of elec-
trons per atom is near 8.5. More detailed results of our
calculation for several Fe-based Invar systems will be
published elsewhere.
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