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The fully relativistic spin-polarized embedded-cluster method is discussed for magnetic impurities
in nonmagnetic host metals. We apply the method to the calculation of the density of states and the
magnetic energy of the cases of a single Fe impurity in Au, and of a pair of Fe atoms located within
a first-neighbor shell cluster in Au. In addition to allowing for different distances between the two
Fe impurities, we also allow for different spin orientations, with respect to the lattice symmetry of
the host. We have also analyzed the spin polarization induced on a central Au site by the Fe
atom(s). Thus, we have shown that the method is appropriate to obtain effective spin Hamiltonians
for local moment systems, which contain local anisotropy terms and anisotropic exchange interac-

tions.

I. INTRODUCTION

Materials composed of either transition metals or ac-
tinide elements are sources of a very rich variety of in-
teresting and unusual phenomena. Electronic structure
calculations have proven to be extremely useful in the un-
derstanding of their electronic properties. However, one
of the outstanding problems remaining is that of describ-
ing materials in which the nonlinearity due to electron-
electron interactions becomes comparable to the disper-
sive character of the one-electron excitations. In many
such cases, the solution of the full, nonlinear,
Schrodinger equation is no longer unique due to the ex-
istence of states with spontaneously broken symmetry. '
A common form of spontaneous symmetry breaking
found in transition metals and components is magnetic
ordering,? and similarly moment formation of impurities
in nonmagnetic hosts.®> Electronic structure calculations
including spin polarization*”7 are essential in the
description of such materials.® ! Since the existence of
spin is a relativistic phenomenon, a derivation of the
spin-polarized Kohn-Sham equations must be based on a
fully relativistic density-functional theory. Rajagopal
and Callaway,!! obtained a spin-polarized theory as the
nonrelativistic limit of a fully relativistic theory. Howev-
er, the appearance of a fully relativistic, spin polarized,
theory'>!? is a relatively new development that was
prompted by the growing interest in the actinide materi-
als,"»!% where spin-orbit and spin-polarization effects are
large. These developments allow for a rigorous treatment
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of spin only magnetism in f-electron systems.'® This de-
velopment also enables rigorous investigations of subtle
effects such as magnetic anisotropy,'’ in which the spin
polarization couples to the lattice via the spin-orbit in-
teraction, and requires both effects to be treated on the
same footing.

The existence and stability of local magnetic moments
in nonmagnetic hosts>!8 =20 is central in our understand-
ing of many physical phenomena, such as giant local mo-
ments, 2! 72 spin glasses,?*”2° and even magnetic order-
ing in some concentrated alloys and compounds.?’ %
The stability of local moments is often attributed to
intra-atomic correlations. As an example, a commonly
used model for moment instability is the Kondo
effect,>3%3! which is appropriate when intra-atomic
correlations restrict the wave functions to be a linear
combination of wave functions corresponding to a degen-
erate and a nondegenerate configuration. On the other
hand, a linear combination corresponding to two distinct
degenerate configurations is assumed to lead to the for-
mation of a stable local moment.*? This simple model
does fail to attach much significance to the nature of the
host’s conduction band and therefore accounts poorly for
the appearance of local moments in some hosts, but not
others. In fact, the qualitative differences between hosts
with sp conduction bands and d bands remain unex-
plained.!® The importance of the host polarizability is
evidenced by 3d impurities in Pd,2!~2* in which the host
bands exhibit a large local spin polarization giving rise to
giant moment formation. The polarizations induced in
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the conduction bands by the interaction with the polar-
ized impurity, also forms an essential part to the descrip-
tion of a coupling between local moments'”?” as for ex-
ample modeled by the Ruderman-Kittel-Kasuya-Yosida
(RKKY) exchange interactions. A proper description of
the single-site spin anisotropy,>>3* and the charge anisot-
ropy?>% requires a simultaneous inclusion of both spin-
polarization and spin-orbit couplings at the sites of the
local moments, and in the host conduction bands, as well
as their mutual interactions.

In this paper, we address the problem of a stable spin-
polarized 3d impurity in a nonmagnetic host and the in-
teractions between two such impurity whether direct or
mediated by the polarization of the intervening nonmag-
netic host atoms. We treat this problem within the
framework of density functional theory. Since these cal-
culations are not only based on a new type of approach
but also are computationally quite intensive, we do not
perform one-electron charge-density self-consistent calcu-
lations. Therefore, one ought to consider our results as
model calculations from which, we hope, some insight
may be gained.

