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Low-temperature properties of the quasi-twodimensional antiferromagnetic Heisenberg model
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By means of a two-sublattice approach to antiferromagnets, we found that the ground state of

a quasi-two-dimensional cubic-lattice antiferromagnet (J,/J„r«1) is a Neel antiferromagnetic

state with a mean magnetic moment of 0.6tts (its is the Bohr magneton) and that low-

temperature moment decreases with the square of the temperature. The coefficient of the

temperature-squared term approaches infinity when J,/J, » 0. The z-direction coupling (J, )0)
is essential to keep three-dimensional Neel ordering at nonzero temperature and to obtain a

nonzero Neel temperature. The low-temperature specific heat capacity is proportional to the tem-

perature squared.

It is observed that Lap-, (Ba,Sr)„Cu04 (x (0.03) and

RBazCu30s+r (y (0.4; R rare-earth element) exhibit
three-dimensional (3D) Neel antiferromagnetic (AFM)
ordering with a magnetic moment of about 0.6ptt (where

lttt is the Bohr magneton). ' Further experiments affirm

that their excitations are 2D spin waves. The 2D Heisen-

berg coupling constants J of La2Cu04 and RBa2Cu30s
are 950 and 1300 K, respectively. Coupling between
Cu02 planes is much weaker than in-plane coupling. The
copper oxide materials can be described by a quasi-2D
Hubbard model on a simple cubic lattice with large on-

site Coulomb repulsion. 3 There are no dopants in the
idealistic Cu02 planes which correspond to La2Cu04 and
RBa2Cu30s. The corresponding Hubbard model is half
filled. Because of the large on-site Coulomb repulsion, the
Hubbard model is equivalent to the following spin- &

Heisenberg AFM model:

H gJ;,S; S, .
&ij &

Jj J only for the nearest-neighboring i and j sites within

one CuOz plane and JJ gJ (g(1) when i and j are
nearest-neighboring sites in the z direction.

If g 0 the Hamiltonian (1) reduces to the 2D Heisen-
berg AFM model

H JQS;S, , (2)
&ij )

where i and j take on values within the Cu02 planes.
Reference 4 used the (2+1)-dimension nonlinear sigma

model to approach (2) and found that the correlation
length had renormalized classical behavior tc

=exp( A/T), where A/—T is not equivalent to zero when

T approaches zero. Reference 5 used a mean-field method
to investigate (2). Their models provided a Bose-liquid
description of the excitations but they were unable to
given a unique magnetic moment in Neel AFM states.
Reference 6, by means of a Monte Carlo method, ob-
tained the Neel AFM ground state of the 2D AFM
Heisenberg model on 32x32 sites of a square lattice,
whose staggered moment is equivalent to 0.334+ 0.001.
These results are limited to the 2D model (2).

r(k) (2cosk, +2coskr +2gcosk, )/Z . (4)

By means of a Bogoliubov transformation the Hamil-
tonian (3) is diagonalized to be (for details see Calla-
way )

H =En+ g e (k) [A (k)A (k) +8 (k)8(k)],
k

In this paper we use a two-sublattice method to investi-
gate the Hamiltonian (1). We obtain the Neel AFM
ground states for all g. The average staggered moments of
the ground states increase with parameter g. They are
0.606 and 0.8441tit when g 0 and 1, respectively. Low-
temperature staggered moments are shown to decrease
with the square of the temperature, but the coefficient of
the temperature-squared term approaches infinity when g
is equal to zero. This implies that the 2D AFM Heisen-
berg model has no AFM ordering at any finite tempera-
ture. The z-direction coupling is essential to keep the 3D
AFM ordering at nonzero temperature and to obtain a
nonzero Neel temperature. Further, we calculate its low-
temperature specific-heat capacity. There is no linear
term in the specific-heat capacity when g is very small.
This is in agreement with experimental data. '

First, as in Ref. 8, we divide the simple cubic lattice
into two sublattices, indicated by a and b, so that all
nearest-neighboring sites of every a (b) sublattice site be-
long to sublattice b (a). Sublattice a (b) is a face-
centered cubic lattice. S, and Sb indicate spin operators
on sublattices a and b, respectively. a; and bi indicate
operators introduced by the Holstein-Primakoff transfor-
mation corresponding to S, and Sb, respectively. After
the Holstein-Primakoff' transformation, a; and bj are
transferred into momentum space (k„,kr, k, ). As a result,
the Hamiltonian (1) can be expressed in terms of at, and

k ~

H IVJZ/4+ g—JZ l ak ak +bk bk +r (k)
k

X (akbk+ at, bk )),
where N is the total site number of the lattice, Z =4+2g
is the effective nearest-neighbor number, and
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where

A (k) =u (k)al, v—(k)bl, ,

8(k) u (k) bI, —v(k) alt,

(6)

average staggered magnetic moment (S') at any nonzero
finite temperature T.

(S') can be worked out at low temperature.

