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Rank-four spin-Hamiltonian parameters of a 3d ion
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Crystal-field theory is applied to the study of the rank-four spin-Hamiltonian parameters a and F
of a S-state ion in tetragonal symmetry. Fifth-order perturbation expressions are derived for the
parameters and are further simplified, using the perturbation procedure suggested by Macfarlane
and Zdansky. It is shown that the tetragonal field components contribute to the "cubic" splitting
parameter a value, a', which is rough1y equal to —(1/2)F, suggesting that one cannot omit the
low-symmetric-field effect in the calculation of a unless he has confirmed the axial term F to be
negligibly small compared with it. Both a' and F arise mainly from the interaction of the ground
state S with the excited states Tl, T&, E, 'T2, and E via spin-orbit coupling. The two tetragonal
field components, Bzo and 840, have a similar significance in affecting a', and F, unlike the case of
the rank-two term D, where 820 plays a negligible role. The crystal-field model suggests F to be
identical in sign to D. Numerical calculations are performed for Mn ions in K2ZnF4 and K2MgF4
of D4q symmetry and for Fe + ions at the tetrahedral D2d sites in YGaG, YA1G, LuGaG, and Lu-
A1G, (where 6 represents garnet), and the results are reasonable.

I. INTRODUCTION

The rank-four spin-Hamiltonian parameters a and F,
as well as the rank-two term 8, are important in describ-
ing the ESR spectra and the single-ion magnetocrystal-
line anisotropy. For 3d ions, the interpretation of the
parameters is considerably complicated due to the lack of
the orbital angular momentum in the ground state S.
During the past decades much work has been devoted to
the study of the rank-two terms (see the review in Ref. I),
but only a few dealt with the calculation of the rank-four
parameters, especially in the case of low symmetry.
This is probably because they are very difficult to calcu-
late.

Cubic symmetry serves as the simplest case, where all
vanish except for a, the cubic splitting parameter. In or-
der to calculate it, one may diagonalize the energy ma-
trices, getting an accurate result, ' ' or approach it
with an available perturbation procedure. ' A recent
work has shown the success of the current crystal-field
theory.

Up until now it has not been known how the low-
symmetric-Geld components affect the "cubic" term a
and give rise to an axial splitting F, when the symmetry is
lower than cubic. Dealing with this problem is the main
aim of this work. We confine ourselves to tetragonal
symmetry.

No accurate result can be expected for any spin-
Hamiltonian parameter of a d ion in symmetries lower
than cubic. Actually, because of the Kramers degenera-
cy, we have two energy differences in the ground state S
but three or more independent parameters. Only approx-
imate results are expected for a and F, and the perturba-
tion theory is useful.

A perturbation calculation has been performed by Sato
et al. However, their results are unsatisfactory and

even incorrect. First, among all of the 40 excited states
only two, T, (t2( T, )e) and Tz(tz), were involved in
their calculation. The two states may play an important
role, but there is no physical reason allowing one to omit
others. In fact, as we will show in Sec. II, many of the
states they have omitted are not negligible. Second, their
results do not fit the self-complementary property, which
requires that an expression for half-filled ions remains un-
changed upon simultaneously changing the signs of the
spin-orbit coupling constant and the crystal-field parame-
ters.

In the present work we employ the perturbation pro-
cedure developed by Macfarlane' and Zdansky" for F-
state ions. this procedure has been confirmed for S-state
ions. ' All excited states will be taken into calculation
and analytical expressions will be derived and simplified
for a and F. Interesting consequences include (i) that the
low-symmetric-field components contribute to a, a value
denoted with a, which is not negligible in general, (ii)
that a' roughly equals ,'F, (iii) that th—e —components Bzo
and B40 contribute to a' and F with a similar significance,
and (iv) that the excited states T, , E, Tz, T2, and F.
are important, whereas the others negligible.

A fifth-order perturbation calculation is performed in
Sec. II. The obtained formulas are simplified in Sec. IV
after a discussion in Sec. III. Section V presents some ap-
plications, and a summary is drawn in Sec. VI.

