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We present a systematic formalism for the variational evaluation of ground-state properties of
Hubbard-type models in finite dimensions d. The formalism starts from generalized Gutzwiller
correlated wave functions, which are then studied in a systematic (1/d) expansion around the limit
of high dimensions (d = ~). The limit of d~~ has recently been introduced by Metzner and
Vollhardt (MV) for itinerant lattice fermion systems. The approach, presented in this paper, is par-
ticularly efficient since results in d = ~ are obtained without having to calculate a single graph.
Our results confirm the finding of MV that counting approximations in the spirit of the Gutzwiller
approximation become exact in d = ~ for translationally invariant wave functions. This type of ap-
proximation is no longer exact for more complicated (e.g., antiferromagnetic) wave functions. In
addition, we completely reproduce the results of the Kotliar-Ruckenstein path-integral approach to
the Hubbard model. Performing a (1/d) expansion for the Gutzwiller wave function, we show that
the lowest orders in (1/d) are sufficient to reproduce all numerical findings in d =2, 3 quantitatiuely.
We therefore conclude that the limit of d = ao is a very fruitful starting point for the study of finite-

dimensional systems. On the basis of our study we propose new variational wave functions for the
numerical investigation of antiferromagnetism in the Hubbard, the t-J, and the spin- —, Heisenberg

model. For the first two models we calculate in d = ac only, for the Heisenberg model we also
derive corrections up to order (1/d). To this order we obtain complete agreement with linear spin-
wave theory. Since our trial state is based on a fermionic description of the Heisenberg model, we

interpret this analytically determined wave function as Fermi sea of spin-
z quasiparticles ("spi-

nons").

I. INTRODUCTION

The description of He, heavy-fermion materials, and,
most recently, high-T, superconductivity requires tech-
niques that go beyond ordinary perturbation theory, be-
cause there are no small parameters in the system.
Hence, the calculation of ground-state properties is a
difficult problem even for simplified model Hamiltonians
as the Hubbard' or the periodic Anderson model. In
this situation variational wave functions (VWF's) have
proven to be very helpful. On one hand, they yield only
an approximate description of the true ground state of a
Hamiltonian or a physical system. On the other hand,
the particular type of approximation is apparent from the
explicit nature of such a trial state. Furthermore, the
variational principle yields an exact upper bound for the
ground-state energy and therefore provides a criterion for
the quality of a VWF.

The calculation of expectation values is, however, still
a complicated many-particle problem. Hence, one often
uses approximate treatments which finally yield "physi-
cal" but essentially uncontrolled results. As a conse-
quence one cannot decide whether a predicted physical
efFect is indeed included in the VWF or is due to the ap-
proximation. These basic problems also occur for the
Gutzwiller wave function (GWF) which is one of the
simplest many-particle wave functions. The GWF con-
sists of a correlation operator in position space acting on

the Fermi sea of noninteracting particles. Gutzwiller in-
vented an approximation (GA) to treat this wave func-
tion. The results were then applied to several physical
systems, e.g. , the metal-insulator transition and He.

An approximation-free solution was obtained only re-
cently for the 'GWF in one dimension by Vollhardt and
co-workers. ' For higher dimensions, however, no com-
plete analytical solution has been obtained so far. At the
same time, numerical methods (e.g. , variational Monte
Carlo) cannot only be applied to d= 1 (Refs. 8 —10) but al-
low one to analyze the GWF in d=2, 3 also. This yields
valuable insight into the physics described by the GWF.
This technique can also be applied to more complicated
VWF's (Refs. 8, 11, and 12) provided that finite-size
effects are under control. Hence, the number of varia-
tional parameters is limited and the analytic dependence
of a VWF on these parameters is an additional input.

Metzner and Vollhardt' (MV) recently introduced the
limit of high dimensions which may play a key role for
analytical investigations of correlated Fermi systems.
This opened the possibility to study finite-dimensional
systems via a systematic expansion around d = ~, con-
trolled by the parameter ( I /d). In the case of VWF's
this concept is not limited to the GWF but can be applied
to generalized Gutzwiller correlated VWF's. This class
of wave functions consists of all one-particle product
wave functions which are correlated by the Gutzwiller
operator. As a first result they showed that the GA

41 9452 1990 The American Physical Society



41 GUTZ%ILLER CORRELATED WAVE FUNCTIONS IN FINITE. . . 9453

yields the exact result for the GWF in d = ~. ' Furth-
ermore they derived a graph formalism which, in princi-
ple, allows for the exact evaluation of expectation values
for the whole class of Gutzwiller correlated VWF's in
d =ao. As an example they applied their method to a
Gutzwiller correlated antiferromagnetic spin-density
wave function (GSDW) in d = oo. ' Furthermore, one
can calculate correlation functions in high dimensions ex-
actly. ' One can also apply their method to a
Gutzwiller-type VWF for the periodic Anderson mod-
el' ' where the results of approximate treatments' ' '
and the exact result in d = ao (Ref. 19) are seen to agree.
However, it is not a trivial task to derive the variational
ground-state energy from the complete but implicit set of
equations of MV for general wave functions. Further-
more, an explicit calculation of (1/d) corrections is at
least tedious even for the simple GWF.

The purpose of this paper is to present a formalism
which utilizes the limit of high dimensions more econom-
ically. In Sec. II we derive expressions for the one-
particle density matrix, the mean double occupancy, the
variational ground-state energy, and several correlation
functions. These formulas are valid for arbitrary dimen-
sions d but simplify considerably in d = ao where all these
quantities can be calculated exactly. The results are
summed up in Sec. III. Since the formalism is valid for
general Gutzwiller correlated VWF's we are able to com-
pare the exact results in d = 00 with the results of ap-
proximate methods in Sec. IV. In Sec. V we go beyond
the GA for the GWF and calculate (1/d) corrections for
the GWF. These results are compared with numerical
(d=2, 3) and exact evaluations (d= 1) in Sec. VI. In Sec.
VII we use the concept of high dimensions to propose
new VWF's for numerical studies in low dimensions. In
this section we calculate the optimal Gutzwiller correlat-
ed spin-density wave function for the Hubbard and the
t-J model in d = ~, and to order (1/d) for the anti-
ferromagnetic spin- —,

' Heisenberg model. A summary in
Sec. VIII closes the presentation.

II. GENERAL FORMALISM

In this section we consider the Hubbard model, which
is the model of main interest in this paper. To investigate
the ground-state properties of this model we analyze a
large class of Gutzwiller correlated variational wave
functions. We derive a general graph formalism to calcu-
late expectation values with these VWF's and apply it to
the evaluation of the one-particle density matrix, the po-
tential energy, and several correlation functions (CF's).
All these quantities allow insight into the physics de-
scribed by the VWF's under concern. We show that their
calculation is greatly simplified high dimensions because
the formalism has the following advantages: (i) without
calculating a single graph we can derive simple, exact re-
sults for all quantities in d = ~, (ii) we need only a few
graphs to calculate (1/d) corrections.

A. Hubbard model and variational wave functions

One of the simplest models to treat correlation eit'ects
is the Hubbard model'

H= g t;;c; c; + UQR';in;i, (1)
i, j, cr I

where c; creates an electron with spin cr on site i, etc.,
and 8; =c; c; is the number operator for 0. electrons
on site i. The interaction in (1) is purely on site and can
be written as Ug;8;= UB, where 8;=h;th;i counts a
double occupancy at site i. We consider the model on d-
dimensional hypercubic lattices with I. lattice sites. We
restrict ourselves to only nearest-neighbor hopping, i.e.,
t;; = t—for i, j nearest neighbors and t;; =0 otherwise.
For this choice of the hopping constants Metzner and
Vollhardt' showed that one has to scale as

i/2d
(2)

to obtain a nontrivial model in the limit d~00. From
now on we set t*=1. The dispersion relation is then
given by

e(k) =—gt e'"""
j

i,j

1/2
d

g cosk, .
2

d ' ]
(3)

where 0 ~ g & 1 is a variational parameter and
~ 40) is an

arbitrary one-particle product wave function with fixed
total number of particles. Here g is the Gutzwiller
correlator. We choose ~+o) as any quasiparticle vacuum
to ensure the applicability of Wick's theorem. For ~%0)
as the Fermi sea we recover the original Gutzwiller wave
function as a special case of (4). The Gutzwiller correla-
tor globally reduces the weight of configurations in ~%o)
that give a large contribution to the on-site Coulomb in-
teraction in the Hubbard model (1). Such VWF's there-
fore include substantial correlation effects induced by a
strong on-site interaction in a natural way.

The task is now to calculate expectation values (0 )
with the VWF (4) which are defined as

&o&=&+,ioie, &/&e, iq, & .

To carry out the variational procedure we have to calcu-
late the one-particle density matrix

p (i, j)=(c t c; )

and the mean double occupancy

d, =(D; & . (Sb)

In the Hubbard model a lattice site may be empty, singly
occupied by either an 1 or 1 electron, or doubly occu-
pied. The correlations between these four entities are de-
scribed by correlation functions of type

c "(j)=—g ( (x;$', , &
—

& X', & & $', ; & ),
1

To study ground-state properties of models with strong
on-site repulsion like the Hubbard model, we consider the
class of Gutzwiller-type VWF's defined as

I+, ) =g'I+, )

= /[1 —(1—g)D;][% ),
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S;=(6';t —R;i )/2,

8;=R;t+R;),
D;:—8;)&;),

(7a)

(7b)

(7c)

where X; and Y; are one of the following local operators: graphs do simplify in d =(x) but nevertheless retain a
nontrivial value due to P (i, i)WO. Thus, the aim is to
get rid of the on-site contributions in P (i, j). To fulfill
this requirement we have at least to eliminate the trivial
Hartree bubbles at site i with spin o.. These bubbles
represent contributions

8,=(1—R;t )(1—R;(), (7d) P'. (l, l) =
& q'OIR;. I +0 &

where S; is the operator for the spin in z direction, 8'; for
the density, 8; for the doubly occupied site, and 8; for
the empty site or "hole." Furthermore, we are interested
in the spin-flip CF

and occur in the formalism of MV due to contractions of
D; =R;t R; &

in (8) at the same site i. Hence, we want

g = +[1+x;(D; D; —")] (9)

with

where S;+—=c;tc;}, S; =(S;+)+. The operators S;,
S;+, and S; obey the commutation rules of a spin alge-
bra for S=—,

' and can be used to construct the vector
operator S; in the usual way. This CF yields additional
information in the case of a broken spin symmetry in the
VWF, e.g. , in the case of a VWF for the antiferromagnet-
ic Heisenberg model. As is easy to see, only seven of
these CF's are independent.

B. Generalized Gutz~iller correlated wave functions

Metzner and Vollhardt ' expanded all expectation
values in a power series in the parameter (g —1) using

g = g [1+(g —1)D;] . (8)

=R'$ &8''$ &o+R'$ (R'$ &Q (R'$ &Q&R'$ &0

as the Hartree-Fock (HF) decomposition of D;. Here we
introduced the new, site depe-ndent expansion parameter
x;, so that the vertex factor (g —1) of MV is replaced by
x;. Note that we also introduced the operator k which
replaces D in Eq. (8}. The subtraction of the Hartree
bubbles is usua11y not sufficient to get rid of all on-site
contributions in a graph formalism. In the special case of
Gutzwiller correlated variational wave functions this is
indeed the case if one expands the correlator as in Eq. (9}.
The full implications will become clear in the next sub-
section.

