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We report results obtained for the phase diagram and critical behavior of the extended Hubbard
model in one spatial dimension at half-filling. We show that umklapp scattering is responsible for
the tricritical behavior. We calculate the critical exponents at the tricritical point, and along the
critical line separating the charge- and spin-density-wave phases. In addition, using Monte Carlo
simulations we estimate the position of the tricritical point to occur at approximately U =1.5 and

¥V =3.1 in units of the hopping energy.

I. INTRODUCTION

The extended Hubbard model is a simple many-body
model which has a rich phase structure. It consists of
spin- fermions which may hop between sites on a lattice,
and which interact with each other via an on-site and
nearest-neighbor potentials. It is given by the Hamiltoni-
an

H=—t3 (CiTaCi +1,a+ci)r+1,aci,a)
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Here C,-T‘, and C;, are the creation and annihilation
operators for a fermion of spin ¢ at the ith spatial site,
ni,a=C,;aC,-Tc, is the number operator, U is the on-site in-
teraction strength, V is the nearest-neighbor interaction
strength, and ¢ is the hopping strength.

We are interested in the half-filled band case, with
U,V>0. This has two ordered phases, a charge-density-
wave (CDW), and a spin-density-wave (SDW) phase. The
CDW phase has a discrete symmetry, and exhibits true
long-range order, while the SDW phase has a continuous
symmetry, and consequently, by the Mermin-Wagner
theorem, cannot have true long-range order. Rather, it is
a critical state in the sense that the staggered spin-density
correlation function decays slowly (algebraically). The
important questions concerning the model are as follows:
Where is the boundary between the two phases located,
and what is the nature of the transition between the two
phases?

Until recently, the phase boundary was thought to
occur at U =2V for all values of U, and to be first order.
Weak-coupling renormalization-group (RG) calculations'
and Hartree-Fock calculations® give the same U =2V
boundary obtained by strong-coupling arguments. It
seemed likely, therefore, that this same boundary would
occur for intermediate values of the coupling constants as
well. Callen and Cabib also deduced from the Hartree-
Fock calculations that the transition was first order.
Their calculations gave three solutions at the U =2V
line: a mixed phase, and pure CDW and SDW phases.
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The CDW and SDW states were found to have lower en-
ergies than the mixed phase, leading to the conclusion
that the transition in crossing the boundary was discon-
tinuous, or first order.

In 1984, Fourcade and Spronken®* calculated the
phase diagram using a block-spin RG, and a type of
finite-sized scaling developed by Sneddon,’ and found
that the phase boundary was shifted in the direction of
the CDW region as shown in Fig. 1, and that the phase
transition is second order. In retrospect, it is not clear
whether their RG was capable of observing a first-order
transition since they made no provisions in the renormal-
ized Hamiltonian for the generation of terms differing in
symmetry from the original terms. Failure to do this
when performing RG analysis on the Potts model made it
impossible to find a first-order transition where one was
known to exist.’ In addition, the umklapp scattering
terms, which we find to be important, were absent from
the Hamiltonian used in the finite-sized scaling.*

Monte Carlo calculations performed by Hirsch”®
confirmed the shift in the phase boundary but found that
the transition was second order for small values of the
coupling constant, and first order for large values.
Hirsch estimated the tricritical point to be approximately
U=3.0. In addition, he presented a qualitative argument
for the presence of the tricritical point, using the concept
of droplets of either CDW or SDW phases, and a strong
coupling analytical calculation for the shifted phase
boundary using the Bethe ansatz. A further conjecture
was that the tricritical point was associated with the
essential singularity of a Kosterlitz-Thouless transition.

In this paper, we present analytic results that reveal
the physics responsible for the tricritical point, and nu-
merical calculations that more accurately locate its posi-
tion. We first consider the continuum limit of the theory,
showing that the transition between the CDW and SDW
phases indeed changes from second order to first order
due to the role of an umklapp scattering term, which be-
comes relevant at higher values of the coupling constants.
Since the theory contains only sine-Gordon-type opera-
tors, it also confirms that the first-order transition ap-
pears with an essential singularity. In addition, we
present the results of some detailed Monte Carlo calcula-
tions which confirm the change from a second- to first-
order transition at a value of approximately U=1.5.
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FIG. 1. Qualitative plot showing the phase diagram of the
extended Hubbard model at half-filling. Note that the CDW-
SDW boundary occurs at values of ¥ > U/2. We find that the
transition is first order above approximately U=1.5 (indicated
by the square). Hirsch earlier found it to be first order above
approximately U=3.0 (indicated by the triangle).

