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Ground-state degeneracy of the fractional quantum Hall states in the presence
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The fractional quantum Hall (FQH) states are shown to have q s-fold ground-state degeneracy on
a Riemann surface of genus g, where q is the ground-state degeneracy in a torus topology. The
ground-state degeneracies are directly related to the statistics of the quasiparticles given by
8=P'm. lq. The ground-state degeneracy is shown to be invariant against weak but otherwise arbi-
trary perturbations. Therefore the ground-state degeneracy provides a new quantum number, in ad-
dition to the Hall conductance, characterizing different phases of the FQH systems. The phases
with different ground-state degeneracies are considered to have different topological orders. For a
finite system of size I., the ground-state degeneracy is lifted. The energy splitting is shown to be at
most of order e L't. We also show that the Ginzburg-Landau theory of the FQH states (in the
low-energy limit) is a dual theory of the U(1) Chem-Simons topological theory.

I. INTRODUCTION

There are two quantum-fluid states which are known
to exist at zero temperature, i.e., they may appear as the
ground state of a system. One is the superfluid and the
other is the incompressible fluid. The superfluid state
was first disovered in He (1932) (Ref. 1) and later in He
(1972). The first example of the incompressible-fiuid
state is probably the superconducting state discovered in
1911. The superconducting state is incompressible if we
fix the positive background charge density which comes
from the lattice ions (by assuming the lattice to be rigid).
All excitations in the superconducting state have finite

energy gaps (except the phonons which have been exclud-
ed). The incompressibility of the superconducting state
comes from the long-range Coulomb interaction. In the
early 1980s a new class of incompressible quantum fluids
was discovered in the integer quantum Hall (IQH} effects
and in the fractional quantum Hall (FQH) effects. Re-
cently, in studying high-T, superconductors, a class of
"incompressible" quantum spin-liquid states —chiral spin
states —was proposed, ' which does not support any
gapless excitations. The time-reversal symmetry (T} and
the parity (P) are broken in these spin-liquid states.
Chiral spin states are closely related to the FQH states. '

The FQH states and chiral spin states are very special
in the sense that their ground-state properties are not
characterized by the symmetries in their ground states.
The transition from one FQH state (or chiral spin state)
to another is not associated with a charge in the sym-
metries of the states. In this paper we will demonstrate
that the FQH states and chiral spin states contain non-
trivial topological structures. The different FQH states
and chiral spin states may be classified by topological or-
ders.

It has been shown that the topological orders in chiral
spin states can be partially characterized by the ground
degeneracy of chiral spin states in compactified space. '

The ground-state degeneracy depends on the topology of
the space and is equal to ks (ignoring the twofold degen-
eracy arising from the spontaneous T and P breaking),
where g is the genus of the compactified space and k is an
integer characterizing the topological order in chiral spin
states. Similarly, it was known long ago that the
ground-state degeneracy of the FQH states also depended
on the topology of compactified space. For the simplest
FQH states given by Laughlin wave function

f(z;)= g(z, —z, )' exp

the ground state is found to be nondegenerate on a
sphere and q-fold degenerate on a torus' (with g =1).
The dependence of the ground-state degeneracy on the
topology of space suggests that the FQH states also con-
tain nontrivial topological orders.

The ground-state degeneracy of the FQH states has
been a puzzling problem for a long time. Especially, it is
not clear whether the degeneracy arises from broken
symmetries or not. There are arguments both favoring
and disfavoring the symmetry-breaking picture.

According to Anderson, " some basic ingredients of
symmetry breaking are already contained in Laughlin's
description of the FQH system on a circular disc. In the

3 fi1ling case, for instance, the Laugh 1in states with zero,
one, and two quasiholes are macroscopically distinct, but
energetically they are the same for the bulk of the system.
The Laughlin state with three quasiholes divers from that
of no quasihole by only one single-particle state and they
are therefore macroscopically indistinct.

Tao and %u' considered the case of a cylinder
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geometry and concluded, using general gauge symmetry
arguments similar to those of Laughlin for the FQH case,
that there must be a symmetry breaking of the system in
order to exhibit the FQH effect. The same conclusion
was reached by Niu et al. ,

' who studied the problem
from a point of view of the topological invariant of the
quantum Hall conductance on a torus. The latter au-
thors also demonstrated the degeneracy of the ground
states by the explicit construction of distinct Laughlin
states on the torus. The existence of degeneracy was fur-
ther supported by the numerical result of Su. ' The gen-
erality of the arguments of gauge symmetry and topologi-
cal invariance make the degeneracy a very robust proper-
ty of the FQH system, independent of perturbations
which do not close the energy gap.