We now identify the expansion parameter x; and the
operator k Because &; =R;, and 8; =D; we can
make the ansatz

They derived a graph formalism with lines representing
the noninteracting one-particle density matrix

P (i, j)=(+o~c t c; ~%0&

k = g K'; = g(D; p; t R; t
—

p; ~R;—t + ri; )',

g = g [1+x;(8; 8; ")] . —

(10a)

(lob)

and vertices representing the expansion parameter
(g —1). In this way the problem was solved exactly in
d= 1 (Refs. 6 and 7} for the GWF. For dimensions
d=2, 3 a closed solution has not been possible so far.

In this situation MV showed' that the limit of high di-
mensions again allows for exact, analytical calculations
with Gutzwiller-type VWF's. Their diagrams are drasti-
cally simplified in d = ao. Hence, they were able to write
down a closed set of coupled equations for the one-
particle density matrix. They obtained an explicit solu-
tion of their equations for the GWF ( ~%0& the Fermi sea)
and for ~%'0& chosen as a general Gutzwiller correlated
spin-density wave function. A straightforward applica-
tion of their method yields all CF's for the GWF in
d = ao (Ref. 14) and it can also be applied' to a VWF for
the periodic Anderson model' ' in this limit.

However, their equations are so complicated that a
solution for general ~%0& is not possible in practice.
Furthermore, within their formalism an explicit (1/d) ex-
pansion is tedious even for the simple GWF and seems to
be untractable for more complicated Gutzwiller correlat-
ed VWF's. For these reasons one desires a more effective
formalism to treat the limit of high dimensions.

The main problem in the (g —1) expansion is that on-
site contributions in the graphs do not vanish. The

g '(g ' —1)=—x;(R; &o, 0 =1,1,2' 2p

9j( I jl I jl Pjl I jj~q

(1 lb)

(1 lc)

Comparing Eqs. (4) and (10b) we see that Gutzwiller
correlated wave functions can in general be written as

(e, &=g~~e, &= 'gk, '~c, &, (12)

where E—:g;8; —
IM;tR;t

—p;&8';&+g; and

=g ' " " " " ' is a Hermitian operator,
k; =1+x;(8; 8; ")by construct—ion. Thus, ~%'0&

and
~ 40 & in (12) are related by

with
in (4)

(13)

where X=X' —8:—g;( —p;tR;t —
ju,;tR;t+ri;). Note that

The real quantities p;t, p;~, and g; in Eq. (10a) can be
chosen at will but we choose them to fulfill Eq. (10b).
Hence, we also use g; which only results in a normaliza-
tion factor. Expanding the exponential in (10b) we obtain
the following set of four equations for the four unknowns

p~, p~, g;, and x;:

g "'=1+&,(R, , &,(R,, &, , (1 la)
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we have just rewritten I
ql ), i.e., we have

I+, & =g~l+. & =g'I+, & .

Both forms are equivalent while the latter form is canoni-
cal for high dimensions (see below). In the original GWF
I+o) and I@o) are identical (up to a trivial factor) where
both are given by the Fermi sea. While for g=1 we al-
ways have I+o):—I&o) this is no longer true for g ( l.
However, only the correlated state I+s ) is of any physi-
cal relevance, not I %o) or I+o ). From now on, since we
will work only with I&o), we always calculate expecta-
tion values in the uncorrelated state with I+o), (12), in
stead of I+o), (4). Such expectation values are indicated
by & )o. Hence, wedefine

n, o
=

& C'o I
fi t I ~'o & + & @'o I

fi' } I @o&
=

& n t & o+ & tt }& o

~„=&a,, &,—&e,, &, ,

and

Z; o=&6,t)o&tt, {&, .

With these definitions Eqs. (11a)—(1 lc) are easy to solve.
The result is

in I@o). Note that we only rearranged the correlator and
never had to specify I@o). Hence, the formalism is com-
pletely general.

C. Evaluation of P (i, j) and d;

%e will now calculate the expectation values defined in
Sec. II A. This is worked out explicitly for P (i, j), (5a).
The results for all other quantities can be derived in a
similar way and are just quoted at the end of this subsec-
tion.

For iAj we have to calculate

P.(i, j)=&q, Ic,'.c,.Ie, &z&e, Ie, & .

In the numerator we have

&e, Ic,'.c,.Ie, &

= (S,c,'.S, )(S,c,.S, ) P [1+x,(B,—8",")]
~ ~f~i j 0

(15)

where we used (12). Now,

B;c; k;=c; Qq; [1+x;a; (fi'; —&n; &,)],
1

2(1 —g )d; o(1 n; o+d—; o)
where we defined

(16a)

X( —1+(1—g )(n;o —2d;o)

+ t 1+(g —1)[n; o(2 —n; o)+g rn; o]I '
) . (14a)

V'q;. =—g "'g "' [I+&&; )o(g ' —1)], (16b)

Furthermore,

29
g '=1+x d 0,

x;&fi'; ),
g

1'—1
1+x;d; 0

(14b)

(14c)

Equations (14a)-(14c) express the quantities p;t, p;&, ri;,
and the requested expansion parameter x; through the
variational parameter g and the on-site particle densities

x;[1+& I; ) (g ' —1)]
(16c)

with x; given by Eq. (14a). In the case of the GWF q; is
independent of i and 0. and gives the discontinuity at the
Fermi surface )see below). It is convenient to introduce
Qq; here. We arranged the terms in Eq. (16a) in such a
way that there will be no Hartree bubble at site i after the
application of Wick's theorem. We insert (16a)—(16c)
into (15) and obtain

&e, Ic,'.c,.I+, & =Qq,.Qq,.

where

L

&O. ..&,+ g, y' x, x, &O. ..(D, D,"') ~ (8, —8—,"")&,
m=1 'gi gm

(QI j)

(17a)

0;, =c, c; [1+x;a; (&; —&it; )o)][1+x;a„(&; —&tt; )o)] . (17b)

Note that the prime on the lattice sum indicates that all lattice sites are diferent We proceed as .in Ref. 6. We apply
Wick's theorem and a typical mth-order term reads

&0 (Q Q HF). . . (g Q HF)) (18a)

I 0 (D D" ) (D D—H"
)I—

(&i,j)

(18b)

where I
. . ]o denotes the sum over all possible pairs of contractions. Because all lattices sites are different when
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Wick's theorem is applied, one can define the contractions as

Ciacju 0
— C iacja 0 7

Cjo C j~ p C joCjo 0

(19a)

(19b)

where the usual 5; terms are absent G. iven these contractions we can write Eq. (18b) as a sum over the products of two
determinants. For example, the first term in 0;; can be written as

DHF) .

gm
(Ai, j)

DHF )]
g&

'''gm
(&j,j)

0
jj
0P)j

0 0
Pm) Pm) 0

PO . . . Po

0
Pim P~) 0

X

0P2

0 0
Pmi Pm2

0 P)2 . . P)

(20)

The diagonal elements in the determinants

the x; expansion.
The elimination of the diagonal elements

the method of MV we can substitute P (

vanish at every inner vertex g, g because we subtracted D "",etc. , in
gl )

is the crucial step in our formalism and represents the essential difference to
/, m) by P (/, m) defined by

P (/, m)=P (/, m) —5t mP (/, /)=(c «c &,
—5t (c «ct )o . (21)

Especially, P (/, /) =0. In this step we do not create new contributions because the diagonal elements are already zero,
and since all lattice sites are different (including i%j). %oui we can release the restriction on the lattice sum (the deter-
minants vanish when two rows or columns are set equal). The linked cluster theorem then applies so that the denomi-
nator (ipg ~qtg ) cancels the disconnected graphs in (18b). Hence, we obtain the same graphs as MV but with lines join-
ing the lattice points i and j interpreted as P (i, j), and inner vertices i interpreted as x;.

The final result for the one-particle density matrix for i%j is

P (i, j)=Qq; Qq, [0;; $}o,
where [ ]o denotes all connected graphs and

oo

=1+ $ $ x x (D D"") . (—D D"") . —
m! gm g& gm gmm=1 '

g& g

The calculation of P (i, i) = ( fi'; ) proceeds along the same lines. One finds

(fi'; ) = (fi'; )o+ [(n; —(tt; )0)2)}0+x;(I—2(&; )o)[(D, D; ")2)}o-
+x;(1—(fi'; ) )(lt; ) [(n; —(8'; ) )2)}' .

Using the same procedure we find for the mean double occupancy d;

d;=[1+x;(1—n; o+d; o)] d;0+ g [(&; ) [(0n;
—(fi'; )o)2)]o+ —,'(I —x;d; o)[(D; D; ")2)}0]—

(22)

(23)

(25)

To see the great advantage of the formalism we consider the self-energy S (g, h) defined as

S (g, h)= —xs5sh[(ns —(h's )o)2)}o+x xh[c ci, (n —(Rs)0)(nh '—(&h )2)}o, (26)

Using the fact that [{n; —(lt, )0)Xl]0=—{1/x;)S (i,i) and [(D; D; )2)}0=—(I—/x;)gtS (i, f)P (f, i)
(o = 1', l ) one can write the one-particle density matrix (iAj), the local density, and the mean double occupancy as

P (i, j)=Qq; Qq„. P (i, j)+ g [P (i,g) —5; sa; ]S (g, h)[P (h, j)—5h, a; ]
g, h

(27)

(fi'; ) =(&; )0— S (i, i)—(1—(tt; )o)(n, )OS (i, i) —(1—2(n; )o) gS (i, f)P (f,i),
X. f

(28)

d;=[1+x;(1 n; 0+d; o)] d;0 ——g (&,. )OS (i, i)+ —,'(1 —x;d;0) gS (i, f)P (f, i)
1 g f

(29)
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is the so-called "New York" metric. It counts the num-
ber of nearest-neighbor steps from i to j on a d-
dimensional hypercubic lattice. Since there are always
three separate paths from g to h in S (g, h) the self-

energy vanishes completely in infinite dimensions, i.e.,

S (g, h)=0 in d= ~ . (30)

This implies that in d = ~ we do not have to calculate
any graph to obtain the simple, exact result

P (i,j )=Qq; Qq; P (i,j) (iAj) . (31)

Equation (31) shows that the hopping amplitude from i to
j to simplp renormalized by two site-dependent factors
Qq,.Qq,

Similarly, the expression (28) reduces in d = oo to

(32)

independent of g. This shows explicitly that all the effects
of the Gutzwiller correlator g& on the local densities
( &; ) can be absorbed in the local "fugacities" expressed

as g ", g ", and g
' in (12). It is also possible to

choose the local "fugacities" in a way that Eq. (32) holds
in any dimension but it offers no calculational advan-
tages. Equation (32) does not hold for the local densities
in l+0}. This was first noted explicitly by Vulovic and
Abrahams in their work on the periodic Anderson mod-

18

Lastly, the double occupancy is given in d = ~ by

d;=[1+x;(1—n;o+d;0)]d;0 . (33)

On a d-dimensional hypercubic lattice we have for d »1
(Refs. 13 and 14) P (i, j)=O((v I/O ) },where

d

jl = X l~l jl I

D. Evaluation of correlation functions

We now analyze the CF's defined in Eqs. (7a) —(7e).
These quantities were calculated exactly for the GWF in
d=1 in Ref. 7 and in d = ao in Ref. 14. We are now able
to go beyond the simple GWF and derive the exact for-
mulas for arbitrary Gutzwiller projected wave functions
in the limit of high dimensions.