II. RESULTS IN THE CONTINUUM LIMIT

The physics behind the extended Hubbard model be-
comes more transparent if we transform to k space and
consider the operators involved in the various scattering
processes (channels). In the continuum limit the kinetic-
energy part of the Hamiltonian can be written
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Y, and ¢, represent “left” and “right” moving fermions,
and are the components of a spinor. Using this fact, the
equation can be compactly expressed in Dirac notation:
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In these last equations, we have assumeed that all
relevant physics occurs near the Fermi surface (i.e.,
points k =*1/2), and have linearized the energy spec-
trum about these points. Since we have linearized the
spectrum, E (q)=2tq =v,q. Written in this manner, it is
apparent that this is a system of relativistic fermions
where the velocity of light is the Fermi velocity (for
another example of this technique, see Ref. 1).

We now transform the on-site interaction term into a
basis of left and right movers to obtain

X[k 1(g)¥r 1092 )0k (a3 1(94) T YL 1(g1 0L 1(a2)0) (a3, 1(q4)
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We see that the on-site interaction actually contains
eight scattering terms including forward, back, and um-
klapp processes. These are shown in Fig. 2. The forward
and backscattering terms are invariant under a continu-
ous chiral transformation ¢;=e‘y50¢g. However, the
umklapp terms have only a discrete chiral symmetry.
Thus, the umklapp term is responsible for a discrete sym-
metry in the model which can be broken when the system

undergoes a phase transition.
We can express the on-site interaction more compactly
if we define the currents

J,=vr, 0, (13)

I =dy, 0, (14)
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FIG. 2. Classification of scattering processes found when in-
teraction terms are expressed in a basis of left and right moving
fermions.

=3 ¥vo., (15)

T3=0'3 . (16)

In these definitions, the ¥ matrices operate on the left and
right components of 1, and the matrix ; operates on the
spin components. Thus

HIo+T)=%} 191+ vk 1¥r s » (17)
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Using these definitions, the on-site term reduces to
Hy=—- [dx[3—UP+@P =@l . (19)

Finally, the nearest-neighbor term can be written
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Combining these terms the full Hamiltonian can be writ-
ten

. 3
H,o,=vffdx(—z)¢‘fy5—é—;
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In the last equation, the lengths have been rescaled to
make v,=1, and the coupling constants are expressed in
units of t. To proceed further, we convert from Fermi to
Bose fields. From the work of Mandelstam® and Wit-
ten, '® we obtain the following identities which relate the
Fermi fields, v, to Bose fields, ¢:

bidy,=13,9,), (23)
by, =——:cos(V4rg, ): (24)
0
_ 1 v
dlsyl,ﬂ’s = —‘/_71_‘6“1/8 ¢s ’ (25)
T, = ;i—[:cos( Van,):—cos(Vand,):] (26)
0
1
IpstTBl/’s — ep.va (¢T ¢l) . (27)

In addition to transforming to Bose fields, we have in-
troduced a short distance cutoff ay. In what follows, the
normal ordering symbol, ::, will be suppressed, but nor-
mal ordering will be implicit in all equations.

Using these identities, we express the Lagrangian as

U
g(ald’T——al‘pl)z

V — — 2V
—Té[cos( Vand,)+cos(Vamrp )]+ e ? (3,¢5)% . (28)
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In this last equation we have also used the operator prod-
uct expansion

% S cosi(Vand,)=— 2 cos(Varg,)
ag s 2a

+const+g— 33,4, . (29

The lattice Hamiltonian for the extended Hubbard
model has now been converted to a continuum Lagrang-
ian field theory containing only sine-Gordon-type Bose
operators. Our strategy is now to separate the CDW and
SDW degrees of freedom, rescale the lengths and fields to
obtain a more standard form, and read off the scaling di-
mensions of the operators in terms of the coupling con-
stants U and V. Along the naive phase boundary U =2V,
we will find that one of the operators is irrelevant at small
values of the coupling constants, but becomes relevant at
larger values. In the standard terminology, this opens up
a gap between the two phases, signaling a change in the
transition from second to first order.