There are also arguments disfavoring the idea of sym-
metry breaking. These are backed by the evidence of no
ground-state degeneracy in the sphere geometry. The
kind of degeneracy found in the torus geometry was in-
terpreted as the degeneracy of the center-of-mass
motion, ' and therefore does not qualify as degeneracy
among macroscopically distinct ground states, which is
essential for symmetry breaking.

In this paper we wish to resolve the above puzzle. We
argue that the ground-state degeneracy of the FQH states
is really a reAection of the topological order of the sys-
tem. The degeneracy depends on the topology of the sys-
tem geometry, and is preserved (in the thermodynamic
limit) even when the translational and rotational sym-
metries of the system are absent. Therefore, the degen-
eracy should not be interpreted as a symmetry breaking
of the usual type, nor should it be regarded as the center-
of-mass degeneracy.

If one insists on the symmetry-breaking picture, one
may attribute the ground degeneracy to broken "topolog-
ical" symmetries (see Sec. IX). However, the topological
symmetry can be defined only after the topology of space
is specified. The very existence of the topological sym-
metries depends on the topology of the space. The num-
ber of topological symmetries is different for the spaces
with different topologies.

The characterization of the FQH states is another un-
resolved problem in the FQH theory. The Hall conduc-
tance is certainly not enough to characterize the different
FQH states. Two different FQH states may give rise to
the same Hall conductance and yet be macroscopically
distinct. Because the ground-state degeneracy of the
FQH states is robust against arbitrary perturbations, the
ground-state degeneracy can be used to characterize
different phases in phase space. Therefore, the different
FQH states with the same Hall conductance can be (at
least partially) characterized (or distinguished) by their
difFerent ground-state degeneracies (on torus and high-
genus Riemann surfaces). A more complete characteriza-
tion of the topological orders in the FQH states can be
obtained by studying the non-Abelian Berry's phases' as-
sociated with twisting the mass matrix of the electrons.

The paper is arranged as follows. In Sec. II we study
the ground-state degeneracy on a torus and its lifting by
impurity potentials using the first-order perturbation
theory. The selection rule of the magnetic translation

II. GROUND-STATE DEGENERACY
AND ITS LIFTING BY IMPURITY POTENTIALS

In this section we discuss the ground-state degeneracy
of a FQH system on a torus geometry using elementary
methods. We show how and to what extent the degenera-
cy is lifted by weak impurity potentials. This is done by
projecting the impurity potentials onto the subspace of
the ground states and by applying the degenerate pertur-
bation theory. This approach was first taken by Tao and
Haldane. ' ' Here we give a more detailed analysis. A
very simple effective form of the impurity potentials is de-
rived, from which the dependences of the impurity effects
on the system size and the phases of the boundary condi-
tions are clearly seen. In the end of the section, we re-
mark on the practical significance of the degeneracy lift-
ing.

We first give a brief review of the magnetic translation
group. Consider an electron of charge —e on a rectangu-
lar plane of size L, XL2, with a magnetic field 8 in the
perpendicular direction (z). In the absence of impurities,
the Hamiltonian is

0= 1

2m

2

—iA +ed + —iA +eda a
X Py

3'

2

(2.1)

where (A, A ) is the vector potential such that

group implies an energy splitting exponentially small in
the shortest linear size of the system. In Secs. III and IV
we study the ground-state degeneracy using the effective
theory of the FQH states. The effective-theory approach
not only applies to a case with a spatial dependent mag-
netic field, random potentials, etc., it also applies to
high-genus Riemann surfaces where the magnetic transla-
tions cannot be defined. In Sec. V we study the splitting
of the ground-state energies of the finite system based on
the effective-theory approach. In comparison with the
results obtained in Sec. II, the results obtained here are
nonperturbative (but qualitative). The energy split is