For the CF's C (j) we do not consider the case j=0
because in this case we can express them by sums over
( fi'; }0and d;. In complete analogy to Refs. 7 and 14 we

introduce the functions (gXh)

Y'"(g,h)= I(n —(8' )0)(nh —(8'h )0)Slo, (34a)

Y' ( gh)= xh[(n —(&s )0)(Dh Dh")—2)IO, (34b)

( g, h ) =x x h I ( D D"")(—D D"")j—) I
" (34c)

Y' '(g, h)= l(n —(8' }0)(nh —(nh }op)IDFC,

[c tchtchtc t&Io

(34d)

(34e)

means to take the sum over all graphs which
arise from Wick's theorem where the external points g
and h are connected via a path of continuous fermion
lines (fully connected graphs, see Refs. 7 and 14). The
graphs contributing to Y'", . . . , Y' ' up to third order
in x; can be found in Ref. 7, the graphs contributing to
Y ' ' can be derived from those of Y "' by changing a cr

line running from g to h to a ( —o ) line while ensuring
that there are two o and two ( cr ) lin—es at each vertex.

Applying the formalism described in Secs. IIB and
II C we obtain the following results:

C s (j)=——g [1—x;(1—(6; }o)(n; )0] g [1—x;+,(1—(8';+;, )0)(n;+, )0](00')Y,(i, i+j)
10' 0'

—40m;+; 0
Y' '(i, i+ j} +—g m; Om;+; o

Y' '(i, i+ j),
1

(35a)

C (j)=—g [1+x;(1—(n; ) )(R'; } ] g [1+x;;(1—(6;; ) )(&;, ~ ) ]Y (i, i+j)
10' 0'

+4(1 n. o)Y—' '(i, l+j) +4—g(1 —n;, 0)(1 n;+, 0)Y' '—(i,i+j),
1

(35b)
1/2

=—XL,. (g —1)
1""(i,i+ j), (35c)

where

y (&)
0'

00.' y (4)
CT

for CJ = CT

for cr'=o. ,
(35d)

both in Y'~'(g, h) and in Y' '(g, h) there are always parts
in the graphs where two vertices are connected by three
or more separate paths. In d = ao we therefore have

Y.'"(g,h) —=0, (36a)
The expressions for correlation functions like C, C
etc., can be calculated analogously.

In d = ~ considerable simplifications occur. Firstly,

Y' '(g, h) =0 . (36b)

Secondly, in d= ~ lines are given by the noninteracting
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"propagator" P (i, j). Usually one has to work with

dressed propagators, defined as

p (i j)=p (i,j)+ gp (i, g)S (g, h)p (h, j) .
g, h

In the limit d ~~ such a renormalization does not occur
[see Eq. (30)]. Thirdly, Y .(g, h) in (35d) remains non

trivial because it is possible to build up graphs only of
RPA bubbles, i.e., of diagrams where two lines run from

g to an internal vertex 1„from there to a second internal
vertex 12 and so on up to the other external vertex h
(internal lattice vectors are summed over). The first two
graphs belonging to this series are shown in Figs. 1(a}and
1(b).

Hence, all CF's remain nontrivial in the limit d = 00

but are only built up of RPA bubbles with P (i, j) lines.
It is straightforward to show that Eqs. (35a)—(35c) com-
pletely agree with the formulas in Ref. 14 in the case of
the translational and spin-invariant GWF. It was also
shown there that it is sufhcient for the CF's at nearest-
neighbors (NN) to consider only the first bubble diagram
to calculate the leading order contribution for d~ao
which is of order (1/1). In general, one has to consider
contributions to 1, . . . , v RPA bubbles for neighbors
which have a distance

~ j ~

=v from the origin. Therefore,
the NN CF's are easy to obtain in high dimensions, but
the calculation of the behavior for large distances v~ 00

is not easy to extract even in d = oo. For the GWF the
asymptotic behavior is calculated in Ref. 14.

III. EXACT EVALUATIONS IN d = 00

We give general results for the variational ground-state
energy of the Hubbard model (Sec. IIIA) and the NN
CF's (Sec. III 8). As an example we consider the general
Gutzwiller correlated antiferromagnetic spin-density
wave function. For this wave function we rederive the re-
sults of MV (Refs. 13 and 19) in a compact form. Furth-
ermore we give the NN spin-spin CF's for this wave func-
tion explicitly.

(a)

A. Ground-state energy

Using (33) for the double occupancy we have

x; =(d; —d; 0)/[d; 0(1—n; 0+d; o)] .

Together with (14a) we find

d;(1 —n; o+d; }

((&;, &,
—&;)((&;,&,

—&;)
(37}

q; =

Q(1 n; o+—d;)((8; &0
—d;)

2

+Qd;((8; &0
—d;) (38)

and the expectation value of the Hubbard Hamiltonian
reads

(A'&= g Qq; Qq; P (i j)+Used; .
1

(39)

This form was first obtained by Kotliar and Rucken-
stein from a slave-boson approach to the Hubbard mod-
el. In the translationally invariant case q; =q is the re-
normalization factor for the kinetic energy in the GWF
(Ref. 3) proven to be exact in d = ~ by MV. For this
wave function the correct q factors can be derived by
counting possible hopping processes (see Ref. 5 for de-
tails). As in the case of the double occupancy d we can
now generalize the results of this concept to arbitrary
~%s & in (12) by introducing local renormalization factors

Qq,.

This expression has the form from a law of mass action. 3

It is typical for a result obtained within the "quasichemi-
cal approximation" in the theory of mixtures. z Instead
of a Boltzmann factor we have g regulating the equilibri-
um between the local concentration of doubly occupied
sites (d;) and empty sites (1—n; c+d, ) relative to that of
the singly occupied sites [((8;t &0

—d;)((8;& &0
—d;)].

For the GWF we have no site dependence (d;=1, etc.).
In this special case Eq. (37) was proven to be exact in
d = ao by MV. ' Now we see that it indeed holds locally
when we deal with a general wave function ~% & of the
form in Eq. (12).

Equation (37) enables us to express all expectation
values by the physical quantity d;, the double occupancy
in the interacting system. %'e have

B. Nearest-neighbor correlation functions

(b)

FIG. 1. RPA-like bubble diagrams for the CF's in d = ~; {a)
first-order bubble, {b) second-order bubble.

We now give the exact results for the NN CF's. As
outlined above, for the nearest-neighbor CF's (j:r) we-
only need the first bubble diagram in Fig. 1(a) to calculate
this quantity up to 0 (1/d). Hence, we find that

Y (i, i+r) = 5[P (i, i+a—}]

and
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1'"'(i,i+r) = [—P (i, i+r)][P (i, i+~)] .

This shows that NN correlations can be calculated for
general i@0) without much eff'ort in high dimensions.
This is important because these quantities determine the
energy of Hamiltonians with NN interactions, e.g., the
Heisenberg or the t-J model proposed for high-T,
superconductivity. Defining

=(d; —d; )/[&&;. ),(1—
& fi;. ),)]

and

b; =((fi'; )o—d;)/((n; )0—d;o)

we find explicitly

and

gNN=[(n —n +2d)/(n n— +2do)]

C. Results for a general Gutzwiller correlated
spin-density wave function

As an example we now analyze a general Gutzwiller
correlated spin-density wave function. For less than a
half-filled band (n ~ 1) it is given by

l@0)= g g (ii gc g +O'Ukc g+g }lvac & ~ (42a)
o c(k) ~ cF

Here Q= (n, ir, . . . , n ) is half of a reciprocal-lattice vec-
tor. The infinitely many variational parameters uk, ok
can be written as

C (r)= ———g (1—a; )(1—a;+, )
ss

1'

X [P 0(i, i+a}] (40a}

g —
l

1 [ 1+( 1 8 2)1/2]
l

1/2

U„= —sgn[E(k) ]+[1—(1—8 i, )'/2]
I
'/2,

(42b)

C (r)=—g (1+a; )(1+a;, )
1

10'

X [P (i,i+a)]

Cs s (r}=—g gb; b; b;+, b;+,
1

X[PO(i, i+a))[P (i, i+a)] . (40c)

C (r, g, n)=gxrC (~,g =l, n) (41)

In the case of the paramagnetic GWF we recover all re-
sults derived in Refs. 14 and 19 where it was shown that

with Ok+Q Ok The sublattice magnetization is given by

m =m;= l(fi';, &
—(8;, ) l,

where, in d = oo, we have

m =mo=(2/L) g 8k
c(k) ~cF

and n; o =no = n Fro. in (37) we have d; =d and

q =Qq, ~ „Qq,E2i is the 0 independent renorinaliza-
tion factor for hopping from an A to a B site. The
minimization problem for the Hubbard model (1) is then
given by

with, e.g. ,

g, ,=g + =[(n —2d)/(n —2do)]

&A'&=2q(, d) y .(k)(1 —8'„)'"+Ud
c(k) ~ cF

with

(43a)

2(1 n+2d )[(n——2d ) m]' —+4(n —2d )+d(1 n+d —
)

((n —m )[(2—n) —m ]I'/ (43b)

( [e( k ) ]2 +g 2
)
1/2 (44)

where we can use d instead of g as variational parameter.
Variation with respect to Hi, yields

with

4 (n —2d —m ) —(1—n) m

(n rn )[(2—n—)
—m ]

(46)

+g + C (r, g =l, n), (45)

Equation (44) implies that we were able to reduce the
infinite number of variational parameters in (42a) to just
two parameters b, and d. Inserting this into Eq. (43a) we
recover the result of MV (see Ref. 13 for a detailed dis-
cussion}. Note that in the formulation of MV the
optimum l%'s), written as l% ) =g l+0), has a much
more complicated form.

One can easily calculate the NN spin-spin CF for the
GSDW as well. In this case we have

2—g (S;.S;,) = — +g, ,C (r,g = l, n)1 1+% 4

(n —2d ) —m

(n rn )[(2—n—) —m ]
(47}

for num Due to .the broken symmetry we have, in gen-
eral, gs+s Ags, s,. Note that these amplification factors
are only defined for the CF's where the long-range-order
part of the correlation is subtracted (in our example we
have the term (S;.)(S;+ ) = —m /4 from the sublattice
magnetization). Only for CF's as defined in Eq. (6) can
there be application factors at all. This is not true for ex-
pectation values like (SP;+,), with the obvious expec-
tation of cases where (S;)—=0. Furthermore, the term
—m /4 in Eq. (45) is of order unity and has (1/d)
correction itself [see Eq. (28)]. Therefore, it is not a trivi-
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al task to calculate the expectation value

(I/L)g; (S; S;+,& up to order (1/d). We perform this
calculation in Sec. VII B.

IV. COMPARISON WITH APPROXIMATE METHODS

In this section we compare the exact results in high di-
mensions derived from the formalism in Sec. II with
those of approximate methods. %e are able to check
whether the results of these approximate treatments give
the correct results at least in the limit of high dimensions
or not. We further comment on the validity of these
methods themselves. The first techniques under investi-
gation (Sec. IV A) are refined Gutzwiller-type approxima-
tions. ' ' ' ' Secondly (Sec. IVB) we address the
slave-boson approach to the Hubbard model of Kotliar
and Ruckenstein (KR).

A. Gutzmiller-type approximations

To calculate the variationa1 energy for the Hubbard
model, Gutzwiller introduced an approximation
("Gutzwiller approximation"). The physical meaning of
the GA was clarified later ' but it was an open problem
to generalize the GA for more complicated Gutzwiller
projected VWF's. We mainly-discuss two sets of general-
ized VWF's, firstly, variational ground states proposed
for the periodic Anderson model, secondly antiferromag-
netic ground states for the Hubbard model.

1. Gutzmiller-type approximations
for the periodic Anderson model

To investigate ground-state properties of the periodic
Anderson model a generalized Gutzwiller correlated
VWF was investigated by several groups' ' using ap-
proximations in the spirit of the GA. Again this UWF is
translationally invariant but the number of particles in
the highly correlated f band is not a conserved quantity
as in the case of the GWF. The resu1ts of these approxi-
mations' ' ' were shown to be correct in d = 00 in Ref.
19 by a straightforward extension of the method of MV.

