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Homogeneous and fractal behavior of superconducting fluctuations in the electrical
resistivity of granular ceramic superconductors
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Experimental data show that the electrical resistivity temperature derivative diverges in a
different manner in the granular ceramic superconductors YBa2Cu307 —y and Bii.75Pb0.25Ca2Sr2-

Cu30io-~. Critical exponents are extracted and explained. The dimensionality of anomalous su-

perconductivity fluctuations is deduced. A homogeneous case and a self-similar (fractal) behavior

can occur and are found. They correspond to different values of the superconductivity g, and

some percolation g«coherence-length ratio. The results indicate that superconductivity percola-
tion is achieved through surface connection rather than through path connection.

Behavior universality should be searched among a
variety of different well-controlled experimental proper-
ties and systems to ascertain change in features related to
a given process. We have examined granular supercon-
ducting ceramic transport properties in order to observe
whether universal behavior can be seen in superconduct-
ing fluctuations, and deduce their dimensionality and na-
ture if possible.

In this Brief Report we report precise measurements of
the electrical resistivity p as a function of temperature
taken on samples from the same batch for two different
types of granular ceramic oxides (YBa2Cu307 «and
Bi~ 75PbppsCa2Sr2Cu30~o «). Experimental details on
the measurements and synthesis have been presented else-
where. ' As explained in Refs. 1-4, data have been tak-
en in quasiequilibrium conditions: sweeping rate less than
a few K/h, almost no thermal gradient, and very small
current intensity (10 s A/cm2). Data are reproducible
on a couple of runs (heating and cooling); sensibility is
some mK on the temperature and corresponds to some nV
on the resistance determination. Data resolution is thus
such that temperature derivatives can be numerically tak-
en and analyzed. The electrical resistivity p data are simi-
lar to those reported in the literature by other authors for
the same kind of compounds. The temperature depen-
dence of dp/dT (inset of Figs. 1 and 2) over a temperature
range encompassing the so-called "critical temperature"
T, presents a X peak, i.e., a sharp maximum which usually
identifies T, (Ref. 6) (even though some discussion may
arise whether such a value is identical to that derived
from static properties).

It should be emphasized that the displayed data do not
rely on the previous determination of a particular value
for T„but data have to be compared at the same e, not at
the same T, thus also removing any calibration error on
the

temperature
scale. Comparison to specific-heat data,

e.g., ' to observe whether a Fisher-Langer prediction
holds on such superconductors, is not possible at this time.
Severe criticisms on any conclusion resulting from such a
comparison would bear on the fact that the compared
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FIG. 1. Analysis of singular behavior of the excess resistivity
(hR) above T, for Y-Ba-Cu-O. Critical exponents are indicat-
ed. Inset: data of temperature derivative as taken.

samples are of a different chemical origin and received
varied treatments indeed.

Actually, even with the high-precision data we never-
theless doubt, in contrast to other reports, ~ that we reach
the true scaling regime. Intrinsic chemical and physical
inhomogeneities do not allow confidence for data statisti-
cally analyzed below e 0.0010. Qn the other hand,
fluctuation-fluctuation correlations are expected to be ex-
tremely important. It could be thought that a Maki-
Thompson (MT) theory"'2 rather than a Aslamazov-
Larkin (AL) theory'3 would describe the region close to
T„but the MT prediction only leads to a log divergence
near T, [in two dimensions (2D) and to a very small con-
tribution in 3D]. However, such a MT term is in fact
more important than a AL term at high temperature.
Therefore, the dimensionality of fluctuations found
through a critical exponent analysis will only be em-
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FIG. 2. Same as Fig. 1, but for Bi~.75P10.25Ca2Sr2Cu30~0-y'. A line of slope —2 (corresponding to a critical exponent X 1) has

been shown to contrast the results with those of Fig. 1. Inset: data of temperature derivative as taken.

phasized in the mean-field regime, but close to the
Ginzburg temperature TG. A crossover temperature may
be expected to arise from several causes, e.g., it might be
the Ginzburg temperature itself separating the mean-field
and the scaling regimes, or the temperature at which
different superconductivity mechanisms supersede each
other in the mean-field regime, or even intrinsically result
from data acquisition or analysis.