—L(m b)found to be of order e ' ~' for generic random po-
tentials. Here m* and 6 are the effective mass and the
energy gap of the fractionally charged quasiparticles and
quasiholes, and L is the size of the system. We also
demonstrate explicitly that the ground-state degeneracy
of the FQH state (or any other system) is determined
directly by the fractional statistics of the quasiparticles,
instead of the filling fraction v=p/q. In Sec. VI the
ground-state degeneracy of the hierarchy FQH states is
discussed. In Sec. VII a duality picture of the Ginzburg-
Landau (GL) theory of the FQH states is developed. The
results obtained in Sec. III—VI are rederived in the dual
picture. The dual picture allows us to directly apply our
results on the FQH states to the chiral spin states. In Sec.
VIII we show that the ground degeneracy on a genus g
Riemann surface is given by q if the quasiparticle exci-
tations have statistics O=np/q. In Sec. IX we discuss
the concept of topological symmetry and conclude the
paper.
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a a
A — A, =B .

Bx ' By
(2.2)

t(a) =e'~ "~" (2.3)

where a is a vector in the plane, and k is an operator
(pseudomomentum) defined by

The Hamiltonian has a symmetry of magnetic transla-
tions Ti =T(L, /N, ),

T2—:T(L2/N, ), (2.13)

and their integral powers. We can thus choose a ground
state go to be an eigenstate of T2, i.e.,

where p and q are mutually prime integers. The transla-
tions which also leave the boundary conditions (2.11) in-
variant are

k =—iA +eA +e8y,
T24o=e'Po (2.14)

k =—iA +eA —eBx .a
V gy

3'

(2.4) where A, is a real number because of the unitarity of T2.
Moreover, since

It can be easily shown that k [and therefore t(a)] com-
mutes with the dynamical momenta:

H„=—i A +eA„,a
Bx

=TTe2 1

—3N (L1XL2)/(N, I )

(2.15)

a
H = —iA +eA

y y

(2.5) there will be q
—1 more states degenerate (in energy) with

Po. These are

and therefore with the Hamiltonian (2.1). From the com-
mutator

f„—:T", go, n =1,2, . . . , q
—1, (2.16)

[k„,k„]=i fieB,

we have

(2.6) and they are eigenstates of Tz,

(2.17)

t(a)t(b)=t(b)t(a) e (2.7)

V(r —r'), (2.8)

the many-body magnetic translation

N

where 1—= (A'/eB)'~ is the magnetic length, and aXb
means z (aXb).

when there are 1V, electrons, each with a kinetic energy
of (2.1), interacting mutually via a potential

with different eigenvalues, and therefore they are orthog-
onal to fo and to one another. This implies that the
ground states are at least q-fold degenerate.

In the remaining part of this section, we assume there
are exactly q ground states. Then Tf and T) are con-
stants within the ground-state subspace. We now consid-
er a weak impurity potential

U=g U(rj)

T(a) = g t~(a) (2.9) = g U(k)ge
k J

(2.18)

leaves the Hamiltonian of the system invariant, where t
acts on the jth electron. In order to utilize this symme-
try, we impose on the many-body wave function, the
periodic boundary conditions:

where k=[(2mn, /L, ),(2mnz/Lz)] is a Fourier wave vec-
tor, with n„n2 being integers. Since the many-body
states are antisymmetric in the electron labels, we can
effectively write

t)(L) )P= P,

t, (L,)g=g, (2.10) U=N, g U(k)e'"',
k

(2.19)

L)L2
2ml

(2.11)

where L, =L&x, L2=L2y. This means that the wave
function is the same when an electron is magnetically
translated L& or L2 across the plane.

We assume there are N, (integer) magnetic fiux quanta
through the surface

where r now stands for the coordinate of any one elec-
tron. We assume that the potential is weaker compared
with the energy gap above the ground-state energy, so
that we can use first-order degenerate perturbation within
the ground-state subspace.

The fact that the ground states form an irreducible rep-
resentation of T& and T2 implies a number of selection
rules. Consider the commutation relations

which is also the total number of single-particle states in
a Landau level. Corresponding to a fractional filling of
the lowest Landau level, we have

ik-r ik. r To ' "
I q

~e =e ~e

Ta ik. r ik.r Ta t2'trn&q/N,
pe =e ye

(2.20)

N, = N, , (2.12) Taking the matrix element of both sides of these equa-
tions, we have
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( &„Ie'"'I g„&=
& +„I

e'"'I P„&e

(q I
krIq ) (y I

ikrIy )e'
(2.21)

