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Peierls stabilization of magnetic-flux states of two-dimensional lattice electrons
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The problem of two-dimensional lattice electrons in a uniform magnetic field is reduced to a

one-dimensional Peierls system which is an off'-diagonal tight-binding model. Thus, this off-

diagonal equation and the usual Harper equation, which has a diagonal modulation, give the same

energy spectrum. The stabilization of the state in which the magnetic field gives one flux unit per

electron is formally equivalent to the Peierls instability of lattice deformation.

Electrons in a two-dimensional lattice subject to a uni-

form magnetic field show extremely rich and interesting
behavior (see, for example, Wannier, ' Hofstadter, 2 and
references therein). The spectrum is symmetric with

respect to E 0 and when the flux per unit cell p is a ra-
tional number p/q (p and q are integers which are prime
to each other) it consists of q bands. As p is changed con-
tinuously, p and q change wildly. In fact if p is irrational,
the spectrum is a Cantor set which consists of infinitely

many "bands" with scaling properties. 3 Thouless,
Kohmoto, Nightingale, and den Nijs showed that each
band carries an integral Hall conductance.

Recently Anderson' proposed the generalized flux

phases for the high-T, superconductors which are related
to this so-called Hofstadter problem. Hasegawa, Lederer,
Rice, and Wiegmanns studied the stability of the states
with respect to the magnetic field. From the results of a
few rational values of p p/q (q 2, 3, 4, 6, and 8), they
argue that, if the number of electrons per lattice point p is

fixed, the lowest energy with respect to the magnetic field

(including the zero-field case) is realized when p p, i.e.,
one flux unit per electron. Extensive numerical work's
confirmed this proposal. This is a rather unexpected re-

sult, since one might naively think that the external mag-
netic field would increase the total energy. Note that, in

the continuum case, however, the total energy when the
Landau levels are fully filled is equal to that without mag-
netic field.

The Harper equation (2) below which is one-dimen-
sional model with diagonal modulation is known to repre-
sent the Hofstadter problem. In this paper, we obtain an

equation of a different type: one-dimensional tight-
binding model with lattice distortion, namely an off-
diagonal model. Thus, we have an example in which an
on-diagonal model and and off-diagonal model give the
same energy spectrum. The case without magnetic field
corresponds to an undistorted one-dimensional lattice.
The application of a magnetic field is equivalent to an in-

troduction of a lattice distortion. Hence we argue that the
stabilization of the flux state is formally equivalent to a
Peierls instability in which a lattice distortion lowers the
electronic energy by opening a gap in the spectrum at the

Fermi energy.
The two-dimensional tight-binding Hamiltonian on the

square lattice in a magnetic field is written

where c; is the usual fermion operator on the lattice. The
summation is taken over all nearest-neighbor sites. The
phase factor 8;, —8,; is defined on each link and repre-
sents the magnetic flux through the lattice, i.e.,

I/2ttpp1sqzcttz8tj is the magnetic flux through a pla-
quette in units of the magnetic flux quantum ch/e. Here-
after the transfer integral t will set to unity for simplicity
without loss of generality. If we choose a gauge in which

8j 0 for the link between i (n, m) and j (n+ l, m)
along the x direction and 8;j 2»tpn for the link between
i (n, m) and j (n, m+1) along the y direction, we ob-
tain the well-known Harper equation (see, for example,
Ref. 9),

—tlr;~ ~

—
tit, ~

—2cos(k„+ 2ttgj ) tir, Etit, . (2)

Here, j is an integer and (2) is defined on a one-di-
mensional infinite lattice —~ & j&~. This equation
represents a one-dimensional tight-binding model with a
diagonal modulation. When p is a rational number, i.e.,

p/q with p and q being integers which are prime to
each other, (2) represents a system with period q. The en-

ergy dispersion of the original two-dimensional problem is
determined by k„and k» which is defined by the Bloch
condition tltj+q -exp(i~k») tlrj The ma. gnetic Brillouin
zone is given by 0 ~ k„~ 2tt/q, and 0 ~ k» ~ 2tr. Since
there are q solutions to (2) for a given set of k„and k»,
the spectrum consists of q bands. Also note that the ener-

gy is degenerate for k» and k»+2tti/q where i is an in-

teger.
Now we obtain another one-dimensional equation for

the Hofstadter problem which has an off-diagonal modu-
lation. Let us choose a gauge in which 8;J —ttP(n+m)
for the link between i (n, m) and j (n+1,m) along the
x direction and 8;j std(n+m) for the link between
i (n, m) and j (n, m+1) along the y direction Then.
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the Hamiltonian (1) is written

'H -
~ dk„dk»H(k), (3)

with

H(k) (e' '+e ' )c (k +my, k»+iry)c(k„, k»)

—(e
' ' ' +e' ")c (k„—np, k»

'—tran)c(k„, k»),

(4)

where the fermion operator in the reciprocal space is
defined by

psc„dk„dk»exp[t'(k„n+k»t»t)lc(k„, k») .
(2tr) ~ 4 —a' 4 —g

(i) p even and q odd: We have t~+~ tJ. (ii) p odd and

q odd: Since the energy spectrum is invariant under
1
—

p [note that it is invariant under p
—

p (rever-
sal of the direction of the magnetic field) and p~ p+ I],
this case is mapped to case (i). (iii) p odd and q even: We
now have tJ ~~

—tJ, but (12) is invariant under a trans-
formation

yj-e "juJ. (14)

tJ
—

tJ for j q, q+ 1, . . . ,2q —1

uJ
—

uJ forj q+ 1,q+3, . . . , 2q —1.
Thus after the transformation, we have tJ+q t~ again.