Recently, Oles and Zaanen analyzed the same VWF
where they allowed for antiferromagnetism. It is a
straightforward task to generalize the formalism in Sec.
II to the present situation of hybridization between a con-
duction band and a highly correlated f band, because the
total number of particles is still fixed. As a conse-
quence, one recovers the exact results in d = ao for the
translationally invariant case. ' Furthermore, one finds
that the results for the ground-state energy of Oles and
Zaanen agree with ours in d=ao (Sec. II). The wave
function is, however, substantially diferent, i.e., although
they do find the exact result in d = ao their approxima-
tion does not allow them to identify the actual VWF pro-
ducing these results. Making use of the formalism in Sec.
II we cure this lack of consistency.

2. Gutzwiller type approximations f-or the Hubbard model

To describe antiferromagnetism in terms of ~%s & it
was necessary to generalize the GA for the case of a bro-

(S,"S,„&=c(S,"S,„&,, (48a)

C = 2n

2n —n +m

2

(48b)

in the limit of localized electrons (d=O). In the case of
the GWF we have m=0 and (S, & =0 so that Eqs. (46)
and (47) and Eq. (48b) agree. Hence, the result (48a) is
correct for the GWF up to order (1/d). As is shown in
Ref. 21 it compares very we11 to numerical data for the
G%F.

On the other hand, Eq. (48a) cannot become exact in
high dimensions in the case of mAO. This can be seen
from Eq. (45) where the left-hand side (lhs) of (48a) is
given by

ken translational symmetry. As first shown by MV, '

none of the earlier attempts ' ' ' ' gave the exact re-
sults in d = ~ for the optimal Gutzwiller correlated
spin-density wave function [see Eqs. (43a) and (43b)]. In
all approximate treatments there is an ad hoc assumption
for the structure of u&, Vk in Eq. (42a). Consequently,
they did not obtain the optimal VWF and only calculated
within a restricted subclass. Ogawa, Kanda, and Matsu-
bara (OKM) found an expression similar to Eq. (43a).
They obtained a factor qoKM with, e.g.,

qo&M(m, d =0)=[2n (1 n)]/—(2n n—+m 2) .

However, qoKM differs from the exact q factor for all
values of m&0. Furthermore, MV (Ref. 13) showed that
an expression as in Eq. (43a) cannot be obtained within
the restricted subclass of V%F's analyzed by Ogawa
et al. Hence, their approximate treatment is not sys-
tematic.

In the Gutzwiller-type "renormalized mean-field ap-
proach" ' Zhang et al. assume the validity of (43a) and
then derive qQKM by counting arguments (see Ref. 5 for
details of the counting method in the case of the GWF).
Because qoKM does not agree with the exact q in (43b)
one cannot be sure to get the correct q factors in d = ao

from the counting method in general. Besides, the validi-

ty of (43a) had to be assumed. The method shares the
same shortcoming as mentioned above in the case of the
VWF analyzed by Oles and Zaanen: even if one obtains

q correctly, one cannot assign the correct V%F to this re-
sult. In fact, counting methods derive results which are
valid in d = ~ for ~% & written as ~% &=g ~4o&, Eq.
(12). On the other hand, these methods suggest that they
analyze ~%'s &=g ~4o&. Hence, the comparison of nu-

merical data with the results of the "renormalized mean-
field approach" ' is questionable because one indeed com-
pares diferent wave functions. We will come back to this
problem in Sec. VII where we derive new VWF's which
are optimized in high dimensions and can be tested nu-
merically in low dimensions.

The approach in Ref. 21 was also applied to the evalua-
tion of the nearest-neighbor spin-spin CF s including the
possibility of antiferromagnetism. Applying the counting
method Zhang et al. obtained
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(S;.S;+,) = ( —m /4)+g, ,C (r,g = 1, n)

+g + C (r, g =l, n) .

Thus, Eqs. (48a) and (48b) cannot be correct in high di-
mensions for several reasons.

(i) There are different amplification factors
g, ,Wg + due to the broken spin symmetry [both of
them are different from c in (48b)].

(ii) There is no amplification factor for the term
(
—m /4) which results from the antiferromagnetic

long-range order.
(iii) The term ( —m /4) is of order unity and has a

nontrivial (1/d) correction. Such a correction cannot be
obtained by counting, it will be calculated in Sec. VII.

To sum up, Gutzwiller-type approximations yield the
exact results in d = ~ for translationally invariant
VWF's. However, they appear to be insufficient for more
complicated, e.g., antiferromagnetic, VWF's. Further-
more, they do not allow for a systematic improvement.

B. Slave-boson method of Kotliar and Ruckenstein

Kotliar and Ruckenstein (KR) treat the Hubbard
model by a slave-boson approach. They replaced the
slave-boson operators by their static, local expectation
values. This treatment corresponds to a saddle-point ap-
proximation applied to a properly defined path-integral
representation of the Hubbard Hamiltonian. In general,
they obtain an effective Hamiltonian

systems. This point is discussed in more detail in Appen-
dix A.

The KR approach has a natural extension ("fluctua-
tions around the saddle point"), by which the boson fields
are no longer treated as static, but dynamic quanti-
ties. It is an open question of how to incorporate
such dynamics into a VWF approach.

A. First-order correction for arbitrary band filling

In the GWF ~40) is given by the paramagnetic Fermi
sea. Due to translational invariance we have (8'; )
= ( 8'; )o

= n /2 and

x;=x =[4(6—1)]/[(G+1)n(2 —n)] .

Here 6 is given by

6 =[1+n (2—n)(g —1)]' (51)

V. CALCULATION OF ( 1/cE)-CORRECTIONS
FOR THE GWF

In this section we calculate the mean double occupancy
d, the momentum distribution (8'i, ), and the kinetic en-

ergy ( 1') for the GWF in a (1/d) expansion. In the first
subsection we derive explicit expressions up to order
(1/d) for arbitrary band filling n and variational parame-
ter g (i.e., interaction strength U in the Hubbard model).
Due to particle-hole symmetry we can restrict our discus-
sion to n & 1. In Sec. V B we calculate up to order (1/d)
for the case of the half-filled band (n = 1).

H,f= g t;;Qq; Qq, c; c; +Used; .
The factors q and a in Eqs. (16b) and (16c) are given by

50

Here we used the notation of this work [Eqs. (38) and
(39)]. (H, tt)0 has then to be optimized with respect to d;
and (8', )o. Hence, the static saddle-point approxima-
tion of KR for a path-integral representation of the Hub-
bard model yields results which we now recover from a
variational treatment of this model in d = ~. This has
already been shown by MV for the case of the transla-
tionally invariant GWF and the case of the antiferromag-
netic GSDW discussed above. We are now able to
demonstrate this correspondence in genera1. Therefore,
we can gain new insight into the slave-boson —path-
integral technique of KR.

(i) We can give the explicit wave function which be-
longs to a certain solution of the saddle-point equations
[e.g., for the antiferromagnetic case, see (42a), (42b), and
(44)]. Wave functions offer a direct insight into the phys-
ics behind them.

(ii) There are no ambiguities in the method itself be-
cause a11 expectation values are calculated exactly in
d = ~. Furthermore, this opens up the possibility of a
systematic improvement via a ( 1/d) expansion.

(iii) From the variational principle in d = ~ it follows
that one obtains upper bounds for the ground-state ener-

gy of the Hubbard-model in this limit.
(iv} One can show that the "partition function" ZKR

and the "free energy" f~R of KR are mathematically ill-
defined quantities. Nevertheless, fKR can be used to de-
scribe low-temperature properties of correlated Fermi

1
Qq —=&q = [ &(2—n)(6+1 n}—10' 6+1

+&n (G —1+n }], (52a}

n 6+1 1

2 6-1 6-1
' 1/2

n (6 —1+n)
( )

In d = ~ we have

and

d(g, n, d = ~ )=d«(g, n)=(n /2)(6+n —1)/(6+1)

(8'i, )(g, n, d = ~ )=(R'k )oA(g, n)

= (n /2)(1 —q)+q ( &i, ) o .

Then we can write

(6+n —1}(G+1 n)—
G(G —1)

X —g (e„.),——S.(k), (53a}
1 n

We denote the Fourier transform of the self-energy
S (i, j) by

S (k) =( I/L) g exp[ik(i —j)]S (i, j) .
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& 8'k )(g, n) =
& nk &oA(g, n)

2

(e„.),——"—a S.(k)

2
1 n

(n ) ———a S (k)o
k

(53b)

From particle conservation, Eq. (32), we obtain

S (i, i)= gP (i, f)S (f, i) .
2(n —1)(G —1)

n 2 n—G
(54)

Equation (54) shows that we only have to consider the
ofF-diagonal part of the self-energy. In general, however,
one has to calculate this quantity by itself (see Sec. VII).

The only graph contributing to the oft'-diagonal part of
the self-energy in order 0 ( 1/d ) is shown in Fig. 2(a).
This graph gives the contribution on the NN cluster of a
site i (i.e., j=i+r) to the self-energy S (i, j). Higher-
order graphs, as those in Fig. 2(b), which are of order x,
would also incorporate information about the correlation
between j =i+r and 1=i+v' (ver') and are therefore of
higher order in (1/d). The analytic expression is given
by

ground state, cF is the Fermi energy. Thus, we obtain

g (,= — )( —')'
( )

[n(2 —n)] (6+1) G
(56)

FIG. 2. Lowest-order graphs contributing to the self-energy
S (i, j); (a) graph to second order in x, (b) graph to third order
in x.

Here we introduced

8(g, n, d) =GG~(g, n)+ g (I/d)"8'"'(g, n)
r=1

r 2

S (i, j)= — [P (r)] for r=i j, —
6+1 n 2 n—

Po(r) y y ik~1

E(k) (EF

1

2v'2d
(55b)

where Fo is the mean kinetic energy in the noninteracting

to denote the (1/d) expansion for an expectation value

0(g, n). Recall that S o~(i, j)=0. S (k) is continuous
in k because S (k) is given by the skeleton graph in this
order. From (53a) and (53b) we finally obtain

1

1+g
3

d' '(g, n)= (6+1 n)(G+n —1)(G ——1) (Eo)',26(6+1) n (2 —n)
'2 2

(~,.)'"(g,.) = [n (6 + 1 n)+2(1 n)(6——1)(n„—)o]

(57a)

n (2—n)
(n —1)(6 —1)

n(2 —n)6 (57b)

and the (1/d) correction to the discontinuity at the Fermi surface is given by

(, )q'"(g, n) =
1+g n (2 —n)

3 26 —1 (n —1)(G —1)2(1 —n)(G —1) co+eF
n (2 —n)G

(57c)

Equation (57c) shows that q' "(g,n ) )0, in general. In d = ~ we find that the mean kinetic energy per site as

(1/L)( f')(g, n, d = oo ) =(1/L)( T )oA(g, n) =qFo .

The first-order correction reads

—(f'&'"(g, n)=2I 1+g

2
lsol

n (2—n)

3

(1 n) (6 —1)— 2(so) +n (6+1—n)+(1 n)(G —1)s—o
J

(57d)
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where we used (1/L)gz [E(k)] = 1 in all dimensions.