We begin by separating the charge- and spin-density-
wave degrees of freedom. Because the theory was con-
structed by linearizing about the Fermi points
K,==%m/2, both charge and spin degrees of freedom
refer to waves of period twice that of the lattice constant.

1
V5 ($r ) =dcow (30)
1
3 (1 =0 )=dspw » (31)
12
L= 1+4— _2 3,6, — %+V i(alqsc,)w)z
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4ﬂ(al¢SDW) + V 2 2(1(2)
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V JE—
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+COS[‘/ET(¢CDW"¢SDW)]} . (32)

Next, we rescale the lengths and fields:
b= 5 (33)
X0=20 » (34)
x;=bzy, (35)
Bcow,spw =Y 8m(icpw,spw) - (36)

Using these definitions, the Lagrangian becomes
L =3 I'§3(30§,)* —TTP¥ (36 cpw)’
v
- F?

(3,£spw)’ + ECOS B.£,)

G
+ z—a_lz'cos(BCDWgCDW)COS(ﬁSDW§SDW) ’ (37
0
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Gl=2—’;b2, (38)
G,= V~% %, (39)
FSPY =bpupy 1+i‘i‘, (40)
3P =budpw 1+ﬂ , 41)
PV = ”ZC:W 1+ IZZ:U , 42)
r?DW=“§:W 1+ 8VZIU 43)

We now have four normalization constants which are
functions of the three arbitrary constants we have intro-
duced in rescaling lengths and fields, and the coupling
constants U and V. Since we are free to choose the nor-

malization constants, we set FCDW— FCDW— 1, giving
p_ |12V +v)27 |7 )
vy t+8V /2w ’
12V +U gv |
Hcow 2 27 43
Next, we parametrize the SDW constants
FSDW — ,’7 , (46)
riev=L . 47)
n
This gives
sv—u | 1/2 8V -172
2 - sy
HSpw 1+ . 1+ Ty , (48)
; -1/2
2 (1+8V /2w) (49)

[1+8V—U)/27] 2~

Finally, we can rewrite the Lagrangian

G
L =1,cpw)*+ 1D, Espw)*+ _a‘i‘ 2 cos(B,§,)

0

G
+ ;gCOS(BCDwgcx)w )cos(Bspwéspw) » (50)
0
Dy=n09, , (51)
p,=1a,. (52)
n

Using the fact that operators of the form cos(8¢) have
dimension 82/4m, we can read off the dimensions of the
last three terms. The operators cos(Bcpwécpw) and
cos(Bspwéspw) have dimensions
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Bipw creased importance of umklapp scattering.
Aispw= pym It is also interesting to look at the scaling of the CDW
order parameter:

2
= , — — T
[1+(12V + U)/27] - 21+ 8V /2m) 12 mepw = 2 (—1)C,C,
n
(53) . t
) = Y sin(mn)C, C, , . (56)
A _ Béow ns
ICOW™ "
4 In terms of our field theory, this becomes
2
- =5 4t t
[1+(8V —U)/27] A1+ 8V /2m) 2 ™= 2 ¥V oL &7
(54) =S¥ (58)
Similarly, the term s.
Transforming to Bose fields yields
cos(Bepwéepw)cos(Bspwéspw)
m(x)= 3 cos[V4nd (x)] (59)
has dimension s
Btow , Bipw =cos L(‘f’cow""‘lssbw)
8 =— =+ —+AicowHAispw - (55) V2

The CDW-SDW phase boundary in our continuum
model is the line U =2V. Along this line, at small values
of the coupling constants, the dimension of A, is greater

