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Scattering from a magnetic strip: Analytic description
of transmission and conductance
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The transmission and reflection amplitudes for charged particle scattering from a magnetic field

in an infinite strip [0& x & X, —~ &y & ~ ) are obtained analytically, and the conductance per unit

transverse length g is given in closed form. It is found that the dimensionless quantity hg/e k scales

with the variable R =X/kL (where k' is the electron energy and L is the magnetic length) and

vanishes without residual tunneling if the strip width exceeds the cyclotron diameter (R )2). In the

region (0 & R & 2), g decreases monotonically with R without Aharonov-Bohm oscillations.
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g(x,y)=k g(x,y) (x &0),
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Recently, there has been great interest in experimental
and theoretical investigations of the ballistic conductance
and magnetoconductance of small systems in which elec-
tron motion is geometrically confined. ' In two terminal
systems, confinement leads to the phenomenon of quan-
tized conductance, ' which persists also in the presence
of magnetic fields. ' In the context of multiterminal
conductance measurements, it has been suggested that
the effect of confinement gives rise to the quantized Hall
effect due to conduction via edge states. But what hap-
pens when the motion of the electrons is not confined and
no edge states exist, e.g., in an infinitely long strip con-
taining a magnetic field? What is the dependence of the
magnetoconductance on strip width and field strength?
Here we present the analytic solution for the reflection
and transmission coefFicients and the conductance per
unit transverse length for the case of a constant magnetic
field confined to an infinitely long strip. We find that the
conductance per unit length decreases with increasing
magnetic field and with strip width, as is classically ex-
pected, but scales with Fermi energy, magnetic field, and
strip width via the dimensionless ratio, strip width divid-
ed by the cyclotron radius. It vanishes identically for
strip widths larger than the cyclotron diameter. The
quantum-mechanical conductance is smaller than the
classical conductance when the conductance is finite.

Consider the quantum-mechanical motion in the X-Y
plane of a charged particle with (effective) mass m,
charge e, and Fermi energy E =A k /2m. A constant
magnetic field Bz, perpendicular to the plane is active in
the vertical strip 0 ~x ~X. We choose the Landau gauge
for the vector potential A, i.e., Ar =0 (x &0), A =Bx
(0 x X), A =BX (X & x ). The Schrodinger equation
in the three domains takes the form

cl + . c1 + x
2

li(x,y)=k g(x,y)

(0&x &X), (lb)

B' . B X+ l
t)x t)y L

P(x,y) =k ~g(x, y)

(X &x), (lc)

where L =v'Pic/~eB~ is the magnetic length. We impose
plane-wave boundary conditions in the x direction in the
regions x ~0 and x X. The wave function within the
strip is determined from Eq. (lb) by imposing continuity
of the wave function and its derivatives with respect to x
at the boundaries x =O,X. In the y direction we impose
periodic boundary conditions with period
Y= Y~ =2m(L /X)p, where the integer p controls the
length of the system in the transverse direction. We in-
tend to study an infinite strip and eventually let p~ ~,
and our results will be independent of the precise se-
quence Y . The reason for the restriction Y = Y will be-
come clear shortly.

A complete and orthonormal set of functions for the
transverse motion in the regions x & 0 and x ~X is given

by p (y)=e /v'Y, q =2m /rrt(Ym =0,+1,%2, . . . ).
The energies of the transverse and longitudinal motions
are q and k =k —q, respectively. There are 2N+1
channels for k &0 (m = N, N+1, . . . ,—N). All ot—h-
er channels are evanescent but are nevertheless treated
exactly.