II. CALCULATION

A. Perturbation method

The parameters D, a, and F are defined by the spin-
Hamiltonian

H, =D(S, —",, )+(a/6)(S —+S„+S —
—",,' )16

+(7F/36)(S, —'„'S, +—")—
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(3)

The Hamiltonian of a S-state ion in a tetragonal field

may be written as

H Ho+ V + Vf+H (4)

Ho represents the free-ion Hamiltonian, V, and V, are
the cubic and the tetragonal parts of a field, respectively,
and H is the spin-orbit interaction. We express'

for an ion in the S state. g, ql, and g denote the cubic
crystalline axes, and z denotes the symmetric principal
one. For crystals of tetragonal symmetry, gllz, qllly, and

fix. It follows from (1) that

a=(2/&5)& ', IH, —
I

——', &

+= —,', [&-,'IH, I-', &+2&-,'IH, I-,
'

&
—3&-,'IH, I-,

'
&]

D) =10B+6C—6,
D2 =15B+10C—2h .

8 and C are Racah parameters, g is the spin-orbit cou-
pling constant, and 6=10IDq I is the cubic-field parame-
ter. The symbol "+" applies to octahedral and
tetrahedral coordinations, respectively. We now leave
calculations of a' and F.

Both a and F are fourth-order effects of spin-orbit in-
teraction and so come from fourth- and higher-order per-
turbations. In the perturbation procedure we are using,
the fourth-order involves no V, and so produces nothing
to a'. The next order includes some processes without re-
lation to V„also contributing nothing to a' and F. Other
processes in consideration are made up of two sets:

I: SH TiH +'I V +'I H TiH S,
II: SH„T,V, T,H„2s+'I'H„T, H„S (double),

with

Vf B2oCo +B4oCo

V, =844(v'14ISCO '+C~ '+C' q),

(5)
where +'I covers all excited states. The next order is
expected to contribute a value of 1 order of magnitude
less and will be omitted in our calculation.

8' =8 —&14/58 (7)
C. Results

In the strong-field scheme of Sugano et al. ,
'

V, is di-

agonal, whereas the others are not. We may take the sum
of V, and the diagonal part of Ho as an unperturbed
Hamiltonian and the remaining, including V„H, and
the off-diagonal part of Ho, as perturbation terms. This
perturbation procedure was first suggested by Macfar-
lane' and Zdansky" for F-state ions and has achieved
success in the calculation of a in cubic symmetry and D
in rhombic symmetry' for S-state ions. We expect it to
also work well in this case.

B. Perturbation processes

The "cubic" splitting parameter a does not come only
from the cubic-field component of a field of low symme-
try. The low-symmetric-field components will affect all
excited states and so they must have contributions to a.
The case is similar to the rank-two axial term D, which
comes not only from the axial components but from all
other parts of a field. ' In fact, any component of a field
has a contribution to any spin-Hamiltonian parameter.

We may denote the contribution resulting from the cu-
bic component with a, and that from the low-symmetric
part with a':

a=a, +a' .

a' vanishes in cubic symmetries.
A cakulation of a, can be made by taking V, =0. This

actually corresponds to a purely cubic field and has al-
ready been done. An available and simple expression
of it has been semiempirically given by Yu as

a, = 3b, C$8-+
10D,D B +C 10Dz

with

G(B,C,B„,()=G(B,C, —Bk, —g), (10)

where g is the spin-orbit coupling constant and Bkq are
the crystal-field parameters.

In our fifth-order treatment, a' and F have been linear
in 82og and Bqog and so must be odd functions of Dq.
Further, one member can be regarded as a hole of anoth-
er for each of the complementary couples, tz(S1 )e and
t2(Sl )e, t2 and t2e, and tz(Si, I i)e (S2, 1 2) and itself,
and thus has diagonal elements of both V and H„oppo-
site in sign to those for the other. As a consequence, the
diagonal elements of V and H„vanish identically for the
configuration t2e . This feature, together with that indi-
cated by (10), allows us to consider only the processes in
connection with the diagonal elements of V, in the
configurations t2e and t2. We denote this contribution
with a'+ and F+ and those from processes in association
with the diagonal elements of V, in t2e and t2e with a
and F

a'=a'+ +a', F=F++F (1 1)

Obviously, a'+ is complementary to a', and also F+ toF; inverting simultaneously the signs of Bkq and g re-
sults in the other:

The calculation is very tedious, and only the final re-
sults will be presented. However, we would like to point
out that the self-complementary property of half-filled
configurations is highly helpful and can reduce the calcu-
lation greatly.

