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Bean's, Kim's, and exponential critical-state models for high-T, superconductors
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Bean's, Kim's, and the exponential-law critical-state models have been used to calculate the
magnetization curves M(H) of hard superconductors assumed to have an infinitely long geometry
with rectangular cross section of 2a&2b Some computed M(H) curves are given to illustrate our
analytical results for different b/a and other relevant parameters. These results can be satisfacto-
rily applied to many experimental data, particularly in the study of high-T, superconductors. A
brief analysis on this is also given.

For hard superconductors, when the applied field is
above the lower critical field, H, ~, the supercurrent
penetrates from the surface inwards, and follows the
critical-state model. This model assumes that penetrated
supercurrents flow in every macroscopic region with a
density equal to the critical current density J,(H;), where
H; is the local internal field. " The supercurrent pene-
trated region (either a part or the whole of the sample)
with current density J J,(H;) is said to be in a critical
state. In the critical state, the flux lattice should be in
equilibrium, without flux creep or flux flow. However, in
most practical cases, the magnetic field changes so slowly
that we can consider the sample to be in a quasiequilibri-
um state, and still use the critical-state model to calculate
the magnetization curves accurately enough.

If H, ~ is negligible, the magnetization curves M(H)
will be dominated by the critical-state model. Since the
susceptibility of high-T, superconductors, recently dis-
covered, approaches —

1 at very low fields, their H, ~ can
be considered as zero. Therefore, we expect that the
critical-state model can be ideal for the M(H) derivation
and the J, determination from magnetic measurements of
high-T, superconductors. The problem is that these ma-
terials are granular in nature, and their electromagnetic
properties have two contributions, from both high-H, ~

grains and the matrix or grain-boundary network, which
is normal or poorly superconducting. However, for many
high-T, superconductors, the H, ~ of the grains H, ~g is
rather high (& 10 A/m) at T&(T,. If we consider
H (H, ~g, then we shall have a simple case for a partial
M(H) curve, which is only determined by the critical-
state model. In this case, the magnetization should be ex-
pressed as

M=fM +(1 f)M fH+—(1 f)M, —(1)—

where f is the effective volume fraction of the grains, and
Mg and M are the partial magnetizations of the grains
and the matrix (or grain-boundary network), respectively.
The real magnetization in the grains is smaller than —H
below H, ~g due to a flux penetration. In Eq. (1) we use a
temperature-dependent f smaller than the real volume
fraction of the grains to maintain M~ = —H. From Eq.

(1) we obtain

M -(M+fH)/(1 —f). (2)

Similarly, the complex susceptibility will be

X- —f+(1—f)X (3)

where g is the partial susceptibility of the matrix, and
the susceptibility of the grains has been taken as —1, be-
cause we consider H below H, ~g. Its real and imaginary
components then are

g' -(g'+ f)/(1 —f), (4a)

X." -X"«I -f) (4b)

From Eqs. (2), (4a), and (4b), if we know f, then M
or g' and g" can be derived from the measured M(H) or
g'(H, ) and g"(H, ) curves, where H, is the amplitude of
the applied field. Thus, we-can use the critical-state mod-
el to fit M (H) or g' (H, ) and g" (H, ) curves and obtain
intergranular J,. To do this, we need analytical solutions
of M(H) for different critical-state models in some practi-
cal sample shapes. Up to now, for all the critical-state
models, the existing M(H) curves were calculated for
infinite cylinders or slabs, which may be enough for the
explanation of the M(H) curve or a rough estimation of
J„but certainly not sufficient for more accurate quantita-
tive investigation. We derived in this work, for the first
time, M(H) curves for infinitely long orthorhombic sam-
ples based on Bean's, Kim's, and the exponential-law
critical-state models. '

For H & H, ~g, the intergranular J, is almost zero and
our results can be used for the high-field M(H) curves
and intragranular J, determination, although in this case
the sample shape is irrelevant, and an unlinear reversible
M(H) component has to be considered.

It has been found that the high-T, superconductors
show an exponential field dependence of J, in single crys-
tals. This means that, since there were no explicit calcula-
tions of the M(H) loops (only in Ref. 10 were there given
some numerical calculations of the loops for simple
infinite slabs, although involving some error), our equa-
tions can be very useful for fitting a large number of ex-
perimental data. The analytical results of M(K) loops for
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the exponential model have recently been published for an
infinite slab and cylinder in Ref. 11.

