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Working on a square lattice with an even number of sites N and assuming a smooth connec-
tion between strong and weak coupling, we show that the ground state of the two-dimensional
half-filled Hubbard model has momentum k k~ 0, it is even under reflections, and transforms
as an s wave under rotations when N/2 is even and as a d wave when N/2 is odd.

The discovery of high-T, superconductivity' renewed
interest in the study of the properties of the two-di-
mensional (2D) Hubbard model. Two of the important
questions that an analysis of this model should answer is
whether there is pair formation2 and what is the symme-
try under rotations of the operator that creates such a pair
from the half-filled background. Numerical simulations
seem to indicate3 that the d-wave pairing susceptibility is
enhanced at low temperatures suggesting that the ground
state at half filling should have a different sign under rota-
tions than the ground state with two holes. Exact diago-
nalization of a 2x2 lattice shows that the ground state at
half-filling has d-wave symmetry while the two holes'
lowest state has s-wave symmetry. On the other hand, the
situation seems to be reversed on a 4&4 lattice. This is a
puzzling result if one notices that the strong-coupling lim-
it of the half-filled Hubbard model corresponds to the
Heisenberg models where exact diagonalization of 2x2
and 4&4 lattices showss that the ground state has s-wave
symmetry in both cases.

In this Brief Report we clarify this paradox, confirming
that the results reported for the 2D Hubbard model are
correct and showing that the ground state for a half-filled
Hubbard system on a NxN lattice is s (d) wave when
N/2 is even (odd).

Our derivation is as follows. We know that for U/t » 1

the half-filled Hubbard Hamiltonian maps into a Heisen-
berg model with J 4t /U. For this model there is a
theorem that applies to lattices that can be divided into
two equivalent sublattices A and 8, such that A spins in-
teract antiferromagnetically only with 8 spins and vice
versa. This is the case for the Heisenberg model on a

square lattice with an even number of sites, nearest-
neighbors interactions, and periodic boundary conditions.
The theorem states that any symmetry operator 0 that
transforms the two sublattices into one another has eigen-

N2Svalues 0 (—1) for the antiferromagnetic ground
state. N2 is the number of sites of the lattice and S is the
spin of each site variable (S —,

'
in our case).

Consider the operators T, and T» that generate trans-
lations of the lattice by one lattice spacing in the direction
x and g, respectively, and have eigenvalues Tt e '

e ""', where l is x or y, nt ranges between 0 and
N- 1, and kt is the momentum in the direction I. T, and

T» satisfy the conditions of the theorem showing that
Tt 1 (or equivalently k„k» 0) for the ground state of
the Heisenberg model on a square lattice with an even
number of sites N2. Another operator that fulfills the
conditions of the theroem is R, an operator that rotates
the lattice by tr/2 about an axis perpendicular to the lat-
tice plane, passing through the center of any minimal
square of four sites. For a square lattice, it has four possi-
ble eigenvalues: 1 (s wave), —

1 (d wave), and + i The.
theorem predicts R 1 implying that the ground state of
the Heisenberg model has s-wave symmetry. The
theorem can also be applied to reflections in the x and y
directions showing that under these operations the ground
state is even. All these results have been checked by exact
diagonalization studies on small lattices so the situation
in the Heisenberg model is very clear.

Now we analyze the Hubbard model. The first step is
to consider our particles (spins in the Heisenberg frame-
work, electrons within the Hubbard picture) as fermions
instead of bosons. Thus, we need a convention to order
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the electrons of the lattice in a "one-dimensional" pattern.
Our election for a square lattice is the following:

N —N+1 N —N+2 . . N

N —2N+1 N —2N+2 . - . N —N N N —N 2N N

However, minus signs appear under certain circum-
stances in the fermionic case when we rotate the lattice by
x/2. The effect of applying R to the configuration Eq. (1)
1s

N+1
1

N+2
2

N —N+2 N —2N N+2 2

N —N+1 N —2N+1 N+1 1

l f

,fl+, l f,
and a state with k„xis

fl lf
fl, lf

(s)

and these quantum numbers are the same in both the bo-
sonic and fermionic convention.