After a log-log analysis of

(aR) =We "+"
T

where hR is an "excess resistance" (see below), values of
A, are obtained. Values of critical exponents for hR are
exactly those for the excess conductivity d,o, '" in the ex-
amined temperature range.

The excess resistance has been obtained from the data
as follows. (The length and cross section of the samples
are supposed to remain temperature independent, and the
electrical current to uniformly flow through the bar shape
sample). The slope near 250 K is estimated in both cases
from a linear fit. To obtain an as-smooth-as-possible (but
realistic) data fit, the slope is multiplied by a factor of C.
This is equivalent to choosing o'0. The statistical data
analysis then leads to the smallest rms deviation within
the largest possible temperature interval (i.e., as a func-
tion of the number of data points in the interval) ~ We
have found C 0.9 and 1.0 to be good values in these (Y-
Ba-Cu-0)- and Bi(Pb)-based samples, respectively. The
"background" is then subtracted from dR/dT. We con-
sider that excellent straight-line fits (as obtained) are a
posteriori positive indications on the fit quality and on the
reliability of the critical exponent.

In AL theory, ' the critical exponent A. of the (excess)
resistivity is related to the superconductivity fluctuation
dimensionality D by

A, -2 —D/2.

Therefore, from values of slopes on Figs. 1 and 2, it is
found that D 4 for this YBa2Cu307 —„sample above T,
(between e 2 and 0.07) and D -2 for YBa2Cu307 —y

between e 0.01 and 0.003. On the other hand, D
for those Bi/75Pbp. 25CupSr2Cu30&0 —~ samples between
e 1 and 0.002.

A fluctuation dimension D 2 is easily understood from
the anisotropie crystallographic structure of the Y-Ba-
Cu-0 compound. A D 4 value seems awkward, but
from Eq. (2) it corresponds to X 0. It is known from the
singular function analysis that such a value indicates a
"logarithmic singularity,

" e.g. Ref. 6. In fact, Lawrence
and Doniach'5 have predicted such a logarithmic term for
he (thus for dhrJ//dT and dhR/dT) as arising from pair-
breaking mechanisms, e.g., twins, grain boundaries, and
other intrinsic or extrinsic defects can thus account for
such a behavior. It extends up to 180 K, as seen in Fig. l.

The most anomalous value (D 3 ) in a Bi(Pb)-based
compound can be understood when generalizing Eq. (2) to
noninteger D as well, i.e., when allowing for a fractal
description of a nonhomogeneous (granular) material. It
has often been pointed out that the superconducting sys-
tem is indeed a percolation network, i.e., superconductivi-

ty is restricted to regions where microscopic mechanisms
are active in inducing the phenomenon. '6

According to well-known results in a fractal description
of percolation networks, ' ' a structurally quasi-3D net-
work may behave as a lower-dimensionality system from
the dynamical point of view, e.g., in transport properties.
The dynamical behavior should scale as the so-called frac-
tion or spectral dimensionality which governs energy
diffusion. The (length, and consequently, temperature)
validity range of this description is usually unknown.
However, the lower cutoff is connected to a length of the
order of the mean interatomic spacing, but the maximum
is as some correlation length (~ of the percolation net-
work. This effect can evidently only apply if the supercon-
ductivity correlation length (, is of the order of or less
than g~: for larger distance scales, the system has to ap-
pear homogeneous and fractal effects disappear.

It is interesting to point out that the simple condition

g, & g~ for the observation of fracton contribution ex-
plains the difference between Y-Ba-Cu-0 and Bi~75-
(Pb)025Ca2$r2Cu30~0 ~ compounds. On one hand, g,
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has to be temperature dependent, while in granular ma-
terials (~ should depend on the grain and pore size distri-
bution. The length scale can be set also by the dimensions
of oxygen-defective regions, i.e., by superconducting lay-
ers. Thus samples can have distinct behavior. The granu-
larity is indeed quite different in both cases, ' 2 and the
superconductivity coherence lengths as well. ~' 3 It
remains for other investigations to discuss how such re-
sults depend on sample preparations or whether they are
intrinsic properties.