U=X, g U(l(K„l2K2)e
1112

(2.23)

n1 =11N, /q,

n2 =12N, /q,
(2.22)

where 11,12 are integers. The impurity potential can
therefore be written effectively as

where we have used the fact that T'f and T) are
effectively constants. The matrix element is zero unless

where K, =L2/(ql ), K2=L, /(ql ), and they are pro-
portional to the system size. Thus, if the potential is
smooth within a linear scale of much larger than ql /L1
and ql /L2, then U(1)K), l2K2) will be exponentially
small [except for (l„l2)=(0,0)]. Furthermore, if the
ground states are made of primarily the single-particle
states in the lowest Landau levels, then, as has been
shown in Ref. 16, we can write (2.23) effectively as

U=N, g U(I, K),12K2)exp
1

I
) l~

2
I,L2

ql

'2
12L,

ql

12 1,
t —L, ——L2

q
(2.24)

, we can

where t is a magnetic translation acting on an electron.
The extra Gaussian factor makes the potential ex-

tremely small, even if the potential is not smooth. To
—(1/2)(L&/ql) —(1/2)(L

~
/ql)

lowest order of e or e
write

L1

L2 =e T2
t@

(2.28)

U=u1t

+u2t

where

L1 + U1t

L2 + U2t

—L
1

q

—L2

q
(2.25)

The potential (2.25) can then be written effectively as

U —U, T, +U, T1 + U2T2+ U2T2 (2.29)

wher U, = U, e ' and U2= U2e
Next, we consider the effective changing the boundary

condition (2.10) to

—((/2)(L(/ql)
u1=N, e u 0,K2 t, ( L) i(tea)= e' "p(a) . (2.30)

—
( )2/)(L /ql) —

( K 0)2 8

The states satisfying different boundary conditions can be
connected by the twister b (a) defined as

and we have also ignored the constant part N, u (0,0).
We now proceed to derive the effective forms of

t(L, /q) and t(L2/q ). We define an integer r satisfying

b(a ) = T( aX zl ) .

If P(0) is an eigenenergy state saisfying (2.10), then

(2.31)

+pr +qm =1, IrI (—, m =integer,q (2.26)

L,

which has a unique solution, if q is odd. Then it can be
shown that

p(a) =b(a)1(l(0) (2.32)

is an eigenstate of the same energy (in the absence of im-

purity potentials) satisfying (2.30). It must be kept in
mind, that (2.32) is not a gauge transformation unless the
operators are also transformed accordingly. In other
words, (2.32) is a change of boundary condition, if the
operators of observables remain unchanged.

We can, of course, keep the wave function unchanged,
but transform the operators by b(a). Then we have

and

L2

(2.27)
The Schrodinger equation becomes

(2.33)

commute with both T1 and T2. They must be constants
within the subspace of the ground states which form an
irreducible representation of the group generated by T,
and T2. We can thus write

+( U
'~2~&nl'/qeir2. i2nprn/q+c c )q

=e' P„, (2.34)

where e's is the constant of T'f. This can be transformed
to the standard Harper's equations
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E0. =R i(0.+i+0. i—)

2mr a2.L2 rP
+2R2cos n+ +rA, +8& P„, (2.35)

i [e~q+a~L
~
rp+ rSql„,q

e-—
n

where =5 +5 +a (3.1)

and

iI)
R)e = U),

i 02
R2e = U2,

—i[e~+a~L
~

rp/q]nn=e nr

III. GROUND-STATE DEGENERACY
OF THE FQH STATES:

AN EFFECTIVE-THEORY APPROACH

In this section we are going to give a simple heuristic
argument about the ground-state degeneracy of the FQH
states. The approach is based on the effective Ginzburg-
Landau theory of the FQH effects. ' ' More rigorous
proof will be given in the next section. We will first con-
sider the case with translation symmetry and reobtain the
results in Ref. 10 and in the previous section.

The GL theory for the FQH states can be written as

The band structure of (2.35) is well known. There are q
bands, E,(a„a2),with a periodicity of a, =(2'/rpl. , )

and a2=(2'/rpL2). This periodicity implies that there
are (rp) inequivalent boundary conditions giving rise to
the same ground-state energy splittings. For a large as-
pect ratio (Li «L2), we have R2 «Ri. The band
widths are of order R, /q, and the gaps are about R z. In
the other limit (L, ))L2), the roles of R, and R2 are ex
changed.