(S') So f—(g)(T/JZS) +O(T/JZS)". (15)

Eo = —NJZ 1+ 1 —4/Ng[I —r (k)] '~ (g)
k

e (k) ~JZ [1 —r (k )] '

u(k) and v(k) in the above equations satisfy u —v 1

and u +v 1/[1 —r (k)]'~. The mean a-spin operator
S'=2/Ng;S;; 2/Ng;( —' —a;+a;) can be expressed in

terms of A(k) and 8(k) as

—' —2/Ng[u (k)g (k)g(k)+ v (k)8(k)8 (k)
k

+ (k) (k)[A(k)8(k)+A (k)8'(k)]].
(io)

Because the ground state ( ) is defined by A
~
) 8

~
) 0,

the mean value of the spin z component in the ground
state is given by

S~g 2
—2/Ngv (k) I —I/Ng 1/[I —r (k)] ' (l l)

k k

The above k summation can be transformed into k in-
tegration. For small g, we obtain

S' 1 —I /16lr d k/[1 —r (k)]' (i2)

(S') =
2 (1+&)= —,

' —W/2,

where 8'is defined by

W 1/Ng [JZcoth [(S')e(k)/2T]/e (k) —1] .
k

(i3)

(i4)

Equations (13) and (14) are enough to determine the

So varies with the parameter g. So 0.303 and 0.422
when g 0 and 1, respectively. These results are in agree-
ment with Anderson's result and Monte Carlo results.
So increases with g when 0&g & 1. Since So & —,', the
ground state is not a precise Neel AFM state, but a renor-
malized Neel AFM state with average staggered magnetic
moment 2Sope. When g 0 and 1, the average moments
are 0.606 and 0.844@&, respectively. These are quantita-
tively in agreement with experimental data. '

On the other hand, we can make use of the thermo-
dynamical Green's-function method to investigate the
Hamiltonian (1). This method was proposed originally by
Bogoliubov to investigate ferromagnetic models. '0 After-
wards it was used in Ref. 11 to investigate AFM models.
This method allows us to obtain finite temperature proper-
ties of Hamiltonian (1). To use this method, first, one has
to define some necessary thermodynamical Green's func-
tions„second, one constructs equations of motion of these
Green's functions; third, one makes some proper cutoff
approximations to obtain appropriate results. From Ham-
iltonian (1) we derive the following average z component
(S') of a spin at temperature T (detailed calculation shall
be included in another paper):

In the above equation S 2 for the case we discuss and

f(g) (2+g) /6g' . f(1) J3/2 is in agreement with
the spin-wave theory given by Oguchi and Kubo. '

f(g) approaches infinity when g tends to zero. This
means the coefficient of the second term approaches
infinity when g 0. As a result, in two dimensions there is
no AFM ordering above zero temperature. In order to get
3D Neel AFM ordering, g must be nonzero. As long as

g & 0, there is 3D Neel AFM ordering at finite Neel tem-
perature T~&0. To make this clearer we expand Eq.
(14) in terms of (S'). Noticing that (S') approaches zero
when temperature T tends to T~, we obtain

(S') —,
' [3/G(1 —T/Ty)T/Tv]' (i6)

where

T~ JZ/4G,

G 2/Ng 1/[1 —r (k)l .
k

(IS)

If g & 0, G is finite so that T~ is larger than zero. If g 0,
G tends to infinity and Tz 0. Again we come to the con-
clusion that there is no AFM ordering at any nonzero
temperature in 2D Heisenberg antiferromagnets. When

g & 0, there are AFM phase transitions at Neel tempera-
ture T~.

Concerning the copper oxide materials, we see that the
coupling in the z direction, although very small with
respect to the in-plane coupling, is essential to keep the 3D
Neel AFM ordering. If the z-direction coupling is
equivalent to zero, the 2D Heisenberg is obtained. But
there is no magnetic ordering at finite temperature.

For small g and k, spin-wave energy is given by

E(k) ~2J(k +k ) ' (19)

Internal energy at low temperature is given by

E ground-state energy +0.047NT'/J'.

Specific heat capacity is given by

c 0.14(T/ J) '.

(20)

The specific-heat capacity is proportional to temperature
squared. This means that the copper oxide materials
without doping, such as La2Cu04 and RBa2Cui06, have

no linear temperature term in specific-heat capacity at low

temperature. This is in complete agreement with experi-
mental data.

Summarily, we make use of the two-sublattice ap-
proach to investigate the quasi-two-dimensional Heisen-
berg AFM model. It is found that the ground state of the
quasi-2D (g«1) Heisenberg AFM model is an AFM
Neel state with a renormalized mean magnetic moment of
0.6@8, similar to the 2D Heisenberg AFM model. At low

finite temperature, the magnetic moment is decreased
with the square of the temperature, which is similar to
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that in three dimensions. But the coefficient of the
temperature-squared term approaches infinity when g 0
(J,/J„» -0). This is in agreement with the fact that there
is no magnetic ordering at finite temperature in two di-
mensions. This means that the z direction coupling is
essential to keep 3D AFM ordering at finite temperature

in the copper oxide materials. There are AFM phase
transitions when g & 0, or J,/J„» & 0, at the Neel temper-
ature TN & 0. The low-temperature specific-heat capacity
is proportional to the temperature squared. Therefore
there is no linear temperature term in the specific-heat
capacity in LaqCu04 and RBaqCusOs materials.
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