In Sec. II, we discuss the fully relativistic, spin-
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polarized, embedded-cluster method. In order to reduce
the size of this section, we have only briefly outlined the
theoretical results.!>!>1635 In Sec. III, we present a
short account of the computational details. In Sec. IV,
we show the results for one impurity and two impurity Fe
atoms in an Au host metal. We also discuss the effects of
the polarization of the Fe atoms on an Au site. Our re-
sults for the single impurity case shows that the qualita-
tive, interpretative picture of “spin-up” and “‘spin-down”
densities of states (DOS) is not automatically transferr-
able to the concept of spin only (m; —) projected DOS in
a relativistically spin-polarized approach.

II. METHOD OF CALCULATION

In order to describe the scattering from more than one
impurity, one needs to calculate the so-called site off-
diagonal Green’s functions G (r,r’), i.e., Green’s func-
tions, where the two spanning r and r’ are measured from
two different lattice sites. In that case, the off-diagonal
scattering path operator for a nonmagnetic cubic lattice
with one atom per unit cell is given by, *

e)=205) 3 fQ Q+(S)z(k,s)Q(S)cos[k-S(R,—~Rj)]d3k
BZ

Seo0

1, KR, ~R))

=i} [, 11510~ G (ko)) 4k

R,R,EL;kEL;';0CO,,

where (g7 is the volume of the Brillouin zone (BZ), Qg,
the volume of the irreducible wedge of the BZ, t,(€) is
the single site ¢ matrix of the host, and G (k,€) are the
corresponding structure constants. In (1) underbars
denote matrices (e.g., angular momentum representation)
and the matrices D(S) contain blockwise the Clebsch-
Gordan coefficients for the irreducible projective repre-
sentations®® of the cubic group 0,. Using these represen-
tations only 24 BZ integrals need to be calculated for O
instead for the usual 48 of the double group.

For the problem of several impurities (embedded clus-

ter) one constructs a supermatrix z(e) with elements
T(e).

N
(o]

L]=LN, )

Te) 1Ye) }
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where N is the number of embedded sites. For each site i
in the embedded cluster a local transformation, e.g.,
D (R) can be considered. For the whole cluster these
transformation are conveniently arranged in superma-
trices R and R ~! (inverse), i.e.,

D,R) 0
R=| 0 DS o0 ,
0 DD
3)
DR 0 0
R7'= 0 D (s 0
o) 0 D, (T

Turning now to the problem of magnetic impurities,
one constructs a diagonal supermatrix, whose elements
are given by the inverse single-site ¢ matrices. If sites i
and j are occupied by impurities, the elements i and j of
this supermatrix are given by the inverse magnetic
single-site ¢ matrix'>!>1¢ of the impurity species a,
whereas all other elements are given by the inverse
single-site ¢ matrix of the host which, since they are diag-
onal angular representations, are invariant under trans-
formations:
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1o '(e) 0
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In (4) for sites i and j the axis of rotation is rotated back to the case for which the spin-polarized Kohn-Sham-Dirac
equations can be solved'?!? (internal effective field B q(7) along the Z axis). Rotation of the cluster 7 matrix* [Eq. (2)]
with R therefore takes account of the case of different orientations on different sites:

r(R,e)=R({1+[t (R~ e)—14 (e)]z(e)} "'z(e)R .

(5)

If in (5) all sites in the embedded cluster are occupied by host atoms, (R ,¢€) is given simply by a rotated cluster matrix

z(€) [Eq. (2)], which of course, e.g., yields nothing but N times the density of states for the host metal. Inspecting in (5)

the ith site, the scattering path operator is given by

i(R,e)=D [(R([1+[£ (R Le)—tg (e

i.e., by the ith diagonal block in Eq. (5). This cluster-
diagonal block clearly depends not only on the occupa-
tion of site i by species a and the local orientation of the
internal effective field B.4(r), but also on the environment
of the corresponding quantities. The site DOS n'(R,¢)
and the site magnetization DOS m (R, ¢) for an impurity
atom of species a occupying site i are then given by'® -

n'*R,e)=—7"'ImTr[R'“e)r(R,e)], (7)
and
m’“(R;,E)=—TrfllmTr[Bozﬂi“(E)T(R;,s)] , (8)

where the matrix of radial integrals R ‘*(¢) is defined in
Eq. (7)-(10) of Ref. 16. As can easily be shown from
(5)-(8), if only a single magnetic impurity is considered,
the magnetization density and therefore the magnetic
moment have the same values for all R €0,,.

