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Analysis of the specilic-heat anomalies of K2Se04 and Rb2ZnCl4 near the
normal-incommensurate phase transition
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The specific-heat data in K2Se04 and Rb2ZnC14 are shown to be consistent with the expectation
that normal-incommensurate phase transitions should belong to the universality class of the
three-dimensional XY model.

For most displacive normal-incommensurate phase
transitions, the symmetry mode in the high-temperature
(disorder) phase is twofold the order parameter 4 asso-
ciated with irreducible representation of the little cogroup
of the modulation wave vector q is a complex variable,
thus the (n 2)-component Landau-Ginzburg-Wilson
Hamiltonian is appropriate near the normal-
incommensurate transition temperature. Most normal-
incommensurate phase transitions then should belong to
the universality class of the three-dimensional XY model,
similar to the thermodynamic behavior of liquid helium
near its A. point. However, this expectation is not com-
pletely confirmed with exception to observations of the
critical exponent P for the order parameter which can be
obtained from, e.g. , measurements of neutron-scattering
intensity of the primary satellites. The experimental
value of P is insufficiently accurate, nevertheless it seems
to be consistent with theoretical results. On the other
hand, difl'erent values of the critical exponent a for the
specific heat C are reported experimentally. 5 These
values are usually very different from the expected
tt= —0.0 for the d 3 XY universality class. These ex-
periments could be affected by defects and impurities, '0"
but it is also likely that the discrepancy is caused by the
fact that the experimental data is not analyzed correctly.
In this Brief Report, the specific-heat data of dielectric
crystals K2Se04 and Rb2ZnC14 (belonging to the A28X4
family) are reanalyzed; these crystals undergo phase tran-
sitions from the normal to the incommensurate phase at
T;(K2$e04) 128 K and T; (Rb2ZnC14) 304 K. In
particular, I shall restudy the specific-heat data reported
by Atake and co-workers ' using a crossover model that
accounts for the crossover from singular critical behavior
to regular classical behavior. When this procedure is
done, it can be confirmed that the specific-heat data of
Atake and co-workers can indeed be represented by the
universality class of the three-dimensional XYmodel near
the transition temperature.

Defining hT a: (T—T; )/T;, one should expect that the
specific heat C contains two contributions near the transi-
tion temperature, the specific-heat anomaly

+~c-- (1)
a

and an analytic function of temperature which is a com-
bination of the background contribution and a fluctua-
tion-induced analytic term. ' In this equation, the "+"

and "—"signs refer to approaching the transition temper-
ature from above and below, respectively; A + and A are
amplitudes, and a is the critical exponent. The theoreti-
cally determined value is a= —0.0. ' The universality
hypothesis also predicts that the ratio A+/A is a univer-
sal value. The field-theoretical value for this ratio is ' '5

A +/A 1.03 ~ 0.01 . (2)

Since a is very small, in practice, the value of a itself is
less important and Eq. (1) can be written as

~C~ -—~+lnl&T' I+ (3)

after a suitable subtraction of the analytic part. In princi-
ple, the value of the ratio A+/A can be determined
from experimental data using representation (3); this is an
important test for universal behavior of the normal-
incommensurate phase transition.

To analyze experimental specific-heat data correctly us-

ing Eqs. (1) or (3), subtraction of the analytic contribu-
tion is quite crucial. Because of the smallness of the
anomaly peak compared with the large background (see
Fig. 1), a slightly different choice of the analytic back-
ground seems to affect the determination of the amplitude
in Eq. (3) substantially. A complication also arises with
incorporating correct crossover behavior to account for
the regular behavior (a finite jump) far from the transi-
tion temperature which cannot be represented by simple
power-law behavior in Eqs. (1) or (3). Instead of using
Eqs. (1) or (3) to determine the exponent a and ampli-
tudes A —,a different approach to studying the experi-
mental results is used in this Brief Report; the experimen-
tal data will be compared with a theoretical model for the
thermodynamic properties, witk critical exponents and
other universal features fixed to the XYuniversality class.
In particular, the crossover model for thermodynamic
properties near the critical point proposed by Chen, Al-
bright, and Sengers' is adopted here; this model was
originally developed and was successfully used for thermo-
dynamic properties of fluids near the vapor-liquid critical
point (three-dimensional Ising systems). Here the three-
dimensional XY universality exponents should be used in
the model as described below. The original model is based
on an approximation of the results from the renormal-
ization-group approach to critical phenomena; hence, it is
not an exact field-theoretical result. The applicability of
this modification, especially to the specific-heat anomaly,
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and the approximation for the inverse of the correlation
length '

2 tcy(2-)/v)/~+ p
( e )2'(l g )/ru

2
(7)

where T T/T, . Above the transition temperature, h,c
is calculated from

Here t c, (T—T, )/T, with c, a proportionality constant,
up is the coupling constant for the ( e ) theory, n( 2) is
the dimensionality for the order parameter, u up/u*A
with u* 0.4221 the value of the fixed-point coupling
constant for the XY model, ' and with A the ultraviolet
cutoff that is of the order of the inverse lattice constant.
For the critical exponents of the XY model, " v 0.669,
y 1.316, tp 0.78, a 3v-2 -0.007, ri 2- y/v