The d configuration is half filled and so can be regard-
ed either as five d electrons or as five d holes. The two
equivalent considerations will induce opposite signs for
single-ion operators V and H„, keeping the matrix ele-
ments of Ho unchanged. Therefore, a quantity G that de-
scribes properties of d ions must be an even function of
g and Bkq..
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a' (B,C,Dq, Bzo,B~,j)
=a' (BC, D—q Bzo B

(12)
F (B,C,Dq, Bzo,B~,()

=F+(B,C, Dq—, —Bzo, —B~, —g) .

In the following we give the fifth-order perturbation
formulas -of a'+ and F+. For convenience of discussion
we have introduced the notations a'+ (SI ), a'+u(SI ), etc. ,
to denote individual contributions from processes related
to the excited state +'I in set I or II:

2

35E26 E1 E2

F+( E)=—

+ z 35 z z z 1

18$ 1 1 Wz

3E'. E E. 3

1 6W-
EQ 1

9

W2

4
7

4E )0

(13a)

(13b)

(13c)

Fu (4E )
2

5E)

Fu (4T
5E 1

1 1

E) E3

1 1

4 + 3 4
E4 E5 E2E4

3 2 2+ + W2,

(14a)

(14b)

20E21 El E8 E9 E10

1 3+ 3 4 1+ 1

E2 E9 E)o E)) E, E3
2 24 18

E)) E)2 E)3
W2,

(14c}

Fu(zE)= ~ 1 12 + 3

E1 E)4 E)5

'2

a'+( Tz)= — +,, 4 4P 1

5E26E) E2

1 12 3 4 1 1

E2 E)4 E)6 E)7 E) E3
4 6

E, E, W2, (14d)

(15a)

6P g 1 1 4W
a'+( Tz)= (Wz —2W, )+ +

5E,E 20 E) E2

W2
2E)0

(15b)

1 1

1 2

a ~'(SI'}= ,'F+ (SI"), ——

8

E)4 .
2

8'2 —W 1

'
w, ,

6E)5

Sr= E, T T2 E,

(15c)

(16)

where

~20 ~40
W) =, W2=5

7 '
21

and E; are listed in Table I. Others are zero to lowest or-
der.

III. DISCUSSION

of cubic symmetry, where the spin quartets E and T2
are also negligible. '

The T, state plays a crucial role in the S-state split-
ting, for it is the only state that couples with the ground
state, via the spin-orbit interaction. Any state that cou-

TABLE I. Expressions of E;. Inversing the sign of Dq gives
D;.

Tables II and III show the individual contributions
from various processes as functions of Dq. The following
interesting points are noted.

(i) Only the excited states T„E, Tz, Tz, and E
have nonzero contributions to a' and F in the lowest-
order treatment. Other states, including A „A2, A „

A2, and T), will a8'ect the parameters in higher orders
and must be somewhat important. This is unlike the case

E1 = 10B+6C —10Dq
Eq = 19B+7C
E3= 10B+6C + 10Dq
E4= 13B+5C
E5 =14B+5C
E6= 18B +6C —10Dq
E7=13B+5C
E =15B+10C—20Dq
E9 =27B +9C —10Dq

EIO = 17B +9C 10Dq
E]& =19B+8C
Ei~ =23B +8C
E]3 37B + 12C
E&4 =31B+12C —10Dq
Eis =22B +9C —10Dq
E/6 =31B+ 10C
E)7 19B+8C
EIs =23B+8C
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TABLE II. Contributions to F from various processes, calculated from the fifth-order perturbation
formula with 8=800 cm ', C=3000cm ', and /=300 cm '. Lines in F+(SE}and QSE) list values
evaluated with the simplified expression. All are in units of 10

Dq (cm ')

F' ('T, )

F+('T, )

FI (zE)
F+(tot)
FII (4E)

F+ ( T2)
FII (2E )
F"(tot)

F+(tot)
F+ (SE)

F(SE)

0.6W2 + 14.4 W]
—4.OWE+ 12.5 W]
—0.3Wp+3. 3W]
—5 Wq+30W]
—15 W2

+7W~
—20 W2

+9W2
—19W2

—24W2+ 30W
—24W2+ 32 W]

—20W2+25 W]

0.8 W2+ 19.4W]
—6.6Wq+21 W]
—0.3 W~+4. 1 W]

8 Wz+45 W

—19W2

+10W2
—30 '
+12W2
—27 W2

—35 W2+45 W]
—36W2+46 W]

—33Wq+40W]