+cos

1
72(¢CDW —dspw)

than 2, and therefore irrelevant. However, at a value - o Von (60)
U=1.45 (in units of ¢), the operator is marginal and, cos[V2mécpw(x)leos[V 2mspw(x)]
above this value, becomes relevant, opening up a gap be-
tween the two CDW and SDW phases. Recalling that _ Bcow Bspw
only the unklapp scattering term possesses a discrete =cos 2 Ecpw(x) |cos |- 5 Espw(x) |
symmetry, we can see that the phase transition associated
with this operator becoming relevant is due to the in-  From this, we can obtain the CDW correlation function.
|
G (x,x")=(0|Tm (x)m (x")|0),
B B B B
=(0 T cos -—Czl“igww(x) cos —s;)lé‘spw(x) cos —EZD—W§CDw(x') cos —%‘y-gscw(x’) 0> . (61)

Along the critical line U =2V, this factorizes

G(x,x’)=<0 T cos 3°;W§CDw(x) cos | PO e 5y o)c
X<O T cos Bsow Espw(x) |cos ﬁs;)w Espwlx’) 0>c
=<o T cos B%“—”—gc,,w(x)—ﬁc%gmw(x') o>c
X<O T cos E%)—wé‘snw(x)—ﬁs%é's])w(x’) O> .
. 62)
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Thus the correlation function scales as 1/|x —x'|??, and
the dimension of the order parameter is
D _1 B%:DW + B%DW
4 4 4
A
=-1 (63)
4

From this, we see that the exponent 7=2D —2+d, will
be one at the tricritical point, where D is exactly 2.

We can also find how the order parameter scales as the
phase boundary is crossed. Away from the critical line
the constant G, =(V — U /2)b /2ma} will not be zero, and

mcpw ~ G,[cos(Bepwécpw) +c0s(Bspwéspw )]
~ GZCDWCOS(BCDW§ cow) T stow cos(Bspwéspw) -

(64)
Both operators will be strongly relevant below the tricrit-
ical point. The S function of the respective coupling con-
stants will be

3G,
CDW,SDW

Bl pwsow) = " ami))

CDW,SDW CDW,SDW

+0(G} ). (65)

CDW,SDW
Thus the correlation lengths scale as
Ecow,spw=|U—V /2| "OWSOW (66)

The dimension of m cpw is

2
=—. 67
[m]=— (67)
Thus
m ~ 1/ Bcowt dspw) 63)
—(Aepw/4) , —(Agpyw /4)
~Ecow " Espw " - (69)

Substituting for the correlation lengths, this can be
rewritten

(1/4)(v, A +v, A )
m~=~ I U — V/2| CDW=CDW SDW=SDW

m=|U—-V/2F, (70)
B=(vcpwAcpw t vspwlAspw) - (71)

Expressing 3 in terms of the difference in the two scal-
ing dimensions

(Acpw+ Aspw)
ACDW:—CD‘WE—SL)L_{_S R (72)
(Acpw+ Aspw)
Asr>w=———————CDw2 Y5, (73)
1 (1+82)
== (74)
B 2 (1—8%)

Thus in the case where the two operators are sym-
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metric 6—0, B—»%. At the tricritical point 6=0.1084,
and B=0.512.

III. CALCULATIONAL RESULTS

Our analysis, consistent with the argument of Hirsch,’
has shown that the CDW-SDW transition should be
second order for small values of the coupling constant
and become first order as the coupling constant is in-
creased. Furthermore, the gap in the fermionic spec-
trum, associated with the first-order transition, should ex-
hibit Kosterlitz-Thouless scaling and disappear with an
essential singularity at the tricritical point. We have per-
formed Monte Carlo simulations to verify this
phenomenon, and more accurately locate the position of
the tricritical point. We performed the simulations using
the world line method of Hirsch ez al.!! This is a quan-
tum Monte Carlo technique which converts the one-
dimensional quantum problem into a (1+ 1)-dimensional
(space plus time) classical model which can be simulated
by standard numerical approaches.

Our method for distinguishing between a first- or
second-order transition is to measure the distribution of
the CDW order parameter, and interpret this according
to the phenomenological theory of Landau. This ap-
proach avoids some of the problems of measuring small
values of a Z(2) order parameter on a finite lattice. On a
small finite lattice, there is a high probability of transi-
tions between the “up” and “down” phases (correspond-
ing in this case to CDW’s on odd or even sites), and any
averaged estimate of the order parameter will tend to-
ward zero. Conversely, use of the absolute value or
square of the order parameter as an estimator will always
indicate the presence of order, even in the case where
there is no order. In fact, if the order parameter is actu-
ally zero, this method simply estimates the standard devi-
ation of the distribution.