Now, it is enough to consider the case with tJ+q t~. , so
we have uJ+v u~ or ut+~ —u~. Let us define

Transform the coordinates by

K
k, +k» +

2 2

k„—k»

2 2

(5)

tj Ill) 1 tj le + ) E&j (is)

Here, y~ is defined for —~ &j & ~ (uJ is extended to
have period 2q). The two types of the solutions uJ+~~ ut can be taken into account by expanding the
domain of k which was originally 0 ~ k ~ x to
0 ~ k ~ 2ir. By substituting (14) into (12), we get

and write

H(K, k) —2e'"cosKc (K+zp, k)c(K,k)
—2e '"cos(K —

tran)c (K —zp, k)c(K, k) .

(8)
Note that there is no coupling between diA'erent k's and
only K's which differ by zp couple. Hence, we have a
one-dimensional discrete system. If we write

K=K +xpj
and

(io)c~ c(K +xpj, k),
then K and k are good quantum numbers. For a given
set of Ko and k, an eigenstate is written

2 —
1

[u)- uc,'~O&.
j~0

The Schrodinger equation 1f
~

u& E
~

u& gives

with

—ik ik
tj+J+) e tJ [+j [ E+J

t, -2cos(K +xyj),

(i2)

(i3)
where u —~-up~ —

~ and up~ uo. Although (12) repre-
sents a closed chain with 2q sites, it is equivalent to an
infinite periodic chain with period q. In order to show
this, we need to consider the following cases separately:

c(k„,k)-c ' '+'~, " ' —'~ -c(K,k).
2 2

'
2 2

(7)

The first Brillouin zone can be chosen to be 0 ~ K
~ 2x, o & k ~ tr. Now the k-dependent Hamiltonian may
be written

where t~ (j 0, q
—1) repeat themselves to make an

infinite chain with period q. The magnetic Brillouin zone
of the original two-dimensional problem is now represent-
ed by O~K ~z/q and 0~k~2ir. The energy is de-
generate for k and k+2tti/q, where i is an integer.

The numerical result ' shows that, if the number of
electrons per lattice point p is fixed, the lowest total ener-
gy with respect to the magnetic field (including the zero-
field case) is realized when p p, i.e., one flux unit per
electron. A large gap exists at the Fermi energy in this
case except for p —,

'
in which the spectrum does not have

a gap (two bands touch each other at the center of the
spectrum).

Let us first consider the case p —,
' . Then (15) repre-

sents a dimerized system with to 2cosK and t~

2cos(K +tr/2), where the range of K is chosen to be—tr/2 ~ K ~ 0 to make to and t ~ positive. The energy
dispersion is given by E +'2(1+sin2K cos2k)'t and
has a gap at the center for all K except K —z/4. On
the other hand, when p 0 (which has the same energy
dispersion as for p 1), we have E —4cosKocosk. It is
expected then that, if the spectrum is half-filled, p
gives a lower energy than p 0 due to the gap at the Fer-
mi energy. This is confirmed numerically. Note that
the spectrum for the two-dimensional system does not
really have a gap, since it is obtained by superposition of E
with respect to K .

In order to have some feeling about the above two cases,
we average the transfer integral tJ in (15) with respect to
K . We have t -(t)~-~ ((to+t~)/2)&-&ti-4/z, and
At (

~
t

&

—to ~/2)~-~ti 4(J2 —I )/ir. So, roughly speak-
ing, the external magnetic field corresponds to the intro-
duction of a lattice dimerization which causes the transfer
integral to deviate from t by h, t.

For P 1/q all tJ's can be taken to be positive and the
analogy to the one-dimensional system with lattice distor-
tion still holds. If the filling of electrons is 1/q, a gap is
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created at the Fermi energy by the lattice distortion or
equivalently by an application of the magnetic field, thus
lowering the energy. There is no gap in the part of the
spectrum filled by the electrons.

When the filling is p/q (p&1), we also find a gap at the
Fermi energy, if the magnetic field gives p p/q. In this
case, we have gaps in the filled portion of the spectrum.
Since not all t~'s are positive, the analogy to the Peierls
system of lattice distortion is not perfect. However, the
mechanism of lowering the energy by opening a gap at the
Fermi edge is the same. This has been confirmed numeri-
cally. '

In summary, we have reformulated the problem of
two-dimensional lattice electrons in a magnetic field (the
Hofstadter problem). The usual gauge leads to the
Harper equation (2), which is a one-dimensional tight-
binding equation with diagonal modulation. Our refor-
mulation leads to (15), which is also one-dimensional but
contains off-diagonal modulation. The Hofstadter spec-
trum arises in the usual formulation as a superposition
over ko and, equivalently, from (15) as a superposition
over ECo. This connection between two apparently quite

different one-dimensional equations is not at all evident in
the one-dimensional context but emerges in the two-
dimensional context as a consequence of the gauge sym-
metry. In order to obtain the off-diagonal model, we used
a gauge which is rotated by 45' from that for deriving the
Harper equation. If we rotate the gauge 90', the same
Harper equation is obtained due to the symmetry of the
square lattice. This transformation is equivalent to the
self-dual transformation by Aubry and Andre. 'o

Using the off-diagonal model, we pointed out that the
stabilization of the state with filling p when a fiux of p p
is introduced can be explained by a mechanism similar to
the Peierls mechanism in which a lattice distortion lowers
the energy by opening a gap at the Fermi energy.
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