In Eqs. (57a) —(57d) eo and higher moments like Eo

occur. These quantities are defined as
cF

Eo =2J dc, p(s }E

where p(c, ) is the density of states (DOS). They depend
on the dimension themselves (e.g. , ~eo~ =2&2/sr=0. 900,
8/m =0.811, &2Wn. =0.798 in d =1,2, ~, respective-
ly). To be consistent in 0(1/d) in each step we would
have to expand the DOS p(s) in powers of (1/d) (for de-

EF
tails, see Ref. 37), determine eF from n =2J „p(c,)dE

and insert the expressions up to the given order in Eqs.
(57a) —(57d). This is not only tedious and lengthy but also
the physical features of such a DOS never coincide with
that of any realistic DOS (e.g., finite band width, Van
Hove singularities}. Therefore, we will always use the ex-
act DOS for a given dimension when we compare with re-
sults for finite d. Hence, one can argue that the calcula-
tions do not represent a systematic expansion in (1/d)
any longer. But the errors introduced in this way are of
order (I/d) +' for an expression to order (I/d) . As
we will see in Sec. VI, this kind of approximation fits ex-
act (d = 1) and numerical results (d=2, 3) very well.

The formalism in Sec. II also serves to identify that pa-
rameter region for g and n where the GA for the GWF is
already a good approximation. The reason is that S (k}
is given by a series expansion in (n/2) x where x =x; is

given in Eq. (14a) [in each order in x there are two new
lines in the graphs which result in an extra factor
(n/2)~]. Hence, the GA for the GWF is a good approxi-
mation for small x. This is the case for g~ 1 (G~ 1),
i.e., for small interaction strength U in (1), and/or for
small densities n (n ~0). Furthermore, the series in x is
convergent for all (g, n) where the radius of convergence
is reached at (g =O, n =1). This implies that the (I/d)
series converges for all (g, n ) with the exception

g =O, n = l. As will be shown below, the ( I/1) series is
indeed only an asymptotic series for these values of g and
n.

B. Second-order correction for half-filled band

For the half-filled band (n =1) we have particle-hole
symmetry which allows to calculate up to order (1/d)
without too much effort. In this case we have
x =4(g —1)/(g +1), q =(4g)/(1+g), a=0, and
S (i, i)=0. This yields

d(g, n =1)= 1+ —g S (k), (58a)
2(1+g) 1 —g L

(fi„.&(g, n =1}=— g + g &e„.&,
2 1+g (1+8)'

I X~~l

FIG. 3. All graphs contributing to second order in (1/d) for
the half-filled GWF.

g (&)(k)— (eo)'e(k),
1+g

(59a)

TABLE I. Spins, weights, and values of the graphs in Fig. 3
to order O({1/d) ).

Graph Sign Weight Value

Fig. 2(b) vanishes (i and 1, 1 and j, i and j cannot be at
different lattices at the same time). Furthermore, the
graph in Fig. 2(a) has no (1/d) correction because for
such a term j must be NNN to i, i.e., j is on the same
sublattice as i. All graphs that contribute in O((1/d) )
are shown in Fig. 3. Their values in k space are listed in
Table I. This table also contains the sign and the multi-
plicity ("weight"} of a graph which results from Wick's
theorem. To obtain the second-order contribution one
has to multiply the values of the graphs by their signs and
weights and has to add up these terms afterwards. Note
that the graph in Fig. 3(c) strongly depends on dimen-
sionality. One finds the main contributions if all lattice
vectors are NN to each other. For high dimensions
(d ~ 2) these contributions give the value of graph (c) in
Table I but are considerably smaller in d= l. Therefore,
the (I/O} expressions below lead to a good approxima-
tion for d + 2. Then the self-energy corrections are given
by

+ S (k). (58b)
(1+g)

p-h symmetry also implies that P (i, j)=0 for i, j on the
same sublattice, i.e., if two lattice points in a graph are
connected by a line, they have to be on different sublat-
tices. Hence, for the case of half-filled band the graph in

(0) (k)
((h,.),——,')

(~,)'~(k)
512d'

(
—)7 (k)

512d

2
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'2

S'"(k)= S'"(&) (e )'I—
0. l+ 0

X[—,
' ——', ( ) + (&)((n &

—
—,')] . (59b)

d "(g)= —dog, (g), (ep)',
(1+g)'

'2

d (2)(g) d (I)(g) g (e )2[9(e )2 2]
I—

0 2 0

(60a)

(60b)

where d«=g/[2(1+g)]. The corrections to the mean
kinetic energy are given by

(61a)

The corrections to the mean double occupancy finally
read

VI. COMPARISON WITH EXACT
AND NUMERICAL RESULTS

FOR THE GWF IN d=1,2,3

In this section we show that we obtain an excellent
agreement between the analytic expressions of the first
few orders in the (1/d) expansion and all numerical re-
sults in d=2, 3 for the GWF. We obtain surprisingly
good results even in d= 1, where we can compare with an
exact solution. The only shortcoming of any finite-order
(1/d) expansion is the prediction of a Brinkman-Rice lo-
calization transition which does not occur in any finite
dimension but only in d = ~. ' On the other hand, the
absolute values of (1/d) corrections to the GA for the

0.25

where

X [ —3+9(eo) —eo(eo)], (61b)

0.20

C4

O
0.150

Note that there are no corrections to the discontinuity

for n =1, i.e., q (g) =(4g)/[(1+g) ]+8((1/d) ). Be-
cause q(g, n =1) is the same in d =1,2, oo due to the p-h
symmetry and there are no (1/d) corrections to this
quantity up to order (1/d), we support the conjecture in
Ref. 6 that q (g, n = 1) is the same in all dimensions d.

o 010
'0

0.05

0.2 0.4 0.6 0.8 1.0

0.25 0.25

0.20

oo 0.150

0.10

0.20

0.150
Q

o 0.10

0.05 0.05

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Mean double occupancy d(g, n) in the GWF for
different band fillings in d=1. The exact result (Ref. 6) and the
result of the (1/d) expansion up to (1/d) are compared.

FIG. 5. Mean double occupancy d(g, n = 1) in the GWF. Nu-
merical results (Ref. 8) and the result of the (1/d) expansion up
to (1/d) are compared. (a) in d=2, (b) in 1=3.
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GWF are very small in d=3. Therefore, the physics de-
rived from the GA for the GWF is qualitatively con.-

tained in the GWF in d=3 and is not an artifact of the
GA.

A. Double occupancy d

In principle, we cannot expect a (1/d) expansion to
yield reasonable results for d=1. Nevertheless, since
there is an analytic solution for d(g, n) in d = 1,

2

d(g, n, d =1)=
I
—in[1 n—(1—g )]

2(1—g')'

—( f') =c Fog for g ~0 .
1

1 (64a)

To order (1/d) we have [see (61a) and (61b)]

can be seen from Figs. 6(a) and 6(b) where we compare
the exact (4= 1) (Ref. 6) and the numerical (d=2) (Ref. 8)
results for g=0 for different values of n. Even in this ex-
treme case (low dimensions d, highly correlated regime
g=O) the exact and numerical data are fitted very well by
the first-order (1/d) expression. For n =1, g~O we
have

—n(1 —g )J, (62)

we can compare the results to order (1/d) in (57a) with
an exact expression. This is done in Fig. 4 for n=0.5,
0.8, and 1. We see that for small densities n the agree-
ment is excellent for all g. The same is true for all g ~ 0.2
where the error is smaller than 10% for all densities n. A
reason for these surprisingly good results is the smallness
of x in the parameter region where n is small and/or g is
close to unity. On the other hand, the GA for the GWF
deviates considerably from the exact result in d= 1.

The quality of the (1/d) results is even better in d=2, 3
where we compare the results to order (1/d) for
d(g, n =1) with numerical results. This is done in Fig.
5(a) for d=2 and Fig. 5(b) for d=3. In d=2 all numeri-
cal points lie on the analytical curve. For d=3 the
analytical result is even more reliable than in d=2. Be-
cause the numerical results deviate from the analytical
curve we conclude that the numerical result
(6X6X6=216 lattice points) is slightly too low due to
finite-size effects. From the comparison we deduce that
the analytic expression for d(g, n=1) to order (1/d) is
very accurate up to very low values of g (g ~0.02 in
d =3).

The only problematic region in the parameter space
(g, n) is g ~0, n —+ 1. Equation (58a) explicitly shows that
any finite (1/d) expansion yields'

—0.1

—0.2bg)

Q

Q
—0.3

Q

~ ~ —0.4
A

—0.5

—0.6-
'

~ ''
~ ~

''
/

/

0.2 0.4 0.6 0.8 1.0
n

d(g, n = l)=C2g for g~o . (63a)
—0.2

In the (1/d) expansion we have from (60a) and (60b)

(Eo)
c = —1—

2 d

(eo)
[-', (eo) —2] (63b)

So cz is seen to be diminished in finite dimensions but
never equals zero for any finite order of the (1/d) expan-
sion. There is both strong analytical' and numerical
evidence that c2 =0, i.e., d(g, n = 1) vanishes more rapidly
than linear in g for g ~0. We therefore conclude that the
( 1/d ) series (63b) for c2 is only asymptotic so that (63a)
gives the wrong small g behavior for d (g, n = 1). The
linear behavior of d(g, n) for small g has drastic implica-
tions for the variational ground-state energy' (see
below).

Q

—0.4
U

Q

—0.6

—0.8

0.2 0.4 0.6 0.8
n

B. Mean kinetic energy
and variational ground-state energy

The behavior of the mean kinetic energy ( f' ) (g, n ) is
reproduced by the (1/d) expansion for all (g, n). This

FIG. 6. Mean kinetic energy ( I /L)( f')(g =0,n) in the GWF
for di6'erent band 611ings (hole kinetic energy); (a) result of the
(1/d) expansion to order (1/d) compared with the exact result
in d=1 (Ref. 6); {b) the result of the (1/d) expansion to order
(1/d) compared with numerical results in d =2 (Ref. 8).
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(Zo)

2d
c =4 1—

2

2d
(eo} [ 3+9(Ko)2 eo(eo)]

(64b)

sion in (1/d) merely shifts U, to a larger value. Up to or-
der (1/d) we have

U, = U,
" 1+—(Eo) [(eo) —

—,']& — 2 — 2

Knowing both d(g, n) and ( f')(g, n} we can now mini-
mize

((8)/L)(g, n) =((1') /L)(g, n)+ Ud(g, n)

w.r.t. g for given parameter U. This yields the variational
ground-state energy

E(U, )=(&&)/L)(g' ', ) .

Note that U=U/t*=U/(&2dt} in our notation. In
Fig. 7(a) we show the analytical result for E(U/t, n =1)
together with the numerical result in d=2 from Ref. 8.
In Fig. 7(b) we show the result for E( U/t, n= 1) in d=3
together with the GA. As a consequence of the linear
dependence of both d(g, n=1) and (f')(g, n=1) on g we
find an unphysical transition to E(U/t, n =1)=0 for
U& U, with'

C1
U, /r'= 'l-.,l.

C2
(65)

This transition is the well-known Brinkman-Rice transi-
tion which indeed only occurs in d = 00 but should neUer
occur in any finite dimension. ' Any finite order expan-

2

+ (eo) [ 3+To(Eo)—19(Eo)
2d

+22(Ko) ] (66a)

U,
"= 81 eo (66b)

C. Momentum distribution and discontinuity

As a last example for the applicability of the (1/d) ex-
pansion we analyze the momentum distribution. We

(a) n=O. B

The corrections to U,
" are indeed very small, i.e., of or-

der 8% in d=2 and 4% in d=3. This implies that one
can rely on the results of the (1/d) expansion up to
values of U which are very close to U,". Furthermore, as
seen in Fig. 7(b), the GA for the GWF is a good approxi-
mation in d=3 for all values of U. Hence, the GA for
the GWF is a reasonable approximation for all U which
are not too close to U,".
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FIG. 7. Variational ground-state energy E(U/t, n =1) for
the GWF in the (1/d) expansion to order (1/d)', (a) in d=2
compared with numerical results (Ref. 8), (b) in d=3 compared
with the Gutzwiller approximation (GA) which is the result in
d = ao (Ref. 6).