An important point in the construction of the solution
is that, while the energy of the wave function in the re-
gion 0 ~ x X cannot be separated, the wave function can
nevertheless be expressed as the product
g(x,y)=P (y)f (x). The functions f (x) satisfy a
second-order differential equation with no finite singular
points,
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X
~„2+ L2 f (x)=k f (x) . (2)

Since we need the solution of Eq. (lb) only in the finite

domain 0 x ~X, we need the two linearly independent
solutions of Eq. (2) to match wave function and derivative
at 0 and X. These are the parabolic cylinder
(Weber} functions, f"'(x)=y, (v, z(x, q )}, f' '(x)
=y2(v, z(x, q~ )), where v= —[(kL) —1]/2, and

z(x, q )=&2(x/L q—L)
The solution of Eqs. (la) —(lc) corresponding to bound-

ary conditions of an initial channel n incident from the
left, reflected waves to the left and transmitted waves to
the right is as follows:

The coefficients a „and b „as well as the reflection and
transmission matrices R „and T „are determined by
the matching conditions at x=0 and X. Due to our spe-
cial choice of the transverse dimension Y = Y the gauge
transformation does not spoil the boundary conditions
and the wave function g„(x,y) in Eq. (3c) is indeed
periodic in y, since X/L =(2m /Y)p and therefore

exp(iXy/L )P (y)=P + (y) .

We can now use the orthonormality and completeness of
{P (y)} to obtain matching equations at x =O,X. After
some algebra we find the (fiux normalized) transmission
matrix,

P„(y)e " + g P (y)e R

(x ~ O), (3a)
~mn

' 1/2
m

Tmn

(y)[f"'(x)a „+f' '(x)b „]
P„(x,y)= '

m =—
(O~x &X), (3b)

k=J
k„

2ik
m —p, n

iXy /L (y)e T „

(X~x) . (3c)
where J = W If ' '(x ),f"'(x) } is the Wronskian
[J=(&2/L) and D is the determinant],

f"'(x&)+ik f"'(x~) f' '(x&)+ik f' '(x&)

f"'(xz) ik f'—"( x) zf' '(x2}—ik pf~'(x2)

We need to compute the sum over channels to evaluate
the conductance G,

t(q', q) =J k(q')
k(q)

' 1/2
2ik(q' X/L )—

D(q')

" .= —N ID(q. +p)I'
(6) X5 q' — q+ X

The last equality results from the occurrence of
(5 p „) =5 „ in the double sum over channels m

and n The sum. over channels in Eq. (6) is limited to
those with real momenta. The significance of this restric-
tion will be discussed shortly.

We now divide G by the transverse length Y to obtain
the conductance per unit width g =6/Y, and then go to
the limit Y~ ~ by letting p ~ ~ in the relation
Y= Y =2m(L /X)p. In this limit we use

g F(q„)/Y~(1/2~) fF(q)dq,

k„~k(q)=(k —
q }'~

k„+ ~k(q+X/L ) .

The transmission amplitudes of Eq. (4) now become

Here, the quantity X/L is the momentum transferred in
the course of passage through the strip, and the 5 func-
tion represents momentum balance in the transverse
direction. Hence, the present problem is not strictly sin-

gle channel, since the transmission matrix is not diagonal.
However, each initial channel is transmitted into only
one definite final channel. We finally obtain

e 2, , 2 k xiL.' k(q+X/L )k(q)—
g = —IJI

ID(q+X/L )I
2 2

(8)

This exact result, which gives the conductance of an
infinite magnetic strip per unit transverse length in closed
form, is independent of the manner in which Y tends to
infinity. Note that in order to evaluate g from Eq. (8} we
do not need to compute It(q', q)I, thus we avoid the
pathological Dirac 5 factor. Had we started with an
infinite strip at the onset, we would have had to evaluate
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an integral over dq dq', which includes a term
[5(q' X—/L q—)] . The integral over dq' then gives G
as 5(0) times the right-hand side of Eq. (8). The (some-
what artificial) limiting procedure adopted shows that the
infinite term 5(0) occurs because the width of the system
is infinite (which implies an infinite conductance) and that
removing 5(0) is equivalent to calculating g rather than
G. In other words, to avoid the integral over a square of
a Dirac 5 function we started with a discrete sum over
channels that contains a square of a Kronecker 5 func-
tion.