Measurement of the actual distribution avoids these
problems. Following Landau, we assume that in the ther-
modynamic limit the order parameter will occur at the
value where the free energy is a minimum (i.e., the max-
imum of the measured distribution). If the maximum of
the distribution changes discontinuously as the phase
boundary is crossed, then there will be a first-order tran-
sition marked by a discontinuous change of the order pa-
rameter in the thermodynamic limit.

Figure 3 shows an example of the probability distribu-

Density (arb. units)

1 L .

. L 1
-0.8 -0.4 0 0.4 0.8
CDW Order Parameter

L

FIG. 3. Density function of the CDW order parameter mea-
sured during simulation of 24X 24 lattice (=6.0). U=2.284,
=1.222.
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tion function of the CDW order parameter measured
near the phase boundary where U~=2.28. The solid line
is least-squares fit of the function

f(x)=Aexp zaZIxZi] . (75)

The first was obtained by applying a polynomial fitting
routine to the logarithm of the measured data. This and
other simulations shown here were performed on a 24-
site lattice with 24 time slices. B was 6.0. Thus At
defined on the lattice was 0.25 (AT gca1 = 2ATjagice =0.5).
Each calculation at a particular value of U and V consist-
ed of 45 000 Monte Carlo sweeps following 15 000 sweeps
for thermalization. Measurements were performed after
every five sweeps.

Several things should be noted about this plot. First,
and most important, is the presence of metastable states,
indicated by the unequal maxima. As the coupling con-
stants vary in the direction of the CDW region (increas-
ing ¥, and decreasing U) the probability of finding the
system in one of the outer (nonzero) states will increase
until at the transition there is a discontinuous change in
the position of the maximum of the distribution. Thus, in
the thermodynamic limit there will be a first-order transi-
tion manifested by a discontinuous change in the order
parameter. This behavior is shown in the three-
dimensional plot of Fig. 4, generated from a sequence of
these calculations, crossing the phase boundary near
U=2.28. The values of the coupling constants for each
step of the calculation are listed in Table I. Each con-
stant U rib appearing in the plot is a curve fit to the prob-
ability density function measured from a Monte Carlo
calculation in the same manner as Fig. 3. From this
graph the discontinuous change in the maximum of the
distribution when moving from the SDW (m pw =0) to
the CDW phase is obvious. Note that the value of
U =2.28 is well below the position of the tricritical point
estimated by Hirsch (U=3.0), and that the position of

Density

FIG. 4. Variation of the CDW order parameter as the
CDW-SDW phase boundary is crossed near U=2.28. Note the
discontinuous change in the position of the maximum, signaling
a first-order transition. The series of measurements used to pro-
duce this figure were made on a 24 X 24 site lattice with §=4.0.
The values of U and V used in the calculations are shown in
Table I.
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TABLE 1. U and V values used for the calculations shown in
Figs. 4 and 5.

Figure 4 Figure 5
U 14 U 14
2.288 1.214 0.805 0.490
2.286 1.218 0.800 0.500
2.284 1.222 0.795 0.510
2.280 1.230 0.785 0.520
2.278 1.234 0.780 0.540
2.276 1.238 0.775 0.550
2.274 1.242 0.770 0.560

the phase boundary of approximately U=2.284,V'=1.222
is shifted from the U =2V line as found by Hirsch, and
by Fourcade and Spronken.

It is also interesting to see from Fig. 3, why the hys-
teresis normally associated with a first-order transition
was not observed in these simulations. Hysteresis occurs
in crossing a phase boundary when a physical system be-
comes temporarily trapped in a metastable state. Howev-
er, from the relative symmetry in the experimental data,
it is clear that the frequency of tunneling between the
various metastable and ground states was high relative to
the period of the Monte Carlo measurement. Thus, for
the value of the coupling constants, lattice size, and
Monte Carlo run times at which these measurements
were made, the system was not trapped in the metastable
states, and hysteresis is unlikely to be observed.