0.03288, and 6 a)v 0.5218. In the procedure of
comparing the model with experiments, these critical ex-
ponents aregxed instead of fitted from experiments. The
specific heat can be written in two terms C AC+ Cp(T).
The background term Cp(T), related to Ap (T), is ap-
proximated by a truncated Taylor expansion:

Cp(T)/R ap+a)T +a2(T ) +

2

/).c'(r) -— m '(r, o),
T; dAT" (9a)
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FIG. 1. Specific heat of (a) Rb2znC14 and (b) KqSe04 near
the normal-incommensurate phase transition. The results pro-
duced from this work are represented by a solid curve going
through the experimental data. The long-dashed curve is the
background contribution determined in this work; the short-
dashed curve is the background proposed in Refs. 6 and 7.

has to be verified near the critical point as described
below.

The specific heat C and the Helmholtz-free-energy den-

sity A are made dimensionless with the aid of the critical
temperature T; and the molar gas constant R:
C CT/RT;, A A/RT;. The Helmholtz free energy
is written in the form

A'(r, e) -A p (r)+~'(r, e), (4)

m'(T e)- —' t )e(''y" "" "" + [e('p"
2 24

(5)

with the crossover function '

1+ (u —1)y
' 2 —M/2

1+ A

K
(6)

where Ap (T) is an analytic function representing back-
ground contributions and where ~ incorporates the
effect of the critical fluctuations. The fundamental equa-
tion for bA is'

2

~c (r) - — m' [r,e(r)],
r/ der 2

(91 )

where e(T) is the spontaneous order parameter below T;
which is determined by requiring p)bA /8e~4, -&(r) 0.
In the limit )r»A, 'y approaches unity and the critical
fluctuations are unimportant; a jumplike specific-heat be-
havior is recovered and corresponds to the mean-field
Landau-like behavior. In the limit )c«A, y becomes pro-
portional to (x/A)" and the singular power-law behavior
(1) is reproduced. ' As mentioned above, the amplitude
ratio A+/A is an important test for specific heat.
A+/A 1.0345 produced from this model is in good
agreement with theoretical results (2); hence, the model
has correct critical behavior for specific heat. There are
three independent nonuniversal constants c„u, and A in
Eqs. (5)-(7). The scaling constant c, for the temperature
field t is actually related to the overall magnitude of the
specific-heat anomaly. Constants u and A govern the be-
havior of the crossover function 'y. The parameter u is re-
lated to the amplitude of the Wegner's correct-to-scaling
series, which is represented here in a "summed" form by
the crossover function P. ' The parameter A determines
the temperature where the transition from critical to clas-
sical behavior takes place. '

A comparison of the model with experimental specific-
heat data of Atake and co-workers for K2Se04 between
230 and 330 K and Rb2ZnC14 between 100 and 300 K has
been conducted. System-dependent constants ct, ~, and A
are determined from a nonlinear fitting to the experimen-
tal data near the transition temperature. These constants
are listed in Table I along with the fitted background pa-
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TABLE I. Values of the system-dependent constants.

Transition Scaling
temperature parameter

Ti c(

Crossover
parameters
Q A Qp

Background
parameters
al a2 a3

K2Se04 128.13 K
Rb2ZnC14 304.16 K

0.35996
0.40509

0.48445
0.68755

2.3731 0.0 (fixed) 17.456 —7.1145 1.1876
2.2174 17.246 3.245 0 (fixed) 0 (fixed)

rameters. It was also found that the transition tempera-
tures for KqSe04 and Rb2ZnC14 had to be chosen as listed
in Table I in order to get a satisfactory representation for
the experimental data near the transition temperature;
these values can be compared with T;(KqSe04) =127.7 K
and T;(RbqZnC14) 303.2 K reported originally by Atake
and co-workers for the same data sets. s The average
differences between the calculated and the experimental
specific heat are 0.19% for K2Se04 and 0.14% for
RbqZnC14. Figure 1 shows that the crossover model can
indeed describe the specific-heat data from a singular
peak up to a finite regular behavior. It is also interesting
to compare the background contribution Co(T) in this
work (represented by the long-dashed curve in Fig. 1)
with the background contribution originally proposed by

Atake and co-workers (the short-dashed curve).
In summary, using a theoretically-based representation

one is able to represent the specific-heat data of Atake and
co-workers of K2Se04 and RbqZnC14 with experimental
accuracy. Since the model used here reproduces univer-
sal features for the three-dimensional XY universality
class, it can be concluded that the specific-heat data of
Atake and co-workers is consistent with theoretical expec-
tations. Because the model does not include the properties
of the "lock-in" phase transition, ' it cannot be extended to
the incommensurate-to-commensurate phase-transition
region. Furthermore, any contributions from the higher-
harmonic' order parameter below the normal-incom-
mensurate phase transition are ignored.
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