ITI. COMPUTATIONAL DETAILS

For the host metal (Au) a muffin-tin fully relativistic,
self-consistent linear-muffin-tin orbital (LMTO) potential
corresponding to a lattice constant of a;,=7.68175 a.u.
was used (muffin-tin radius R, =2.58571 a.u.). The BZ
integrals (1) for the off-diagonal scattering path operators
of the host are calculated in the complex plane parallel to
the real axis using the 21 special directions of Fehlner
and Vosko”3® and are then analytically continued to the
real axis. All spectral quantities are obtained with an en-
ergy mesh of 0.01 d.u. [1 d.u.=(27/a,)? Ry].

For the Fe impurities the results of the (nonrelativistic)
spin-polarized calculations of Moruzzi et al.” are shifted
by a constant such that the Fermi energy of Fe matches
the Fermi energy of the host metal (Au). The spin-
polarized charge densities of Moruzzi et al.” are used to
generate the effective potential and the effective internal
field'>!? in terms of the local spin-density functional
given by Gunnarson.** Throughout this work a muffin-

)lz(e)} ~'z(e));D (R) . (6)

[

tin radius for Fe of 2.225 54 a.u. was used (which con-
tained 7.9d electrons).

In the present paper, only the d-like quantities are
shown, which are defined as the corresponding d-like
contributions in Egs. (7) and (8). Denoting the d-like
magnetization DOS for a particular arrangement R sim-
ply by m,(e), the d-like magnetic moment by m,(up),
and the corresponding calculated d-like magnetic energy
by E ,ﬂ, one obtains the relations

Ep Ep
my=— fo my(e)de, EZ=— fo my(e)ede , (9)
where E is the Fermi energy of the host.
IV. RESULTS AND DISCUSSION
A. Single impurities

In order to get some reference for the many impurity
problems we first consider the single impurity problem.
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(dashed-dotted line) partial local DOS’s for the host (Au) and
the spin-polarized d-like DOS of a single impurity of Fe in Au
(solid line).
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FIG. 2. m;=1 (dashed line) and m;=— 7 (solid line) pro-
jected d-like DOS’s for a single impurity of Fe in Au. For
m;=— %, (—1) times the corresponding DOS is shown.

In Fig. 1 we show the (‘“paramagnetic”’ d*/- and d°/%-
like DOS for the host (Au) together with the fully relativ-
istic d-like (“spin-polarized””) DOS for a single impurity
of Fe in Au. The Fermi energy E of the host is at 0.528
Ry (vertical line). These results can be compared to the
non-spin-polarized relativistic calculation of a single im-
purity of Fe in Au that shows only one large d-like *“vir-
tual bound state”* just below Er. The energetic posi-
tions of the two peaks in the d-like DOS for Fe (Fig. 1)
correspond to the peaks in the nonrelativistic ‘“‘spin-up”
and “spin-down” d-like densities of a single impurity of
Fe in Au. For a better understanding of the origin of
those two peaks, we show in Fig. 2 the m; =% projec-
tion of the d-like DOS and in Fig. 3 the j =3, u=*3-like
partial local DOS. As can be seen from Fig. 2, both the
m;=1 and m = —1 projections have peaks at the ener-
getic positions of the spin-polarized virtual bound states.
Since for /=2, the (j ‘—'%, ;L=j:%) channels are the only
ones that cannot mix,'*!7 the corresponding DOS have
only one peak each, thus mimicking what one is used to
seeing in terms of a nonrelativistic spin-polarized calcula-
tion for the d channels (at least in the case of rather large
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“exchange splitting”). The d-like DOS is given by the
sum of the mg=1 and mg=—1 projected local DOS,
whereas the d-like magnetization DOS is given by their
difference. It should be noted that all the other d-like
partial local DOS for a single impurity of Fe in Au,
namely j =3,3; u==+1,%3, do have two peaks each lo-
cated energetically in the vicinity of the two spin-
polarized d-like virtual bound states.