In this Brief Report, we report our results based on
Bean's, Kim's, and the exponential critical-state models.
The sample shape chosen for our calculations is an
infinitely long column with rectangular cross section
2a&2b(b~a). On deriving M(H) curves, the super-
current path has been considered to be rectangular with

equal distance to the sample sides, which is a direct
deduction from the critical-state model. s

Bean's, Kim's, and the exponential models assume that
J,(H;) can be written as

J,(H ) ks,

J,(H;) kx/(HOE+ (HI ( ),
J,(H;) kEexp( —~Hi I/HoE),

(Sb)

(Sc)

respectively. The corresponding full penetration fields will
e

Hp ksa,

H, -HoEKI+I,') '"- l l,
(6a)

Hp HoE ln(1+ pE), (6c)

where px and pE are the following parameters:

plr (2kxa) '/'/Ho g,

pE -kEa/HOE

(7a)

(7b)

To illustrate our results, we have chosen b/a 1, 2, and
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FIG. 1. Computed M(H) curves scaled by Hp for Bean's
model. The calculation conditions are (a) b/a 2 and H

0.5Hp, Hp, 2', and 4'; (b) H 4Hp and b/a 1 (small-
est), 2, and 100 (largest).

100. It can be proved that the results for b/a I are the
same as those for a cylinder of radius a. The results for
b/a 100 can be considered as an infinite slab of thick-
ness 2a. For comparison among the different models, we
have normalized all the M(H) values to H~.

Some computed M(H) curves are shown in Figs. 1-3
for Bean's, Kim's, and exponential models, respectively.
Figures l(a), 2(a), and 3(a) show the initial curves and
the loops vrith different 0 . We observe that, in contrast
to Bean's model, the other two models present a minimum
in their initial curves and the middle part of the loops is
much wider than in both sides. Also, the low-H loops
(that is, for H 0.5H~) for Kim's and the exponential
models are narrower than for Bean's model.

Figures 1(b), 2(b), and 3(b) show the dependence on
the ratio b/a of high-H loops for the three models. We
observe that the width of the loops increases with increas-
ing the ratio b/a. Actually, there is a relationship be-
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FIG. 2. Computed M(H) curves, scaled by H~, for Kim's

model. The calculation conditions are (a) b/a 2, pg 10, and

H 0.5Hp, Hp, 2Hp, and 4Hp; (b) H 4Hp, pg 10, and

b/a 1 (smallest), 2, and 100 (largest); and (c) b/a 2,
H 4', and pg 0 (flat), 1, 10, 100, and ~ (sharpest).
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tween J, and the width of the loop

AM (H) a (1 a—/3b) J, (H),

which is generally valid when both the ascending and des-
cending branches of the loop are in full-penetrated states
and

~
H

~
is reasonably larger than H~. From Eq. (8) we

see that when b/a =1, 2, and ~, then hM(H)/
aJ, (H) —,', 6, and 1, so that the loops for different b/a
shown in the figures are equally distant in a large H inter-
val.

Figures 2(c) and 3(c) show the px- and the ps - depen-
dence of the high-H loops. The curves of pfr pE =0
correspond to Bean's model. With increasing px or p~,
the middle part of the loops becomes wider and the sides
are compressed. In the figures we have not shown the loop
for the exponential model that corresponds to pg
which is out of scale and shaped like a parallelogram with
a maximum M/H~ 2.

In the case of high-T, superconductors, since the inter-
granular J, is often originated from Josephson junctions,
which gives a 1/H behavior of J, at high H, Kim's model
is expected to be the most satisfactory one. For this mod-
el, Fourier analysis of the loops gives that the maximum
g" ranges from 0.21 to 0.40 when b/a I and from 0.24
to 0.45 when b/a ~. These g" values are consistent
with the ac susceptibility experimental data for many su-
perconductors. The low-px values of the maximum g"
can be experimentally found in some thin samples. There
are two reasons for that: (1) when a is small, the px is
also small, and (2) J, decreases with H slower than 1/H at
lower fields. For some samples, the experimental max-
imum g" sometimes is even larger than the high-pg limit.
In this case, we need the exponential model, which can
give a maximum of Z" of 1.27 when pF, ~. Further
theoretical and experimental work will be published else-
where.

FIG. 3. Computed M(H) curves, scaled by Hl„ for the ex-
ponential model. The calculation conditions are (a) b/a 2,
pE 10, and H 0.5H~, HI„2H~, and 4HI, ; (b) H 4H~,
pE 10, and b/a 1 (smallest), 2, and 100 (largest); and (c)
b/a 2, H 4H~, and pF. 0 (fiat), 1, 10, and 100 (sharpest).
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