In any case, there is a unique ground state for each
(ai, o;2). It is then tempting to conclude that the Hall
conductance should be an integer using the theory of to-
pological invariant. This conclusion is wrong for two
reasons. First, the arguments of topological invariant are
only applicable to a state separated from others by energy
gaps which do not become zero in the thermodynamic
limit. ' Secondly, linear-response theory does not apply
when the gaps are small such that Zeper tunneling be-
comes important. However, both the linear-response
theory and the topological invariant arguments are valid
for a group of states which are separated from others by
finite-energy gaps, even though the energy gaps among
themselves are infinitesimal. At a temperature larger
than the energy splittings, the q states are equally popu-
lated. The total Hall conductance can be calculated as
the average of the contribution from each state' as if the
Kubo formula is applicable to each of them. A more
direct way is to invoke the topological invariance, and to
calculate it in the absence of the impurity potential. Both
methods should, of course, give the same result:
o „=(p/q)(e'/h).

—fd'x d' x'i 1[( x) i' V( x—x')
i
P(x') i', (3.2)

where V(x —x') describes the interaction between elec-
trons. After integrating out the electron field P we obtain
an effective Lagrangian for the electromagnetic field A„:
exp i f dt L,tr(A„)

= fDQ*Dgexp i f dt Lo(g, A„) . (3.3)

We say (3.1) is an effective theory of the electron system
(3.2) if the same effective Lagrangian L,tt( A„)can be ob-
tained after we integrate out P and a„in (3.1):

exp i dt L,ff A„
=fDQ*DQDa„exp i fd xylo„(P,a„,A„)

(3.4)

To satisfy (3.4) the GL effective Lagrangian may be very

complicated and contain high-derivative terms. In (3.1)
we only keep the lowest-derivative terms because we are
only interested in low-energy and long-wavelength prop-
erties of the system.

All the physical properties of the electron system are
measured by an electromagnetic field A„.Therefore, we

may use the effective theory to study the physical proper-
ties of the effectron system. The GL effective theories are
useful because some states, like FQH, have simple forms
in terms of the effective theories. Some physical proper-
ties of those states are more transparent when expressed
in terms of the effective theories. The effective-theory ap-
proach is more general. It may apply to high-genus
Riemann surfaces where the ordinary magnetic transla-
tions cannot be defined and used to study the ground-
state degeneracy. It also applies to the case with a
spatial-dependent magnetic field.

Certainly the effective theories are not unique.
Different ground states have simple forms only in the

where q is an odd integer and f„„is the field strength of
a„.A„is the electromagnetic field and a„is a U(1)
gauge field introduced in Ref. 20. In this paper we will
always regard A„asa fixed classical background field.
We will not discuss the dynamics of the electromagnetic
field.

The precise meaning of the GL effective theory (3.1) is
the following. An interacting (spinless) electron system
in presence of electromagnetic field is described by the
Lagrangian

o= d'x *
i o-Ao — *

r -eA '1

me
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different effective theories. To study different FQH states
we may use different effective theories to simplify the
problem. The equivalence between (3.1) and (3.2) has not
been proven in the sense that (3.4) is satisfied. However,
it is demonstrated that (3.1) reproduces all known long-
distance and low-energy properties of the FQH state.
Therefore, we will assume (3.1) is the effective theory of
the FQH states, at least in the low-energy, long-
wavelength limit. The effective-theory approach is less
rigorous because (3.4) has not been rigorously established
yet.

According to Ref. 20, the FQH state is given by a
mean-field vacuum of (3.1):

1/2
e 8

0, (t)
a, +eA, = +5a;(x, t),

L,-

where 5a;(x, t) satisfies

a, x, t d x=O.

(3.6)

5a; corresponds to the local excitations and 8; global ex-
citations. The effective theory of the global excitations 8,
is obtained by integrating out ao, 5a;, and P:

tions around the mean-field vacuum (P) =&n have
finite-energy gaps. Therefore, the vacuum degeneracy
(excitations with zero energy) can only come from the
global excitations. On the torus we may separate the lo-
cal and the global excitations by writing

ed„+a„=O,
(3.5) exp i f dt L,tt(8, )

where n is the electron density. The filling factor is given
by v= 1/q and the Hall conductance o0=(1/q)(e /h ).