The d-like magnetic moment obtained by integrating
the d-like magnetization DOS up to the Fermi energy of
the host is 3.1259u and the corresponding magnetic en-
ergy is 1.1312 Ry. As already mentioned in the preced-
ing section the magnetic moment for a single magnetic
impurity in a (paramagnetic) cubic host is independent of
applied rotations for the “orientations of the spin.”

An interesting question to ask is, how does the magnet-
ic moment go to zero if the internal effective field is
scaled to zero. This addresses the question of how the
nonmagnetic limit is approached within a spin-polarized
relativistic theory. In Fig. 4 the d-like magnetic moment
and the d-like magnetic energy of a single impurity of Fe
in Au is shown as a function of a scaling factor x (extend-
ing from zero to 1) for the internal effective field. As one
can see from the curve for the d-like magnetic energy one
indeed gets an asymptotic behavior for x —0. However,
one can see also that for values of x near 1.0 the shape of
the curve is by no means linear in x. Beyond the question

my (LB)

I

0 0.2

FIG. 4. (a) d-like magnetic moment (up) and (b) d-like mag-
netic energy (Ry) for a single impurity of Fe in Au as a function
of the applied internal field B q(r) with respect to a scaling fac-
tor x.
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of the nonmagnetic limit, Fig. 4 is also of practical in-
terest, since during a self-consistent spin-polarized calcu-
lation the d-like magnetic moment moves up and down in
the vicinity of x=1 until it has reached its final, i.e., self-
consistent, value.

B. Double impurities

Having more than one impurity opens up new possibil-
ities. By placing two impurities of Fe in Au, the magnet-
ic moment and therefore also the magnetic energy is no
longer invariant with respect to local rotations of the
internal field. Within the fcc unit cell there are four ine-
quivalent (nonzero) distance vectors R;=R;—R; be-
tween the two impurity sites. The two magnetic Fe
atoms can therefore be separated by four different dis-
tances [nearest neighbor (NN), second nearest neighbor
(SNN), etc.]. Since in the formulation of the spin-
polarized relativistic Kohn-Sham-Dirac equations'”%’ the
effective field B.4(r) is assumed to point along the Z axis,
the magnetization DOS m (E) is invariant under rota-
tions R (€ 0,,) around the Z axis. Therefore choosing an
axis of rotation perpendicular to the Z axis the local Fe
rotations leads to an orientation dependent magnetization
DOS per site. Throughout this paper rotations around
the X axis are used, where the symbols E, C,y, C,y, and
C;y denote clockwise rotations around this axis by
Om(2m), w/2, m, and 3m/2, respectively. It should be not-
ed that by choosing the Y axis as the axis of rotation ex-
actly the same results are obtained for C,y, C,y, and
C;y. In the following the notation (R,R,), R, R,EO,
is adopted to specify the local rotations for impurity site
1 and 2.

In Fig. 5 the d-like magnetic energy per site is shown
for the NN distance of two Fe atoms in a host lattice of
unpolarized Au atoms. The level of reference (zero of en-
ergy) is with respect to the d-like magnetic energy of a
single impurity of Fe in Au. For the cases (E,E) and
(C,x,C,x) the internal field vectors are pointing into or
out of the XY plane, respectively. For the other two fer-
romagnetic configurations [(Cy,Cx) and (C;y,C;x)]

x 102
0 T T T T
A s, :’.\ 1
2k e ".\ e ““ —
= 3 Ny \ -
41— p j' ‘\ —
d=\12
51— L Y —
6 ¢ 1 | |
(E.E) (ECix)  (EC2) (ECa)  (C1xCax) (Cix,Cix)
(C2x,C2x) (C3x,Cax)

FIG. 5. d-like magnetic energy per site (Ry) for a double im-
purity of Fe in Au at nearest-neighbor distance with respect to
rotations around the x axis. The zero of energy refers to the d-
like magnetic energy of a single impurity of Fe in Au. The sym-
bols in parentheses denote the local rotations for impurities 1
and 2.
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the internal field vectors are pointing in the +Y(—Y)
directions in the XY plane. For the antiferromagnetic
configurations (E,C,y) and (C,y,C;y) the internal field
vectors are pointing in the +Z and —Z directions or in
the +Y and —Y directions. For the two intermediate
cases we considered, namely (E,C,x) and (E,C,y), the
internal field vectors are pointing in the +Z for the cen-
tral atom and in the + Y (—Y) directions for the corner
atom. First, it is seen that the two antiferromagnetic
configurations are highest in energy and differ little from
the magnetic energy per site of the single impurity case.
Next, the two intermediate cases have lower energy, but
are not equal as the case (E,C,y) has a lower energy than
the case (E,C,y). Finally the ferromagnetic con-
figurations have the lowest energy of all.