—1.1 W2+27W
—12Wz+ 38 W
—0.4'+ 5.2 W]
—14W2+70W]
—26 W2
+ 14W2
—47 W2

+17W2
—42 W2

—56 W2+ 70W]
59W2+73 W]

—568'2+ 68 W]

1200

—1.6W2+ 39W
—24W~+76W]
—0.6Wp+6. 9 W]
—26W2+ 122 W

—37W,
+20W2
—79W,
+24W2
—72 W2

98 W2 + 122 W']
—104W2+ 125W]

—102W2+ 121W]

ples with T& has, therefore, an efFect on a splitting pa-
rameter, and one would expect the spin quartets, with en-
ergies generally lower than those of the spin doublets, to
have a stronger contribution to a and F. They are negli-
gible in the cubic case because they give contributions
that almost cancel each other. To a' and F, E and Tz
contribute in the opposite sign, in set II. Among the spin
doublets, T2(tz} has an energy, Es, that is lowest and
couples most strongly with T, (t2( T, )e), having an en-

ergy E, that is the lowest of the spin quartets and couples
most strongly with the ground state S.' It contributes
the greatest value to a', F, or a„as can be seen in (14c),
(13b), (15b), and (16) and in Ref. 9.

(ii} Either a' or F increases in magnitude sensitively
with increasing ~Dq~, as a, (Ref. 9) and D (Ref. 12) do.
This is because a stronger field causes the excited states
to have lower energy levels and causes them to mix more
into the ground state. A second power law of Dq is seen
in the rank-two axial term D, whereas a, varies with Dq
in the way a, ~ ~Dq ~" with k being greater than 2 and in-

creasing sensitively with ~Dq~. A more sensitive Dq

dependence can be seen for a' or F from the comparison
between Tables II or III and Table I of Ref. 9, noting that
W2 (or B4o) is proportional to Dq [see Eqs. (17) and (18)].

kG
When we use the power law G ~ ~Dq~ to describe the
Dq dependence of a spin-Hamiltonian parameter G of 3d
ions, we have

kF —k. & k. & kD .
C

(iii) F depends on both B2o ( =7W, ) and B~
( =21 W2l5); so does a', unlike D, which depends on B4o
only, ' in the lowest-order treatments. The dependence
of D on the tetragonal field parameters is controlled by
the diagonal element of V, in the state T&, which hap-
pens to be independent of B2o Howev. er, F and a' relate
with all diagonal elements of V, in the states T&, E, Tz,
Tz, and E, some of which are functions of both Bzo and

From the superposition model of crystal fields' it fol-
lows that

Dq (cm ')

TABLE III. The same as Table II but for a'.

1200

a+('T, )
a~I (2T )
a' (E)
a'+(tot)

a &II(4E )

a &II (4T )

a+'('T2)
a &II (2E )

a '+'(tot)

a '+(tot)
a+(SE)

a'(SE)

—6W,
2.5 Wp —5 W]
0.4' —1.3 W]
2.9W2 —12.3 W]

+7.5W2
—3.5 W2
+10'—4.5W2
+9.5'
12.4W —12.3 W,
12.4 W2 —12.4 W

10.3 W2 9.7 W]

4' —8 W]
0.5 W2 —1.6W]
4.5 W2 —17.6W,

+9.5 W2
—5W2
+15W2
—6W2
+13.5 Wp

18W2 —17.6W]
18.6W2 17.9Wl

17.1 Wg —15.6W]

—10W]
8W~ —15 W]
0.5 Wq —1.9W]
8.5 Wz —26.9W

13W2
—7W2
+23.5 W2
—8.5W2
+21 Wq

29.5 W2 —26.9W]
30.6W~ —28.4 W]

29. 1 W2 —26.4 Wl

15W
15W —29W,
0.6W2 —2.3 W]
15.6 W2 —46.3 W]

18.5 W2—10 '
+39.5 W;—12$'2
+36W2

51.6W2 —46.3 W]
52.4 W2 —48.6 W]

53.2 W2 —47 W
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Wi =—', Az(RO)
Ro Ro

P7 —20 Dq
Ro 4

Ri
Ro 4

R2
(Dq &0),

for octahedrally coordinated D4&, where R, and R2 are
bond lengths in the z axis and in the xy plane and Ro is a
reference one, and that