In contrast to the first-order transition shown in Figs. 3
and 4, a transition that appears to be second order is
shown in Fig. 5. This figure displays the results of a se-
quence of measurements crossing the phase boundary
near U=0.8. There is no indication of any metastable
states, and the order parameter changes continuously
from zero to a nonzero value at the phase boundary. Be-
cause the gap associated with the first-order transition is
thought to disappear slowly, it is impossible to rule out
the possibility of a weak first-order transition in this case.

FIG. 5. Variation of the CDW order parameter as the
CDW-SDW phase boundary is crossed near U=0.8. Note the
continuous change in the position of the maximum, signaling a
second-order transition. The series of measurements used to
produce this figure were made on a 24X24 site lattice with
B=4.0. The values of U and V used in the calculations are
shown in Table I.
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Density

FIG. 6. Variation of the CDW order parameter along the
CDW-SDW phase boundary. The three maximum characteris-
tic of a first-order transition appear at approximately U=1.5.
The values of U and V used in the calculations for this figure are
shown in Table II.

Once again, the shifted phase boundary is observed.

Figure 6 shows the change in the probability distribu-
tion of CDW order parameter versus position along the
phase boundary. The triple minima characteristic of a
first-order transition disappear around U=1.6. Based on
this figure, and the knowledge that the gap associated
with the transition appears very slowly, we estimate the
tricritical point to occur at roughly U=1.5+0.1 in units
of t. This number is lower than the value of 3.0 found by
Hirsch.® However, we believe this difference may be due
to a difference in the respective energy scales resulting
from the fact that Hirsch used the lattice At rather than
the physical AT (=2AT,..) to calculate the matrix ele-
ments for his simulations. Of course, to estimate more
accurately the position of the tricritical point, it is neces-
sary to use finite-sized scaling to extrapolate to the ther-
modynamic limit. However, based on the calculations we
performed on lattice sizes of 16 and 36 sites, we expect
the change in the position of the tricritical point when ex-
trapolated to the thermodynamic limit to be of the same
order as the uncertainty here in estimating the point’s po-
sition.

The U value of the tricritical point agrees surprisingly
well with the value found in Sec. I. This may be fortui-
tous, considering the uncertainty in approximating the
lattice by a continuum model, particularly in the case
when the charged- and spin-density waves in which we
are interested have a period on the order of the lattice
constant.

In addition to these calculations, we attempted to mea-
sure the value of 7, and the value of the conformal anom-
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TABLE II. U and V values used for the calculations shown
in Fig. 6.

Figure 6
U 14
2.2840 1.2220
2.1411 1.1522
1.9982 1.0825
1.8552 1.0128
1.7123 0.9430
1.56%4 0.8732

aly. However, the checkerboard approach does not yield
sufficiently accurate data for these measurements. Mea-
surement of 7 is hampered by the fact that for finite sizes
the disconnected piece of the CDW correlation function
is very large, and there is a periodic fluctuation in the
correlation functions that is apparently an artifact of the
checkerboard breakup. These factors make it difficult to
estimate the decay constant reliably. Measurement of the
conformal anomaly using Monte Carlo methods requires
a more accurate estimate of energy than could be ob-
tained with the computer time available to us. Results of
calculations of the conformal anomaly using Lancoz
methods along the critical line will be published. '

IV. CONCLUSION

We have studied the phase diagram of the extended
Hubbard model at half-filling analytically in the continu-
um limit, and shown that umklapp scattering underlies
the tricritical behavior. In addition, we have calculated
the critical exponents along the critical line. Finally, us-
ing Monte Carlo simulations, we have estimated the tri-
critical point to occur at approximately U=1.5 in units
of ¢t. Our simulations confirm the shift of the CDW-SDW
phase boundary away from U =2V towards the CDW re-
gion.

Our method of Bosonization does not retain the full
symmetry of the Hamiltonian. It would be interesting to
see what differences would be found using more sophisti-
cated non-Abelian methods of converting from Bose to
Fermi fields, !> which preserve the symmetry.
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