FIG. 8. Momentum distribution ( &k )(g, n) for the GWF in
the (1/d) expansion to order (1/d) compared with the exact re-
sult in d=1 (Ref. 6) for (a) n=0.8, (b) n=1.0.
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compare (|t& ) in Eq. (57b) with the exact result in 1=1.
Figure 8(a) shows the case n=0.8, Fig. 8(b) shows the
case n=1.0 for different values of g. The curves agree
very well —not only qualitatively, but even quantitative-
ly. The agreement still improves for d=2, 3. Note that
our expansion reproduces the unexpected curvature of
(8'z ) in the GWF correctly while other methods
failed 28

One of the physically most interesting quantities is the
discontinuity at the Fermi surface where s(k)=sF. This
is because in the Fermi-liquid theory the effective mass
enhancement m*/m is proportional to q ', i.e., the
effective mass diverges for q ~0 (localization transition).
Because q '~(l/g) we find a divergent effective mass
for g ~0 and the discussion above shows that g drops to
very small values within a small range of U~ U„ i.e., m *

rises quickly and the fermions seem to become localized
("nearly localized Fermi liquid" ). As argued in Ref. 38
and confirmed now, this picture and its implications are
still correct even if the transition does not actually occur.

When one applies this concept to a metal-insulator
transition, it implies that the conductivity does not drop
to zero discontinuously in the GWF in any finite dimen-
sion. It stays small but finite for all U, ~ U & ~ and a
metal-insulator transition in the Mott-Hubbard sense
does not occur.

VII. NEW VARIATIONAL WAVE FUNCTIONS

In this last section we have shown that properties of
the GWF in finite dimensions are well described by a
(1/1) expansion. We therefore conclude that the concept
of high dimensions is also fruitful in low dimensions for
more complicated Gutzwiller correlated VWF's. In this
section we consider the general class of Gutzwiller corre-
lated antiferromagnetic spin-density wave functions as
possible ground states for the Hubbard, t-J, and antifer-
romagnetic Heisenberg models. In Sec. VIIA we pro-
pose a new VWF for the Hubbard and t-J model based on
the optical GSDW in 1 = 00. In Sec. VII B we propose
yet another new VWF for the Heisenberg model. For
this purpose we calculate the optimal GSDW up to order
(1/1).

A. VWF for the Hubbard and t-J models

1 1 1 1
uk = 1+ uk+ 1 vk

2 r " 2 y
(68a)

1 1 1 1vk= 1 uk+ 1+ Uk
2 y

" 2 y
(68b)

where
1/2

4—x (n +m)(2 —n +m)y=
4—x (n —m)(2 —n —m)

(69a)

4(41 n—+m )

(n —m )[(2—n) —m ]
(69b)

The latter equation follows from Eq. (14a). Here, n =no
is the particle density in the system and the sublattice
magnetization m =mo in ~@o) is given by

m =mo=(2/L)
EIk~&.F

[~'+[&(k)l'}' ' (70)

Equation (67), together with the parametrization in Eqs.
(68a) and (68b), defines a new VWF which only depends
on two variational parameters (b,g), since uz and u& fol-
low from Eqs. (42b) and (44) as

1/2
1

1
ie(k)f

[ [s(k)]2+g2
}

1/2

Uz = —sgn[E(k)] —1—
[ [&(k)]2+g2} 1/2

1/2 (71)

Such a VWF can be analyzed numerically in low dimen-
sions. We believe that it is possible to improve on the re-
sults of earlier numerical work when a wave function is
used which has the analytic form of the optimal GSDW
lnd=~.

The formalism also applies to the t-J model. This
model can be deduced from the Hubbard Hamiltonian by
an effective Hamiltonian approach starting from the limit
t/U~O Using the .general GSDW one finally finds the
same Hartree-Fock form for u&, vk in d = ~ as in the
case of the Hubbard model. Hence, the proposal for a
new wave function in (67), specified by Eqs. (68a), (68b),
(69a), (69b), (70), and (71), applies also to the t Jmodel. -

Its quality can be tested numerically in low dimensions.

For a numerical analysis the following Gutzwiller
correlated spin-density wave function ~%~ ) has been
used:

=gD Q g(u„c tk +ou„c t+O )~vac),
c(k) ~cF o

(67)

where a Hartree-Fock form for uk, vk was assumed. This
is not the optimal parametrization in high dimensions, as
can be seen from the results in Sec. III where we deter-
mined the optimal of infinitely many GSDW in d = ~. It
is possible to rewrite the GSDW in Sec. III in the form of
Eq. (67). The parameters uz, uk in Eqs. (42b) and (44) and
uk, vk are related by a simple linear transformation

B. VWF for the spin-
~ Heisenberg model

We now derive the optimal GSDW up to order (1/1)
for the antiferromagnetic spin- —,

' Heisenberg model. The
t-J model reduces to this Hamiltonian in the case of half-
filling. The Hamilton operator is given by

I+ ~ ~ 4(t+)2gS;S, J'=
2d (,. -) U

(72)

where we omitted a trivial constant. On the AB lattices
under consideration the exact ground state of this Hamil-
tonian in d = oo is the Neel state, ' which is obtained
from the GSDW for uz =uk = I/v'2. In this case there
are no doubly occupied sites in ~40) and the Gutzwiller
projector P& 0= P; (1 D; ) is irrelevant. —
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1. Derivation of the optimal GSD W to order (1/d)
for the Heisenberg model

TABLE III. Comparison of variational and perturbative re-
suits for (S;.S;+,). The numbers in parentheses are reference
numbers.

m =1——
& e'&',1

(73a)

(73b)

The calculation of the optimal ul„vt, up to order (1/d)
for ~%'s o& in Eq. (67) is performed in Appendices B and
C. From (B9a)—(B9c) we obtain

Van ational

—0.324 (47)
—0.322 {48)
—0.3221 (49)
—0.3317 (50)
—0.3344 (51)

Perturbative

—0.358 (52)
—0.332 {53)
—0.3336 (54)
—0.3337 (55)
—0.3348 (56)

(e2& =2 J ds p(e)ez,
Cut

(73c}

where c,„t is the only variational parameter left. The
analytical structure of uk=u(e(k))=u(s), vl, =(e(k))
= v (e), in (67) is given by

v I/2 for —c~ & e —e,„, ,
u (E), v (e) =

v'I /2 1+
(74)

for —c,„t & c. 0,

where —es = —v 2d is the lower-band edge. The contri-
bution to the variational ground-state energy of states
which belong to the energy shell —c.,„,~ c ~ 0 becomes ir-
relevant for d ~~. The existence of that shell, however,
is an intrinsic effect of finite dimensions.

The prediction for the ground-state energy readily fol-
lows from Eq. (73b), which is easily optimized by
( e &

=
—,'. Hence, one finds to order (1/d )

1
opt 4~

(75a)

(s,"s,„&.„=(——,') 1+ „2l (75b)

2. Comparison with other treatments

of the Heisenberg model

There are several attempts to determine (S; S;+,& ex-

actly or to derive bounds on that quantity. Table II lists
some of the Monte Carlo (MC) results for the exact Ham-
iltonian (finite-size diagonalization, finite- and zero-
temperature MC} and variational MC results. From
these investigations one can conclude that the exact value
lies in the range —0.335 ( (S; S;+,&

( —0.334. A

We can apply these formulas in d= 2 and find

m, , =0.875, and (S; S;+,&, ,
= —0.3125.

rigorous lower bound was obtained by Anderson as
—( —,')[1+(1/d)], i.e., —0.375 in d=2. Analytical upper
bounds are shown in Table III, which also contains re-
sults of analytical (perturbative) methods. The optimal
variational upper bound is —0.3344 given by Liang
et al. who analyzed a three-parameter VWF on a
180X 180 lattice with variational MC. Sachdev obtained
the analytical upper bound —0.3317 with a one-
parameter VWF.

The GSDW i
ql o & given in Eq. (67) with

ul, =u [s(k)]=u (e), vl, =v[e(k)]=v(e) from Eq. (74)
can be expected to yield a result for (S; S;+,& which is

very close to these bounds when it is evaluated numeri-
cally in d=2. This conjecture is supported by a compar-
ison of the GSDW with the VWF analyzed numerically
by Yokoyama and Shiba (YS) in Ref. 8. They used

uvs, vvs= 1/2 1+
2 2,q2, (76)

2[si
(4s2+ g2 )

1 l2

where hzs is their variational parameter. If we identify
b,vs—=((s &)' 1 one can see that the VWF's agree for
ie

~

((b vs, i.e., in the vicinity of e =0. But they essential-

ly disagree for ~ci)&bvs. In the latter region (near the
band edge) YS have uvs -—1, vvs —-0, i.e., the YS-VWF
describes a projected Fermi sea of free-electron states.
For the GSDW, we find instead u(e), v(s)=1/V2 near
the band edge, i.e., we described projected antiferromag
netically ordered states. This difference may allow to im-
prove on the already very good results of Yokoyama and
Shiba who obtained (S; S;+,&

= —0.321 for their VWF.
We further compare the results for the GSDW with

linear spin-wave theory. This is an expansion approach
to the Heisenberg model where (I/Sz) serves as a small
parameter, and z =2d is the number of NN. This tech-
nique is based on a bosonic representation of the Heisen-
berg model whereas we use a fermionic description. The

Finite-size diagonalization,
Monte Carlo Variational Monte Carlo

—0.336 (41)
—0.3364 (42)
—0.3336 (43)
—0.3350 (44)
—0.33459 (45)

—0.328 (41)
—0.3319 (46)
—0.321 (8)

TABLE II. Comparison of finite-size diagonalization Monte
Carlo versus variational Monte Carlo results for (S; S;+,). The
numbers in parentheses are reference numbers.

Parameter and
order of expansion

(1/d)
( 1/Sz)
(1/d)
( 1/Sz)

(S, .S,„)
—0.3125 (57,58)
—0.329 (57,58)
—0.3340 (57,59)
—0.3352 (57,59)

TABLE IV. Results of spin-wave theory for (S; S;+,) in
d=2 for S =1/2. The numbers in parentheses are reference
numbers.
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analytical expression for (S; S;+,) up to order (1/Sz)
can for S =

—,
' be written as

(S;.S;~,) =( —
—,
' }(I+2co+co),

' 1/2
f2

1—
2d

EB
co= f dip(s) 1—

B

(77a}

3. Interpretation of the new VWF

We now interpret the physics described by the GSDW.
In d = ~ all states are "frozen" in the Neel ordering ( 1
spins on the A, J, spina on the B sublattice). In finite di-
mensions there will be spin flips or—in a fermionic
picture —f and $ electrons will move around due to (vir-
tual) hopping processes. The issue is how the rigid corre-
lation between the electrons c ~& and c &~+& has to be bro-
ken up to obtain the wave function with lowest energy.
Consider the half-filled Hubbard model at large U in the
antiferromagnetic Hartree-Fock approximation. This
theory describes two subbands in the magnetic Brillouin
zone whose boundary is given by s(k)=0. The Hartree-
Fock ground state is given by a completely filled lower
band (Fermi energy sr=0) and an empty upper band.
For U= ~ it describes the Neel state which is the exact
ground state of the Heisenberg model in d =~. For
d & 00 the Neel state is not the exact ground state so that
we expect excitations of states in the lower subband, espe-
cially near the Fermi energy. Hence, we argue that elec-
tron pairs c &,c &+& near the magnetic Brillouin zone
[s(k) =0] should weaken their correlation while electron
pairs in the vicinity of the lower band edge [s(k)= ~s~ ~]

stay rigidly Neel correlated. On the other hand, this
means to create doubly occupied sites. These have to be
projected out afterwards by the Gutzwiller projector.
Thus, the advantage of breaking up the Neel correlation
is diminished and there is also a mixing of all k states.
But one may argue that the Gutzwiller projector affects
all electron pairs in c&,c&+& in the same manner. Hence,
the dispersion relation e(k) of the noninteracting Fermi
system selects which of the cz, c&+& pair has to be broken
up. This allows for an intuitive understanding why there
appears a sharp cutoff energy c.,„, in the parameters
u (E),v(e) which determine the GSDW.