Wi =—Az(3 cos 8—1),
Wz= —~4'Dq(7cos 8—5)(3cos 8—1) (Dq (0),(18}

for tetrahedrally coordinated D2d, where 0 denotes the
bond angle. The intrinsic parameter Az is much greater
than Dq, so that 8'& and 8'2 have values in the same or-

der. This, together with the fact that they carry numeri-

cal coefficients comparable to each other, leads us to
the conclusion that both 8

&
and 8'2 are important in

affecting a' and F.
(iv) F and a' have values opposite in sign and identical

in order of magnitude. Further, Tables II and III indi-

cates a rough relationship between them:

where we have used so to indicate the crystal-field effect,
or, in other words, the spin-orbit coupling mechanism.
As can be observed easily, F+ determines the sign of F in
octaheral symmetry (Dq & 0) and F does so in
tetrahedral crystals (Dq (0); a similar case occurs in D.
In D4&, 8'& and 8 2 are identical in sign, while in D2d
they have opposite signs. In the usual case, the term in
8'2 is greater in magnitude than that in W, for the pa-
rameter F. Further, a' behaves as F does. Noting these
features we determine the signs of D, F, and a ' as follows:

Elongated D4„
Compressed D4&
Elongated D~d
Compressed D2d

IV. SIMPLIFIED EXPRESSIONS

The formulas of a' and F derived in Sec. III are consid-
erably tedious. An attempt is made here to simplify
them. To do this we note the following.

(i}As can be seen in Tables II and III,
a'= ——'F .

2
(19) F'+( Tz)= ,'F'+( E—), —a'+~( Tz}=—

—,'a'+'( E} .

D(so) =D+ +D

7/2D+=- %~,
20E )

(20)

(21)

Equation (16) shows a'= ,'F for th—e —processes in set II.
It is perturbed by the processes in set I, causes (19) to
hold roughly. More detailed consideration shows that
(19) holds quite well for Dzd symmetry, while for D4i, one
has ~a'/F

~
& —,', as will be presented in Sec. IV. Equation

(19) allows us to regard F as a measurement of the low-
symmetric-field effect on the "cubic" splitting term a. If
F is considerably small compared with a, one may use the
cubic-field approximation (a =o,'} to calculate a. In the

opposite case, one must take into account the low-
symmetric-field effect.

(v) F and D are identical in sign, provided that the
crystal-field effect governs their signs. According to Yu
and Zhao' and in a similar treatment we have

(ii) The first term of F+( Tz), —18( Wz/5E3iEs,
predominates over the remaining parts of F'+ ( Tz ),
which are almost canceled by F'+( E). A similar case
occurs for a '+ because of (19}. Consequently we have

18F+( Tz)+F+( E)=—
3 Wz,

E&Es

a'+ ( Tz)+a'+ ( E)=
3 Wz .

5E )Es

We can also do so because the states Ti(tz( Ti)e) and

Tz(tz }, having energies E, and Es, respectively, couple
most strongly with the ground state S. '

(iii) Some terms in the processes of set I involve much
smaller numerical coemcients and therefore are negligi-
ble.

As the final results we obtain, approximately,

F=F( W, )+F( Wz), a'=a'( W, )+a'( Wz), (22)

F( Wi ) =(72Wi Q/35)
3 3 1 1'1 1

E1E8 D iD8 E& E2 E6 E
1 1'1+1

D1 D2 D26 D214
(23a)

F(Wz)= —(Wzg/5) 3
+ +18 1 1

E)Es E) E)E2
4 3

E4 E5
4

E',E,E4

a'( W, }=—
—,', F( W, },

18

D)D8

1 13+ 2

4 3 4

D4 D5 D21D2D4
(23b)

(24a)

a'(Wz)= —
—,'F(Wz)+(6Wzg /35)

z z
—

z z
1 1

1E8 D2)D28
(24b)
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where

0.4(p ~0.5

for the D2„symmetry and

p+0. 5

(25a)

(25b)

for the D4I, symmetry. We have assumed
~
F( W2 ) ~) ~F( W, )~ in deriving (25b).