In Fig. 6 we vary not only the orientations of the spin
of the two Fe atoms with respect to each other but also
the distance between them. Again Fig. 6 depicts the d-
like magnetic energy per site of a double impurity of Fe
in a host lattice of unpolarized Au atoms, with the zero
of energy being the d-like magnetic energy of a single im-
purity of Fe in Au. As seen from Fig. 6 the smallest devi-
ation from the d-like magnetic energy of a single impurity
is for the antiferromagnetic case (E,C,y). Concentrating
in Fig. 6 on this case, one finds that this particular devia-
tion goes to zero when the distance is increased beyond
lag. This indicates that with increasing distance the
“antiferromagnetic-like” interaction becomes weaker and
each impurity behaves like a single impurity. For the
other cases it is quite different. Taking for example the
case of ‘“ferromagnetic” behavior (solid circles), we see
that the magnetic energy oscillates with respect to the
single impurity case. One interesting aspect seen in Fig. 6
is that the lowest magnetic energy state as a function of

x 1072

FIG. 6. d-like magnetic energy (Ry) of a double impurity of
Fe in Au with respect to the distance d separating of the two Fe
sites. The zero of energy refers to the d-like magnetic energy of
a single impurity of Fe in Au. Solid circles: (E,E), (C,x,C,x);
open circles: (C,y,C,x); solid triangles: (E,C,y); open trian-
gles: (E,C,y).
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9 ¢ 6

the distance is “ferro,” ‘‘antiferro,” ‘“ferro,” ‘‘antiferro,”
suggestive of the oscillations in the RKKY exchange in-
teraction.

C. Polarization effects on Au sites

In order to discuss polarization effects on Au sites the
following procedure is used: One Au atom is spin-
polarized by a very small constant effective field
(—1.0X10™* Ry). This means that we are breaking the
crystal symmetry at this point and allow for directional
exchange. Considering this spin-polarized Au atom as
single impurity in a host of unpolarized Au atoms such
an impurity carries a d-like magnetic moment of
0.000 7145 with a corresponding d-like magnetic energy
of 0.000262 Ry. This single spin-polarized Au atom
serves as zero of energy for a discussion of polarization
effects on an Au site induced by Fe atoms.

In order to study polarization effects by a single Fe im-
purity onto an Au site the case of a NN spin-polarized
Au atom with all other Au atoms being unpolarized is
considered. The results of these calculations are shown
in Fig. 7 with respect to the local spin orientation for the
Fe atom and an orientation of E for the Au atom. In Fig.
7 therefore the symbols E, C,y, and C,y, refer to the lo-
cal spin orientations for the Fe atom. As one can see the
effects of polarization on the Au site by the Fe atom de-
crease as the Fe atom is moved away from the Au atom
under consideration. We also find that regardless of the
distance, the C,y orientation of the spin at the Fe site in-
duces the lowest magnetic energy at the Au site with

I
x10°2 ! ! !
10— | : i ]
] 1 I
8 |— | | i —
| ] 1
| 1 |
6 | } i ]
| ] 1
s : L
A i i
=27 & | : —
3 I il L TS0 !
~ | "\.l “—~~__ |
21— | o !
4 ! 1‘ = ]
| : A
61— | | —
| ] ]
1 I 1 |
8= | i
| | |
-10 — | | | —
1 ] 1
] ] |
| | 1
1 | 1
| | |
E C1x CZX