Because the GSDW is based on a fermionic description
of the spin- —,

' Heisenberg model one is tempted to inter-
pret e,„, as a Fermi energy of spin- —,

' quasiparticles ("spi-
nons" ' ). On the one hand, the cutoff energy e,„, re-
sults from an analytic calculation of the optimal of

Clearly, the results of a (1/Sz) expansion differ from
those of a (1/1) expansion. Up to order (1/d) we have

co=[1/(4d)]+[1/(16d )]f dep(E)e
B

Hence, the results for (S; S;+,) and m of the GSDW
completely agree with linear spin-wave theory up to or-
der (1/d). In Table IV we list the results of this theory
according to (77a) in d=2. The (1/d) result in linear
spin-wave theory is very close to the expected exact value
in 1=2. This supports the conjecture that the same is
true for the GSDW derived above.

infinitely many variational wave functions and is not put
in by hand. Furthermore, the results to order (1/d) for
this wave function are very satisfactory. On the other
hand, the GSDW is merely a trial state so it gives only an
approximate description of the true ground state of the
model. Furthermore, the notion of a Fermi energy is
closely related to the kind of excitations in the system.
The description of excitations is out of the scope of
ground-state VWF's. Lastly, we deal with a highly corre-
lated VWF ~% o)=g;(I D;}—~4 0) which not only
contains the one-particle product wave function ~% p) but
also the Gutzwiller projector. Hence, the physics ~4s 0)
is not only determined by the physics in ~%'0) but also by
the effects introduced by the Gutzwiller correlator.
Therefore, one should not overinterpret the one-particle
properties in ~%o).

VIII. SUMMARY

In this paper we presented a formalism to study gen-
eral Gutzwiller correlated variational wave functions in
finite dimensions d via a (1/1) expansion. The concept of
high dimensions was introduced by Metzner and
Vollhardt. ' For the special case of the Gutzwiller wave
function they showed ' that the Gutzwiller approxima-
tion becomes exact in d = ~. This opened up the possi-
bility to extend the GA systematically to more general
Gutzwiller correlated VWF's. Using a graph formalism
MV obtained a closed but infinite set of equations which
determines the variational ground-state energy in d = 00

for such wave functions. However, these equations can-
not be solved in practice for arbitrary VWF's.

To utilize the limit of high dimensions more economi-
cally we use the same graphs as MV but with new inter-
pretations of vertices and lines. As a consequence, the
self-energy vanishes in d = (x). This allows for an exact
evaluation of the variational ground-state energy in this
limit for general Gutzwiller correlated variational wave
functions without calculating a single graph. Further-
more, for all the VWF's we calculate the lowest-order
term in (1/d) for all nearest-neighbor correlation func-
tions.

We compared these systematically derived results with
other attempts to extend the GA. Recall that the GA be-
comes exact for the GWF in d = 00. In this paper we
found that the approximate treatment of the Gutzwiller
correlated VWF's used in the context of the periodic An-
derson model' ' also becomes exact in d = ~. ' ' '
However, the same is not true, in general, for other, more
complicated (e.g., antiferromagnetic) VWF's (Refs. 21,
27 —29, 31, and 32). For example, in certain methods '
one does not calculate expectation values for a specified
VWF but one makes an ansatz for the analytic form of
(8 )(q;,d; ), where q; and 1; are determined approxi-
mately. This type of approximations does not become ex-
act in d =00: the factors q; cannot be determined
unambiguously ' ' and often do not agree with the ex-
act ones in d = ~. ' Furthermore, using these tech-
niques one only argues with VWF's but one does not real-
ly calculate with them. As a consequence, the VWF's
used for these argumentations are not the same as the
VWF's we use for our exact calculations in d = ao.
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We can further compare with the results of Kotliar and
Ruckenstein who attacked the Hubbard model with a
slave-boson —path-integral technique. The d = ~ results
for the general Gutzwiller correlated VWF's reproduce
the full set of static saddle-point equations. This allows
for new insight into the meaning of such an approxima-
tion to a path integral.

Going beyond the Gutzwiller approximation for the
Gutzwiller wave function, we derive analytic expressions
for the one-particle density matrix, the mean double oc-
cupancy and the variational ground-state energy in the
GWF up to order (1/d) for arbitrary correlation strength
and electron densities; for half-filling we calculate up to
order (1/d) . None of the cluster expansions to im-
prove on the GA for the GWF agrees with the systematic
(1/d) expansion. We showed that the first-order terms in
the (1/d) expansion are sufficient to describe numerical
results in d=2, 3 quantitatively. Furthermore, the con-
clusions derived from the GA for the GWF ("almost lo-
calized Fermi liquid" 3

) are supported by the results of
the (1/d) expansion.

Based on the latter results we provide a number of ex-
plicit examples which give further support to the obser-
vation that the limit of high dimensions allows for quali-
tatively correct results in low dimensions. We proposed
new VWF's for the Hubbard, t-J, and antiferromagnetic
spin- —,

' Heisenberg model. These VWF's have the analyt-
ic form of the optimal of infinitely many Gutzwiller
correlated antiferromagnetic spin-density wave functions
to order (1/d) (Hubbard and t Jmodels-) and to order
(1/d) (Heisenberg model). In the case of the Heisenberg
model one finds very reasonable results when the expres-
sions to (1/d) are applied to d=2. Furthermore, the
GSDW only depends on a cutoff energy which may be in-
terpreted as a Fermi energy of spin- —,

' quasiparticles ("spi-
nons" '

)

The formalism in this paper is restricted to VWF's
with a fixed total number of particles. However, a gen-
eralization to projected Bardeen-Cooper-Schrieffer (BCS)
type wave functions is straightforward. These wave func-
tions are closely related to Anderson's original
resonating-valence-band (RVB) wave function proposed
for high-T, superconductivity. ' The results for the RVB
wave function are planned to be presented elsewhere.
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APPENIDX A: DERIVATION
OF THE KOTLIAR-RUCKENSTEIN FREE ENERGY

To be definite we consider the case of translational and
spin-flip invariance. The eigenstates of the kinetic part of
(1) span the whole Hilbert space. We denote them by
~4„). We can assign an energy E„(g) to each of these
states which we define as

E„(g)= (4„~g Qg ~@„)/(4„~g ~4„) . (Al)

Ind=~ wehave

E„(g)=q pc, (k)(ttl, )(z, )+UI.d (A2)
ko.

because our formula (39) is valid for arbitrary states
~
4„). We then depne the objects

—PEZxR= ge (A3a)

f~a = ——»Z~a1
(A3b)

where P= 1/k&T. fxa is then exactly the KR "free en-

ergy, " Zza the KR "partition function. " 6 As the states
~4„(g) ) =g ~4„) are not mutually orthogonal it is obvi-
ous that Z„a is not a well-defined partition function.
For large U, minimization with respect to d will yield
small d (or even d=0) so that starting with a number of

L L

1V)

This overcounting of states or entropy problem occurs
due to the mathematically ill-defined partition function
ZKa and ends up in a physically unreasonable localiza-
tion transition for UT ))1. Nevertheless, fKit or Zx„
are useful for the study of low-temperature properties of
correlated Fermi systems as in Refs. 34 and 36; "low"
means that the number of relevant states in (A3a) does
not exceed the number

L —N

N)

of states without double occupied sites. This is a
minimum requirement to circumvent the entropy prob-
lem. However, phenomenological extensions of the
Gutzwiller results to finite temperatures as done by Seiler
et al. in Ref. 62 cannot be rejected by the KR method.

APPENDIX B: CALCULATION
OF THE (1/d) CORRECTION FOR THE GSDW

We expand around the Neel state where deviations
should be small. Therefore, we expect Hi, in (44) to be
close to unity, i.e., Ok=1 —5k/d, 0&5k((d. Thereby we
generate doubly occupied sites in ~40). Hence, we have
to set g =0from the beginning This imp.lies

uk, ui, =&1/2 1+— (8 la)
2

+0

(b,m)0ma=1- =1———g 5~,
d d L (k)(0

1/2

(Blb)

2

' 1/2
2

d
c(k}+6k+0(d '

) .
c(k) (0

(Blc)

states ~4„&, one ends up with states [g f (1 8 f )]~4„)
without double occupied sites, i.e., in a space of dimen-
sion

L —N



41 GUTZWILLER CORRELATED WAVE FUNCTIONS IN FINITE. . . 9471

For uk, vi, in (68a) and (68b) one finds

I /2
5„

ui„vi, =v'1/2 1+
(b,m)o

+0 (Bld}

Note, that we can set 5i, =A f& and let 1, go to zero while

uz, vi, in (Bld) and ~%s o& defined in (67) stay nontrivial.
This will be important later.

Now we calculate &S; S;+,&. From (46) and (47) we
find g, ,=4 and g + =4/(1 —mo). Using

I', = —[1/(2v'2d )]so it follows from Eq. (45) that we
have

&S,"S,„&=(-~) m +—'(s, ) 1+
1 —m 0

(B2}

Note that m is the sublattice magnetization in
~ 4s 0 &

and has a (1/d) correction via Eq. (28) itself. We define S
as the on-site part of the self-energy. Due to p-h symme-
try we have

0 for —c~ c —c.,„, ,
5(e)= '

for —c,„,& c &0 . (B8)

A, and c,„,are the two remaining parameters. The quanti-
ty [(b s)0] /(hm )0 is A, independent. We now let A, —+0 to
ensure that (b,m }0~0. We finally arrive at

1
m =1——&s'&', (B9a)

&S; S;,&=( —
—,') 1+—&s'&(1 —&e'&) (B9b)

The second (1/d) term in (B4) is always smaller than or
equal to zero since (hm}0&0 and S& —1. Hence, we

have to let (hm)0~0. This implies 5(s)~0 which does
not yield a trivial VWF as discussed above. It follows
from (B7b) that p2~ 00 (po~O yields trivial results}. In
this case (B6) is a quadratic equation for V'5(s). Defining
A, =(po/p, ) we can let p2~ ~ with the result

S:—St(i& A sublattice)= —St(i&B sublattice),

with 1' and l interchanged for A+ B The .off-site contri-
bution in (28) can easily be calculated. Using (Blb) and
(Blc) we find

& e'& =2f ds p(E)s' .
cut

Hence, only one variational parameter is left.