V. COMPARISON %'ITH EXPERIMENTS

A. Mn + ions in K2ZnF4 and K&MNF4

The first case we shall consider is Mn + ions in the D4&
crystals KzZnF~ and K2MgF4. Although the spin-orbit
interaction is weak in Mn + ions, the rank-four axial
term F has been observed' ' that is 1 order of magni-
tude less than the axial rank-two parameter D. The signs
of F and D are identical in the crystals, in support of con-
clusion (v) in Sec. III. They are listed in Table IV togeth-
er with a. We shall try to understand the crystal-field

TABLE IV. The spin-Hamiltonian parameters of Mn + ions
in K2ZnF4 and K2MgF4, calculated with B=830 cm
C=3122 cm ', Dq =822 cm ', (=320 cm ', Az=4500 cm
t2 =3, and t4 =7. All are in 10 cm

R, (A)
R2 (A)'
F (calc)
F (expt)

a' (calc)
a' (expt)
a (expt)

D(so) (calc)
D (expt)

References of expt

Mn +:K&ZnF4

2.124+0.015
2.072+0.010

0.7+0.5
1.9+0.6

—0.5+0.3
—0.7+0.2
5.6+0.2

+322+180
+36+0.2

17

Mn +:K2MgF&

2.146+0.015
2.060+0.012

1.2+0.6
11+2

—0.8+0.4
—4.3+1.0

2+1

+563+210
+ 107+2

18

'Reference 23.
Deduced from experimental values of a and by using a =a, +a'

with a, =6.3X10 cm ' of KZnF3. Mn + (R f. 19).

D, (Dq ) =E;(Dq ~ D—q )

with E, listed in Table I. Terms in relation with E, corre-
spond to F+ and a'+, while those in D; correspond to
their complementary parts F and a' . The expressions
fit the self-complementary property (10).

The values of F+ and a + calculated with the simplified
expressions are listed in Tables II and III in comparison
with those evaluated with the complete perturbation for-
mulas. The approximation is very good, as can be seen.

The approximation of (19) can be observed plausibly
from the simplified expressions. It is noted that
a'( Wz )/F( Wz ) = —

—,
' holds well because of the negligible

value of the last term of (24b). The discrepancy of the ra-
tio a'/F = —

p fr—om —
—,
' arises chiefly from the terms re-

lated with 8'&, for which we have p=0. 39. More accu-
rately, Eq. (24) predicts

effect on the rank-four splitting parameters with the
theory established in the preceding sections.

The crystals have a similar bond length Mn +—F
and so a similar cubic crystal field. Thus, one might ex-
pect a similar cubic splitting parameter a, without an
effect of the low-symmetry field on it. In contrast to the
expectation, the values of a have been found to be quite
different from each other, as can be seen in Table IV.
The low-symmetric-field effect on the cubic term a is not
negligible for these crystals.

We assume their cubic crystal fields produce an identi-
cal value to a„which we take equal to a =6.3X10
cm ' of the cubic crystal Mn +:KZnF3 (Ref. 19), which
is identical to that of Mn +:KMgF3 (a =6.5+0.5 X 10
cm ', Ref. 20) in experimental error. The contributions
of the low-symmetric fields can thus be estimated:
a'= —0.7+0.3 for Mn +:KqZnF4 and —4.3+1.0 for
Mn +:KzMgF4, in units of 10 cm ', comparable with

the values of a. The deduced a' is opposite in sign to F
and D, in support of the conclusion made in Sec. III.

Relationship (19) enables us to estimate I' from the de-
duced values of a '. We obtain F= + 1.4+0.6 for
Mn +:K2ZnF~ (experimental F=1.9+0.6, Ref. 17) and
+8.6+2.0 for Mn +:KzMgF4 (experimental F= 11+2,
Ref. 18), in 10 cm '. A good agreement is seen be-
tween the estimated and the observed values of F.

However, the calculation of an axial parameter suffers
from a difficulty owing to the lack of the information
about W, and W2. Optical determination of them is ac-
tually not practicable because of weak and broad transi-
tions in a 3d system. Obviously, an available model of
crystal fields has to be employed to know their values. As
long as Dq is optically obtained together with B and C,
Wz can be reasonably deduced with the use of (17) and
(18) of the superposition model. It must be pointed out,
however, that one cannot use (20) to deduce Wz from D,
unless he could confirm that the spin-orbit coupling
mechanism is most important in the rank-two spin-
Hamiltonian parameters. The parameter 8'„or
equivalently A2 of Eqs. (17) and (18), can only be estimat-
ed presumably in the 3d cases. Finally, and most impor-
tantly, in the application of (17) and (18), one has to use
the true local structure parameters of an impurity-
containing crystal, which may be quite different from
those of the host crystal.