The most striking results of the above analysis are thus
(i) the validity of AL law but with noninteger dimen-
sionality as well (where the fractal dimension DF replaces
D), and (ii) the dimension of the fractal network. Notice
that the value D —', found above is "nothing more" than
I+ -', , where —,

'
is known as the fractal dimension for per-

colating clusters. ' ' Therefore, we emphasize that the
relevant phase-space dimensionality of the fluctuation
spectrum of such superconductors is markedly higher by a
single unit than in usual cases. Such a result indicates
that the percolation backbone is surfacelike rather than
pathlike (Fig. 3). This confirms the recent report 'o based
on specific-heat data.

It is of interest to observe that g~ is apparently not of a
macroscopic scale (e.g., the grain size): (,(0)=1.0 nm,
and we must have g, (T,)=(~. Thus g~ seems smaller
than the "coherence-length backbone" of porous materials
containing fluids or of polymer systems. Thus we con-
jecture that g~ is more like the physical (rather than truly
geometrical) measure of the backbone, hence it seems to
be the carrier mean free path here. It is indeed easy to
convince oneself that the latter enters through an ex-
ponential factor at the same level as the usual g~ in the
electrical-resistivity expression. The smallest of either the
mean free path i or the (usual geometrical) coherence
length give the largest possible scale for the percolation
network, and thus controls the type of singular behavior
by monitoring the correlation function contribution to the
energy integral defining p(T).

Furthermore, it has been conjectured by others2s 2s

that, due to chemical inhomogeneities and intrinsic aniso-
tropic microstructures, the conductivity occurs mainly
along shell-like structures (Fig. 3)—not necessarily only
at grain interfaces. On the other hand, due to the greater
anisotropy of the Bi(Pb) based ceramics, grain-
conducting plane matching is harder. Therefore, we can
understand that i rather than g~ is the quantity to which

g, has to be compared and both (I and g, ) are of the same
order of magnitude, while their ratio controls this "extrin-
sic fractality" beyond the naturally occurring aggregated
structure.

These arguments together with the randomness in the

FIG. 3. Sketch of the superconductivity mechanisms in gran-
ular high critical temperature superconducting ceramics show-

ing that for layerlike superconductivity the percolation g~ and
superconductivity g, coherence lengths can be similar (and of
the order of a mean free path i). No scale is shown to em-

phasize the fractal nature of the granular system.

grain shape and/or size distribution can also finally serve
to argue that the scaling regime is hardly obtained in
these ceramics.

In conclusion, we have confirmed the occurrence of the
strong enhancement of the conductivity fluctuations in

diferent granular ceramic oxide superconductors. A
similar (or "universal" ) behavior exists between supercon-
ductivity fluctuation contribution in different ceramic sys-
tems. A pair-breaking 3D regime followed by a 2D fluc-
tuation regime is confirmed in YBaCuO. On the other
hand, 2D fractal or homogeneous regimes can be found
(even far away from the critical temperature). It appears
that the fluctuation dimensionality and nature are con-
trolled by microscopic sources over a very large tempera-
ture range.

Note added. A recent paper by Char and Kapitulnik27
studying the fluctuation conductivity of inhomogeneous
(classical) superconductors shows that the relevant di-
mensionality for the fluctuations spectrum can be the
spectral dimensionality of the self-similar regime. The su-
perposition of homogeneous and self-similar regimes in
that case leads to good agreement with measurements on
A16e thin films that exhibit percolation structure. The
present work has thus shown that the Char and Kapitul-
nik argument applies to high temperature -superconduc
tors as well. Notice that Char and Kapitulnik also em-
phasize the competition between AL and MT terms and
arrive at the same conclusion as ours (pair breaking) on
the logarithmic behavior.
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