At every site we put first the spin down and then the spin

up. For example, a Neel state that has particles with spin

up (down) on even (odd) sites, is written as

ct Jcj tcI, J
' ' ' civ2 —i Jciv2 —i lciv2 ) ~

0) . (2)

The (arbitrary) way in which we order the fermions is

very important to correctly keep track of the signs under
permutations. The Hamiltonian eigenvalues and other
physical quantities are, of course, independent of the con-
vention. In the strong-coupling limit where there is one
particle per site we have another possibility: We can treat
the spins as bosons simply forgetting the signs under per-
mutations (bosonic representation). Consider then the
Heisenberg Hamiltonian defined as

H JQS; Sj, (3)
&i,j &

where (i,j) are neighboring sites and Sk c;~,tr,"~c; p are
spin operators, c;t, creates a fermion with spin a (a f, l )
at site i, and crk are Pauli matrices. With our particular
choice and working in the basis defined by Eqs. (1) and
(2), the matrix representation of H does not have any sign
difference between the bosonic and fermionic conventions.
This can be proved as follows: The nondiagonal part of
the Hamiltonian can produce a change of sign if there is
an odd number of permutations of fermionic operators
over each other. However, with our convention this does
not happen because the nondiagonal part is proportional
to

Si Sj ~citci)cj, (,cj, t, , (4)

then the pair of operators at site j "jumps" over all the
fermionic operators before site j without introducing a
minus sign. The same happens with the pair of operators
at site i. This means that the Hamiltonian matrix will be
the same in the fermionic or bosonic base.

No signs appear either when we apply translations or
reflections to any arbitrary state in the lattice Eq. (2).
Then a state with k, 0 will be given by a sum of N terms
all with the same coefficient. Every term j is obtained by
translating the original state j lattice spacings in the
direction x. For example, on a 2x2 lattice a state with
k„0is

When fermionic operators jump over each other minus
signs agpear. To go from Eq. (7) to Eq. (1) an overall
[(—1) j ] ' (—1) j will appear. To show that, we
will try to reposition all the elements in Eq. (7). Element
1 will provide a factor ( —1)+ ' because it has to jump
over N —1 fermions, element 2 will have to Ium~ over
2(N —1) fermions providing a factor ( —1)~ N ', ele-
ments j with j 3 up to N will provide ( —I)jt '~ each.
Then after rearranging an entire row we see that the num-
ber of minus signs is N/2. We will obtain ( —1)~j2 for
all the rows that we will arrange except for the last one;
this provides the factor [(—1) j ] ' ( —1)Nj that
states that a minus sign will appear if N/2 is odd. This
tells us that if the ground state in the bosonic convention
transforms as an s wave under rotations, for N/2 odd it
will transform as a d wave when we use a fermionic con-
vention. As a simple example consider for a 2&2 lattice
the following state

fl ll lf 1 f
(8)

which has s-wave symmetry for bosons but d-wave sym-
metry for fermions, while the state

fl ll lf ff
ff lf ll (9)

has d-wave symmetry for bosons and s-wave symmetry for
fermions. An interesting detail is that using a different
convention to order fermions on the lattice, all spins down
first for example, we would obtain a different Hamiltonian
matrix and different eigenstates, but the conclusion about
the quantum numbers would be the same.

Then we know that the ground state for the half-filled
2D Hubbard Hamiltonian with large U/t has momentum
k„k„0,transforms evenly under reflections about the
x and y axis, and have s-wave symmetry (even under rota-
tions) if N/2 is even and d-wave symmetry (odd under ro-
tations) if N/2 is odd. In principle, our results are valid in
the Hubbard model for those values of U/t in a region
analytically connected to the strong-coupling regime
where the Heisenberg model is a good approximation to
the problem. However, since numerical results based on
quantum Monte Carlo techniques do not show any indica-
tion of a phase transition as a function of U/t for the 2D
Hubbard model, we conclude that these results are in fact
valid for all values of U/t

Our prediction is in agreement with the exact results
obtained for the 2x2 Hubbard model where the ground
state has d-wave symmetry for all values of U and for the
4X4 lattice with U 4 (not in the strong-coupling re-
gime) where the ground state has s-wave symmetry.
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