It has been found from optical experiments that '
B=830 cm ', C=3122 cm ', Dq =822 cm ', and
(=320 cm ' in Mn:KZnF3. The parameters result in
a =6.9X10 4 cm ' (Ref. 9), in good agreement with the
experimental finding 6.3X10 cm ' (Ref. 19). Using
the parameters we obtain, from the simplified expres-
sions,

F=4.4X 10 8') —3.54X 10 8'2,
a ' = —1.7 X 10 W') + 1.83 X 10 W2,

D(so)= —7.24X10 'W2 .

The local structure of the substitutional crystals has
been determined by Barriuso and Moreno. They found
from the study of the isotropic superhyperfine constant
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TABLE V. The spin-Hamiltonian parameters (10 cm ') of Fe'+ ions at the tetrahedral sites in

garnets, calculated with 8=744 cm ', C=2560 cm ', Dq(YGaG)= —654 cm ', (=420 cm ', and
A&(YGaG)=8000 cm '. Potentials were assumed to be of point charge and structure parameters to
remain unchanged from the host lattices.

YGaG LuAlG YAlG

R (A)'
0 (deg)'
8'] (cm ')
8'2 (cm ')

F (calc)
F (expt)

a' (calc)
a, (calc)
a (calc)
a (expt)

D(so) (calc)
D (expt)

'Reference 28.
bReference 26.

1.85
49.45

1225
—1150

—51
—40

+23
+20
+43
+62

—2379
—880

1.85
48.90

1355
—1230

—56
—47

+24
+20
+44
+65

—2192
—1131

1.76
49.69

1355
—1426

—97
—104

+43
+42
+85
+84

—3322
—1249

1.76
49.95

1287
—1374

—93
—110

+42
+42
+84
+75

—3200
—1028

A, that the structure of KzZnF4 and KzMgF4 changes
from compression (R, (R2) to elongation (R, &R2)
when Mn + impurities are doped in. The values calculat-
ed with the use of their results for R, and R2 are
displayed in Table IV in comparison with experiments.
In the calculation we have presumably taken
Az(Ro)=4500 cm ', RO=R„ t2=3, and t4=7 (Ref.
24). The value of Az is compared to A&=5500 cm
found in the Co +-Cl pair.

The results are good for Mn +:K2ZnF4 but bad for
Mn +:K2MgF4. Fitting the experimental value of F of
Mn +:K2MgF4 requires 8'2 )3000 cm ' and so is impos-
sible according to Barriuso and Moreno. Also, when 8'2
reaches such a value, the perturbation procedure we have
adopted probably becomes unreliable because it is compa-
rable to b, =lODq =8220 cm '. Indeed, the fact that
F»a implies the complication of the problem. There
most probably is another mechanism playing an impor-
tant role in this case.

It is noted that the obtained values of D(so} are too
large to agree with experimental results. This suggests an
impossibility of systematic agreement for all the spin-
Hamiltonian parameters of the crystals in the crystal-field
scheme. Inclusion of other mechanisms is expected to be
able to improve the calculated D values.

B. Fe'+ ions at the tetrahedral sites in garnets

Fe + ions at the tetrahedral Dzd sites of garnets
YGaG, LuGaG, LuA1G, and YA1G provide another
good example, indicating the importance of the low-
symmetry-field effect on the "cubic" splitting a. Table V
lists the comparison between theoretical and experimen-
tal values. The results are satisfactory. Especially, the
theory predicts the ratio of F of LuA1G and YA1G to
that of YGaG and LuGaG to be 1.8, in reasonable agree-
ment with the experimental value 2.5. Furthermore, the

tetragonal Gelds contribute positive values to a,
significantly improving the results in the cubic-Geld ap-
proximation (a =a, ).

In the calculation, B=744 cm ', C=2560 cm ', and
Dq= —654 cd ' found in Fe +:YGaG were used to-
gether with (=420 cm ' and Az(YGaG}=8000 cm
and point-charge potentials were assumed that allow
A2~R and Dq ~R . A simple assumption has been
taken that the structure remains unchanged when the im-
purities are doped in, and the x-ray data published by
Euler and Bruce have been adopted.