The physics behind the integration limits in Eq. (8) is
transparent. The initial momentum k(q) is real if the
transverse momentum ~q~ is less than the magnitude k of
the total momentum. The final momentum k (q +X/L )

is real if the transverse momentum of the transmitted
particle, ~q + Y/L ~, is less than k. These two conditions
can be fulfilled only if X (2p, where p is the cyclotron ra-
dius, p=kL . Thus, once a complete circular orbit is ac-
commodated within the strip, the transmission vanishes
without residual tunneling due to momentum-energy con-
servation. Note that for particles with a horizontal tra-
jectory, transmission vanishes for X~p. However, the
conductance is calculated by summing over all channels,
i.e., all transverse momenta, and therefore oblique trajec-
tories can be transmitted provided X & 2p. This is in con-
currence with the reservoir picture, since electrons are
ejected from the reservoirs in a11 possible directions.

Direct numerical evaluation of the parabolic cylinder
functions y, (v, z) and y2(v, z) is rather difficult if required
for large v and z (necessary for realistic values of k, L,
and X). Fortunately, there exists a scaling law for the di-
mensionless quantity hg/e k. Clearly, this quantity must
be expressible in terms of the only two independent di-
mensionless quantities in the problem, namely, kL and
R =XlkL =X/p. However, hg/e k depends only on
R. This remarkable scaling property is not anticipated.
The scaling behavior simplifies calculation of the conduc-
tance, since parameters such that both v and z are small
can be chosen, and yet all the allowed values of R & [0,2]
are spanned.

We have shown that (hie )(ng/k)=0 for R ~2. Let
us now consider the limit R ~0. Here, the interaction
with the magnetic strip switches off, and the sum of

~
t „~ given in Eq. (6) (divided by the transverse length Y)

merely counts the number of physical channels per unit
length. This can be understood by noting from (4) that
summing ~t „~ over m gives the ratio of outgoing to in-

coming flux for channel n Hence th. e double sum in (6)
yields the sum of such ratios for all physical channels,
which in the continuum limit equals k/m. Therefore,
h mg /e k 1 as R ~0.

We can learn more about scaling by studying the clas-
sical conductance. Consider electron reservoirs to the
right and left of the strip, with equal particle density N
and Fermi velocity v. If a small potential difference, 6V,
is applied across the strip, a net current of particles with
energies in the range eh V above the (quasi-) Fermi ener-

gy EF Aows from left to right. Particles from the right
cannot contribute to the current at zero temperature be-
cause they would arrive with energies below the Fermi

energy and the Pauli principle excludes this possibility.
Particles from the left with energy in the pertinent energy
range cross to the right provided their incident angle 8
(measured from the y axis), is less than a critical angle,
8L =arcos(R —1). These particles result in a flux in the
x direction of particles per unit energy emerging at the
right end of the strip from a transverse length Y, given by
(dN/dE)Yv sin8'. Here 8'(8) is the angle between the
final velocity and the y axis. The function relating 8' to 8
must be determined from the classical equations of
motion (see below). Summing over all incident angles
(isotropy implies an angular probability distribution of
d8/2n ) we obtain the net current to the right from a por-
tion Yof the strip in the linear response approximation,

dN 1I = Yeb, V e f u sin8'(8)d8,
dE 2~ o

(9)

where, 8t =arcos(R —1). The integral yields the average
of the normal component of the Anal velocity v&.