FIG. 7. Polarization effects on an Au site induced by a single
impurity of Fe in Au: d-like magnetic energy (Ry) of Au with
respect to _the local rotation for the Fe site. Distances (aq): tri-
angles 1/ 1; solid circles 1; open circles V2.
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respect to the single spin-polarized Au impurity. If the
orientations of the spin at each impurity is the same,
namely E at the Au site and E at the Fe site, we find that
only at a distance of 1 (solid circles) do we get a negative
deviation from the single Au impurity case. Since all
these calculations are non-self-consistent, we have to be
careful not overstating the effects; in all considered cases
the deviations from the single Au impurity case are rath-
er small. Concentrating on the Fe site, where as men-
tioned previously the invariance under rotations R €0,
is now lifted because there is one polarized Au atom des-
troying this symmetry, we find for the orientations E,
C.,x, and C,y at the Fe site a very small decrease of the
moment of Fe by 0.000014, 0.000049, and 0.000 0355,
respectively.

Finally, for a discussion of polarization effects on an
Au site by two impurities of Fe the case with a spin-
polarized Au NN atom and two SNN Fe atoms is con-
sidered. The orientations of the Fe atoms are shown as
entries in Fig. 8. In both cases the ferromagnetic interac-
tion between the Fe atoms and the Au atom (E, E) shows
an increase in the magnetic energy, whereas the antiferro-
magnetic configuration (C,y,C,y) shows a decrease.
Similar to Fig. 7 we find that the (C,y,C,x) orientation
for the Fe impurities seems to be favorable for both dis-
tances.

From Figs. 7 and 8 it is evident that the polarization
effects on an Au site indeed not only depend on the mag-
nitude of the inducing magnetic moment, but also on its
orientation and on the distance between the inducing site
and the Au site. As compared to the magnetic moment
per site for Fe the induced moment on the Au site is very

x1073

(Ry)

d
m

-10 —

(E.E) (Cix, Cix) (Ca2x, Ca2x)

FIG. 8. Polarization effects on an Au site induced by a dou-
ble impurity of Fe in Au: d-like magnetic energy (Ry) of Au
with respect to the local rotations of the Fe sites. Distances
(ao): solid circles 1; open circles V2.
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small, but not negligible. In fact an “academic case” of
12 Fe atoms with orientations E, i.e., all ““spins lined up,”
occupying the first shell of neighbors in an Au host in-
duce a magnetic moment of —O0.103up for a spin-
polarized Au atom at the origin of this embedded cluster.

V. CONCLUSION

The present calculations serve as an illustration of the
complexity to be encountered when dealing with magnet-
ic interactions in a real system on a microscopic level.
These calculations are for many reasons incomplete.
First, each case considered should be performed self-
consistently. Second, to study the decay of the magnetic
interactions with respect to increasing distances between
the magnetic sites much larger embedded clusters have to
be considered. In view of these arguments the present
calculations are nothing but model calculations. Howev-
er, considering the various computational steps involved
such as calculating the off-diagonal scattering path opera-
tors by Brillouin zone integrations and then the computa-
tion of all the various cases shown already implies consid-
erable computational effort.

The method is neither restricted to nonmagnetic host
metals nor is it restricted to pure systems. Using again
group theory rather extensively, the 7/ of a magnetic host
(alloy) can be calculated fully relativistically and spin po-
larized. Of course also results of fully relativistic
Korringa-Kohn-Rostoker  calculations  within  the
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coherent potential approximation (KKR-CPA) can be
used as input to deal with the problem of magnetic im-
purities in (nonmagnetic) substitutionally disordered al-
loys. In a different context, such fully relativistic embed-
ded cluster calculations for substitutionally disordered al-
loys*! have proven to give a highly accurate account for
environment dependent physical properties.

Within the limits of these calculations we draw the fol-
lowing conclusions regarding the behavior of Fe impuri-
ties in Au with realistic interactions. First, the magnetic
moment of the single Fe impurity in Au is larger than
that of pure bulk Fe. Second, the preferred coupling be-
tween two Fe impurities oscillates as a function of the
distance between the impurities (restricted to fcc lattice
sites). For the nearest-neighbor distance the coupling is
ferromagnetic and goes antiferromagnetic at the next-
nearest-neighbor distance. Also the antiferromagnetic in-
teraction goes to zero beyond the next-nearest-neighbor
distance, whereas the ferromagnetic interaction persists.
However, the coupling between a host Au atom and one
or two Fe impurities is always antiferromagnetic.
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