a' ~ a, indicates the importance of the low-symmetric
fields upon the cubic splitting. However, it does not
show the fifth order being greater than the fourth order.
In fact, the values of a, were calculated from (9), which is
serniempirical and includes contributions not only from
the fourth order but from higher orders. The fourth or-
der, according to Yu, gives a,' '=26X10 cm ', while
the fifth order results in a,' ' = —6 X 10 cm ' for
Fe +:YGaG, for example. Consequently we have

a' '=a' '=26X10 cmC

and

a' '=a,' '+a'=17X10 crn

so that a' '&a' '. Actually either 8', or 8'2 is much
smaller in magnitude than b, = 10~Dq ~, and therefore it is
possible to regard the tetragonal field as a perturbation.
Occurring by chance, 8'& and 8'z have positive contribu-
tions, unlike the D4& case considered in Sec. V A. Con-
sidering the separate contributions of 8', and 8'z,
a'( W, ) and a'( W2 ), we find each of them considerably
smaller than a' ' [for example,

a'( W& ) =a'( W2)=12X10 cm

compared to a ' '= 26 X 10 cm ', in Fe +:YGaG] and
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see a convergency of the perturbation series.
The calculated D(so) values are 2 —3 times greater than

the experimental results. A best fitting to the experimen-
tal data of D with the spin-orbit coupling model that as-
sumes D=D(so) requires /=250 cm ' (Ref. 12) on the
assumption that the local structure around the Fe + ions
is unchanged from the host lattice. Other mechanisms
must be taken into account to explain the rank-two axial
splitting of the crystals.

There is no regular tetrahedron (Fe04)s to allow us to
estimate a' from experimental data. Two things we are
interested in are that the cubic-field consideration gives
results 2 —3 times less than the experimental values and
that the inclusion of tetragonal fields improves the results
remarkably. It has been pointed out that the cubic-field
splitting is explicable in terms of the simple crystal-field
theory for ionic and regular octahedrally coordinated
crystals but is not in strongly covalent-bonded
tetrahedral cases for which the covalency effect seems
most important compared with the crystal-field effect we
are considering. The garnets are ionically bonded and
the covalency effect on the "cubic" term a is likely to be
small compared with the crystal-field effect.

To know the exact value of g is most important in the
investigation of the crystal-field effect on the rank-four
spin-Hamiltonian parameters as a -P and F-g . There
is no effective way of getting its value in our case. Never-
theless, we believe (=250 cm ' that fit the D data to be
unreasonable, because it is too small in comparison with
the free-ion value (0=500 cm ' (Ref. 29). A rough es-
timation will show (=420 cm ' to be reliable. Under
first approximation we have B=N Bo and
(Refs. 13 and 30), where N denotes the average value of
the covalency reduction parameters N and N and the
subscript 0 refers to the free state. Using B=744 cm
and Bo=1150cm ' we get (=410 cm ', comparable to
(=420 cm ' that we have used. Nevertheless, the sim-
ple crystal-field model that treats g as an adjustable pa-
rameter can understand a and F of Fe + ions at the
tetrahedral sites in garnets very well.

VI. SUMMARY

We have studied the crystal-fied effect on the rank-four
spin-Hamiltonian parameters of 3d ions in tetragonal
symmetry. Both a and F come chiefly from the fourth-
order effect of the spin-orbit interaction among the
ground state S and the excited states T„E, T2, T2,
and E. Importantly, the cubic splitting parameter a
arises not only from the cubic component of a field, but
an additional contribution a ' is given by the low-
symmetric components and is, in general, not negligible.
It has been shown that, roughly, a'= —

—,'F. So one can-
not omit the low-symmetric field in the calculation of a,
unless F has been found to be negligibly small compared
with it.

Neither F nor a can be accurately evaluated by means
of diagonalization. A better perturbation procedure may
be in treating the low-symmetric field and the spin-orbit
coupling as perturbation, as did Blume and Orbach ' in
the calculation of the rank-two parameters. However,
the calculation will be considerably complicated, since it
requires diagonalization of energy matrices in all excited
states. Such a calculation is not expected to change our
conclusions.

A crystal field will affect the rank-four terms through
the spin-spin interaction and through the spin-orbit cou-
pling via excited configurations 3d 4s, 3d 4p, 3d 4d, etc.
The effects, however, are expected to be much smaller
compared to what we have considered in this work due to
the weakness of the spin-spin interaction and to the much
higher energies of the excited configurations. The relativ-
istic effect is also negligible, as has been pointed out by
Van Heuvelen. The covalency-overlap effect is likely to
be significant and a study of it may be worthwhile.
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