To find the dependence of sin8' on 8 we solve the equa-
tions of motion subject to the initial conditions x (0)=0,
u„(0)=v„o, v (0)=u 0, with v„0+v~0=u . Here 8 is

given by cos8=u~o/u. The solution for x(t) is x(t)=(v„v
sincut —u Ocostut +u 0)/tu, where tv= eB!(mc) Settin. g
x(t)=X, solving for t =t(X), and substituting into the
expression for dx(t)ldt, we obtain the final velocity in
the x direction, from which sin8 is obtained in terms for
8

dx (t)/dt~, ,~x~=v sin8'=v[1 —(R cos8)—]' (10)

Thus, the classical conductance per unit transverse
length, g, =I/( Yb, V), is given by

2 arcos(R —1)
g, = f +1—(R —cos8) d8 . (12)

This expression coincides with the quantum-mechanical
result for R =0 and R &2 (for R =0, g, =ke /m. h and
fOr R ~ 2, gS =0}.

In Fig. 1 we plot mhg/ke as a function of R, as deter-
mined quantum mechanically and classically. The quan-
tum conductance is always less than the classical result
when the conductance is finite because of the finite proba-
bility of reAection off the boundary of the magnetic field
in the quantum case. The quantum-mechanical conduc-
tance does not possess an oscillatory structure that might
arise due to the Aharonov-Bohm effect. Such effects

g, = ve f [1—(R —cos8) ]' d8 .
dE 2n. o

In the "purely" classical theory there is no natural di-
mensionless quantity with units of conductance, and
therefore g, does not depend only on R. We can, howev-
er, "semiquantize" g, in two stages: first we impose the
de Broglie relation mv=Rk, and second we invoke the
Pauli principle (without spin degeneracy) on the two-
dimensional electron gas so that the density N is given by
N =k z/4m. , and, therefore, (dN /dE) v =k lb. Substitu-
tion into Eq. (11) yields the semiquantized conductance
per unit transverse length gsq,
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FIG. 1. The dimensionless quantity n.hg /ke' as a function of
the scaling variable R =I/kL' computed from Eq. (13). The
electrical conductance per unit transverse length for arbitrary
values of X, k, and L is equal to e /hg and can be readily de-
duced from this graph.

have been observed experimentally and studied theoreti-
cally in impure systems, ' but recently they have also
been studied experimentally" and theoretically' in pure
systems where propagation is ballistic. In all these cases
there is an areal scale (the mean free path squared for im-
pure systems, system size for the quantum dot experi-
ment), which determines the period of oscillation by the
requirement that the flux through this area change by one
unit. In the present case, however, there is no areal scale
and oscillations do not appear.

From a theoretical point of view, the present results
are remarkable because they predict that the conductance
decays to zero without any residual tunneling. Practical-
ly, the presence of edges in a strip of finite transverse
length would modify the results obtained here, since an
edge current will flow along the boundary of the strip.
Thus, even for R )2, the conductance will be quantized,
6 =ne /h, where n is the number of edge states. Note,

however, that the conductance per unit length will vanish
as Y~~, and that for finite Y the edge-state conduc-
tance can be subtracted from the experimentally deter-
mined conductance to determine the residual conduc-
tance.

Magnetoconductance of a two-dimensional magnetic
strip can be studied in experiments on heterostructure in-
terfaces. To estimate ranges of R and g, which can be
studied in present day systems, let us assume a strip of
width of 1 p and a magnetic field of 1 T. Two-
dimensional electron gas densities of = 8 X 10'
electrons/m can be obtained and correspond to a Fermi
momentum of the order of 0.1 A '. This gives R =1.S
and g =0.002 55e /h A = 10 mho/cm.

In conclusion, the quantum-mechanical transmission
probability and the conductance vanish for barriers wider
than the cyclotron diameter without any residual tunnel-
ing. The quantum conductance scales with energy, mag-
netic field and strip width via the dimensionless ratio
R =X/kL . Aharonov-Bohm oscillations in the conduc-
tance are absent. The classical conductance of the strip
scales with R only if semiquantized and is larger than the
full quantum result when the conductance is finite. For
tapered (smoothly rising) magnetic fields, the vanishing of
the conductance past a certain barrier width remains val-
id, but scaling is of course not exactly valid.
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