(B9c)

[(«}0]'m=1 ——
2

+(S+1)(b,m)0
[(hm)o]

(B3)

up to order (1/d). To this order (B2) yields

o

d (bm)0 (bm)o

——(b,m }0(1+S)2
(B4)

The on-site part of the self-energy S is calculated in Ap-
pendix C. We find that S is of order unity and, especially,
S & —1. Furthermore, S is a function of the quantities
(b,e)0, (hm)o, and

(b,s, }o=—g s(k)(5„)2

c(k) ~0

(b,m, )0=—g (5i, )
2

c(k) ~0

(BSa)

(B5b)

Minimizing the variational energy (B4) w.r.t. 5i, we ob-
tain the following equation for 5&=5[E(k)]=5(s):

[5(E)]' +Pie5(e) —P, [5(s)]' —POE=O, (B6)

with po, p, , p2 0 as three remaining variational parame-
ters. They are chosen positive to give reasonable results
for 5(s) at the boundaries (the upper-band edge is e=O,
the lower-band edge is e= —eii = —v 2d ). To optimize
(B4) we have to set

5( —eii)= 0

5(0)=0 .

(B7a)

(B7b)

FIG. 9. First two graphs of a series for the local part S (i, i)
in the self-energy up to order (1/d); (a) graph to order x, (b)
graph to order x .
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S (i, i)= —x;[(n; —(n; )0)BIO. (Cl)

There is a whole class of graphs which contribute to S in
order (1/d). The graphs belonging to this class are easily
identified. The first two graphs of this infinite series are
shown in Figs. 9(a) and 9(b). Both of them are of order
(1/d) because the triple line from g to h requires these
two lattice points to be NN to each other. But one can
attach an infinite series of "RPA bubbles" to the graph in
Fig. 9(a) without changing its order in (1/d). Such an
infinite series must be treated carefully in the limit g =0,
m0~1. As we shall see below, the summed series is of
order unity, instead of order (1/d). To show this we in-
troduce "dressed lines"

APPENDIX C: CALCULATION
OF THE ON-SITE PART OF THE SELF-ENERGY

FOR THE GSDW

The on-site part of the self-energy is defined in Eq. (26)
by

p BB(k) p AA(k) (Csb)

where

(P, )= —(1/&2d )(2/L) g e(k)P" (k) .

(C6)

P (k)=P "(k)=—,'(1—8 )' [1+S(8„—m ) ], (C5c)

Equation (C5c) shows that the hopping from A to B sites
is spin independent. Because (8k —mo) is of order (1/d)
[see (Bla) and (Blb)] there is no correction of order unity
for nearest neighbors. This justifies the use of P instead
of P when we derived Eqs. (B3) and (B4). The equation
for S now explicitly reads

1 0
oS 0 1

=x'QP (i, f)(p, )'&f—sg — (g i)
f,g

1 0
+( —x)( —o )S g [P (i,g)]

p (i, j)=p (i,j)+ g p (i, g)S (g, g)p (g, j)
g

(C2) c(k) ~0

Using (C4) and (C5a)—(C5c) one can solve (C6). We find
for each of the lines occurring in the graphs. It is con-
venient to introduce the Fourier representation'

p (i )
— y &

—ik (i —j)p xY~k)
c(k) ~0

2&2dx (P, } (2/L) g e(k)crp ""(k)p" (k)
c(k) ~0

1 —x (2/L) X [P ""(k)] —[P " (lt)]
K(k) (0

where i is on the X sublattice and j is on the Y sublattice.
The inverse transformation reads We now perform the limit g ~0 with

(C7)

P xr(k) y y &ik (s —g)P

iEXjE Y

(C4)

(CSa)

It is convenient to arrange the quantities P "(k) in a ma-
trix, with P ""(k)as (1,1) element, etc. The advantage is
that the convolution theorem holds for these matrices, '

i.e., if

C(f, h)= g A(f, j)8(j,h)
J

then C(k)=A(k)08(k), where 0 indicates the matrix
product of A and 8. From (Cl) and (C4) we obtain
(n =1)

T

P ""(k)=—8 —m + —(8 —m )
—(1—8 )0 2 k 0 2 k 0 k

8k= 1 —5k/d +irk/d

in (C7). We have to take into account a formal (1/d)
correction, ~k, which drops out at the end of the calcula-
tions for S. We use x =( —4)/(1 —mo),
ma=(2/L) g, iki&o 8k, and the definitions (Blb), (Blc),
(B5a), and (BSb). After some algebra we arrive at

2[(hs)0] [(be)0(bm)o —
( I+S)(be, )o]

[(Am)o] [(bm&)0(1+S) —(I+2S)[(bm)0] ]

Equation (C8) is a third-order equation for S dependent
on known quantities. Since for S & —1 both the denomi-
nator and the numerator are positive [(be)0~0,
(hat)0 0], the right-hand side of Eq. (C8) is positive and
there is no solution for S & —1.

J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963); J.
Kanamori, Prog. Theor. Phys. 30, 275 (1963).

2See, for example, P. A. Lee, T. M. Rice, J. W. Serene, L. J.
Sham, and J. W. Wilkins, Comments Cond. Matt. Phys. XII,
99 (1986).

M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); Phys. Rev.
134A, 923 {1964);137A, 1726 (1965).

4W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).
5For a review, see D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).
W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987);

Phys. Rev. B 37, 7382 (1988).
7F. Gebhard and D. Vollhardt, Phys. Rev. Lett. 59, 1472 (1987);

Phys. Rev. B 38, 6911 (1988).
8H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 56, 1490 (1987);

56, 3570 (1987);56, 3582 (1987).
T. A. Kaplan, P. Horsch, and P. Fulde, Phys. Rev. Lett. 49,

889 (1982); P. Horsch and T. A. Kaplan, J. Phys. C 16, L1203
(1983).
C. Gros, R. Joynt, and T. M. Rice, Phys. Rev. B 36, 381
(1987).



GUTZWILLER CORRELATED WAVE FUNCTIONS IN FINITE. . . 9473

~ ~H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 57, 2482 (1988).
C. Gros, R. Joynt, and T. M. Rice, Z. Phys. B 68, 425 (1987);
C. Gros, Phys. Rev. B 38, 931 (1988).
W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989);
W. Metzner, Z. Phys. B 77, 253 (1989}.
P. G. J. van Dongen, F. Gebhard, and D. Vollhardt, Z. Phys.
B 76, 199 (1989).

' T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, 995 (1985); 55,
2093 (1985);Phys. Rev. B 34, 6420 (1986).

~B. H. Brandow, Phys. Rev. B 33, 215 (1986); P. Fazekas and
B.H. Brandow, Phys. Scr. 36, 809 (1987).
C. M. Varma, W. Weber, and L. J. Randall, Phys. Rev. B 33,
1015 (1985).

' V. Z. Vulovic and E. Abrahams, Phys. Rev. B 36, 2614 (1987).
' A short account is given in F. Gebhard and D. Vollhardt, in

Interacting E/ectrons in Reduced Dimensions, edited by D.
Baeriswyl and D. Campbell (Plenum, New York, 1989).

oA. B.Harris and R. V. Lange, Phys. Rev. 157, 295 (1967).
F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond.
Sci ~ Tech. 1, 36 (1988).
P. W. Anderson, G. Baskaran, Z. Zou, and T. Hsu, Phys. Rev.
Lett. 58, 2790 (1987).
The generalization to a projected BCS state (Anderson's origi-
nal RVB state) is straightforward. The results are planned to
be published elsewhere.

~4In the context of VWF's this was proven by P. Horsch and P.
Fulde, Z. Phys. B 36, 23 (1979).
E. A. Guggenheim, Mixtures (Oxford University Press, New
York, 1952), p. 38.
G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362
(1986).
T. Ogawa, K. Kanda, and T. Matsubara, Frog. Theor. Phys.
53, 614 (1975).
T. Ogawa and K. Kanda, Z. Phys. B 30, 355 (1978);T. Ogawa,
T. Ogawa, and K. A. Chao, Phys. Rev. B 17, 4124 (1978).
J. Bernasconi, Z. Phys. B 14, 225 (1972).
H. A. Razafimandimby, Z. Phys. B 49, 33 (1982).
F. Takano and M. Uchinami, Prog. Theor. Phys. 53, 1267
(1975); J. Floremcio and K. A. Chao, Phys. Rev. B 14, 3121
(1976).
A. M. Oles and J. Zaanen, Phys. Rev. B 39, 9175 (1989). Ac-
tually, they use a Gutzwiller correlated VWF to treat a two-
band model, which is slightly different from the periodic An-
derson model.
F. Gebhard (unpublished). Analogously, the results of a
Gutzwiller-type approximation for the Emery model [S. K.
Sarker, Phys. Rev. B 39, 2155 (1989)]are seen to be correct in

Q =00.

34J. W. Rasul and T. Li, J.Phys. C 21, 5119 (1988).
M. Lavagna (unpublished).

3 T. Li, P. Wolfle, and P. J. Hirschfeld, Phys. Rev. B 40, 6817
(1989);P. Wolfle and T. Li, Z. Phys. B 78, 45 (1990).

E. Muller-Hartmann, Z. Phys. B 74, 507 (1989);76, 211 (1989}.
D. Vollhardt, P. Wolfle, and P. W. Anderson, Phys. Rev. B
35, 6703 (1987).
P. W. Anderson, Phys. Rev. 83, 1260 (1951).
T. Kennedy, E. H. Lieb, and B. S. Shastry, Phys. Rev. Lett.
61, 2582 (1988).

'P. Horsch and W. v. d. Linden, Z. Phys. B 72, 181 (1988).
~2T. Barnes and E. S. Swanson, Phys. Rev. B 37, 9405 (1988).

M. Gross, E. Sanchez-Velasco, and E. Siggia, Phys. Rev. B 39,
2484 (1989).

~J. D. Reger, J. A. Riera, and A. P. Young, J. Phys. Condens.
Matt. C 1, 1855 (1989); J. D. Reger and A. P. Young, Phys.
Rev. B 37, 5978 (1988).

45J, Carlson, Phys. Rev. B 40, 846 (1989).
~ D. A. Huse and V. Elser, Phys. Rev. Lett. 60, 2531 (1988).
47R. Kubo, Rev. Mod. Phys. 25, 344 (1953).

T. Oguchi, J. Phys. Chem. Solids 24, 1049 (1963);J. C. Fisher,
ibid. 10, 44 (1959).
M. Ziegler, W. van der Linden, P. Horsch, Phys. Rev. B 40,
7435 (1989).
S. Sachdev, Phys. Rev. B 39, 12232 (1989). The same VWF
was studied by R. R. Bartkowski, Phys. Rev. B 5, 4536 (1972).
His treatment, however, is only approximate, i.e., contains
uncontrolled approximations. Bartkowski's technique was
refined recently by A. M. Oles (unpublished).
S. Liang, B.Doucot, and P. W. Anderson, Phys. Rev. Lett. 61,
365 (1988).
M. H. Boon, Nuovo Cimento 21, 885 (1961).

53H. L. Davis, Phys. Rev. 120, 789 (1960).
~~M. Parrinello and T. Arai, Phys. Rev. B 10, 265 (1974); D. A.

Huse, ibid. 37, 2380 (1988).
K. W. Becker, H. Won, and P. Fulde, Z. Phys. B 75, 335
(1989).
R. R. P. Singh, Phys. Rev. B 39, 9760 (1989).
R. Kubo, Phys. Rev. 87, 568 (1952).

5 P. W. Anderson, Phys. Rev. 86, 694 (1952).
H. Nishimori and S. J. Miyake, Frog. Theor. Phys. 73, 18
(1985).

S. Kivelson, D. Rokhsar, and J. Shetna, Phys. Rev. B 35, 8865
(1987).
P. W. Anderson, Science 235, 1196 (1987).
K. Seiler, C. Gros, T. M. Rice, K. Ueda, and D. Vollhardt, J.
Low. Temp. Phys. 64, 195 (1986).