Now let us consider the FQH state on a torus of size
L, XL2. Notice that all the local quasiparticle fluctua-

I

DaoD a D exp l d'x GLap 37

Substituting (3.6} into (3.1) we find that (3.7) can be
rewritten as

exp i f dt L,tt(8;) =exp i f dt (8,8z —828i) fDaoD5a; D&exp i f d x[X&(a„,P)+X,(5a„)] . (3.8)
1

4~q

L,tt(8; ) can be shown to have the following form:

L,a(8; }= (8,8z —8z8, )
4mq

+f, (8, )8;+ ,'M(8 i+82)——Vi(@i,dp)

+(higher-derivative terms) . (3.9)

V, (8, +2trp, , 8,+2mp, )= V, (8, ,8, ) )

f((d +2np„82+2mp2 }=f;(Bi,82) .
(3.1 1)

the winding number of P on the torus coordinated by
(x„x2).The symmetry (3.10) implies that the potential
V, (6'; ) and the function f, (8) are periodic functions

The first term in (3.9) comes from the Chem-Simons
term. The second and the third terms come from the
quantum fluctuations of P and 5a, . (See Fig. 1). The po-
tential term V, (6, ) is nonzero because the P field con-
denses. V, is of order n /m. Notice that P carries a unit
charge of the a„gauge field and the path integral in (3.8)
is invariant under the following transformations:

p]x] p2x2P~P'=exp i 2m— +.
L) L2

The explicit form of V, (8, ) may be obtained in a semi-
classical approximation. In this approximation we as-
sume 5a;=0 (in this case f, =0). The integration of
ao(x„)imposes a constraint

The integration of P is truncated to a summation of sta-
tionary points given by

(Bi,82)~(8i+ 2mp i, 82+ 2vrp2 ),
(3.10) pjx& pox'(x)=&n exp i 2' +-

P lP2 L, Lq
(3.12)

where p, and p2 are integers such that P' is a single
valued function on the torus. In other words, (pi,p2) are

I

where p, and pz are integers. Now (3.8) becomes

1 n L L
exp i dt L,tt(8, ) =exp i f dt (8,82 —8~8, ) g exp i dt (8—i+2mp, ) + (8~+2~p2)

4vrq 2m L, L2
y PIP2

We find that

n

l' 2

(3.13)

For other values of 8, , V, (8&) is determined by (3.11).
We would like to emphasize that the specific forms of

the potential V, (8; ) and the function f; (8; ) are not im-

portant in our discussions. Our discussions (followed
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FIG. 1. Some of the Feynman diagrams which contribute to
the second and the third terms in (3.9).

below) only depend on the periodic condition (3.11). The
periodic condition is a consequence of the charge-one-
boson (P field) condensation and is very robust. The
periodic condition can be changed only through phase
transitions in which, for example, the charge-one-boson
condensation changes to charge-N-boson condensation.

Now we are ready to study the dynamics of the global
excitation governed by (3.9). The Lagrangian in (3.9)
effectively describes a charged particle moving in a 8
space. There is a periodic potential in the 8 space V, (0, )

with period 2nin bot.h the 8r and 8r directions. The first
and the second terms in (3.9) imply, that there is a "mag-
netic" field in the 8 space with (2m. /q) flux per plaquette.
This system has been studied in detail. " The Hamil-
tonian is given by

H=K i +iAi, i +iA&
1 2

+ V(8, ,8r),

(3.17}

cess described in Sec. V produces physical operators pro-
portional to T, or T2. Noticing that T& and T2 do not
commute, we cannot regard T, and T2 as the gauge
tran sformations, because the gauge transformations
should leave all physical operators invariant. Noticing
that T) and T) commute with T, and T2 [see (3.16)], we
can still regard T'f and T) as gauge transformations.
This implies that we may identify 8, with 8, +2~q and

8z with 82+ 2~q. The 8 space is still finite.
We would like to emphasize that the above result does

not depend on the particular simple form of the approxi-
mated Hamiltonian (3.14). The ground states remain q-
fold degenerate as long as there exists the magnetic
translations which satisfy the algebra (3.16) and commute
with the Hamiltonian (3.14). This only requires that the
physics described by (3.14) is periodic and there is a 2n. /q
flux in an area of period square. Our result holds even
for the following general Hamiltonian:

with

1

2M

+ Vi(&r»2)

'2

+i A, + +iAr
1 2

'2

(3.14)

where K (x,y) is an arbitrary positive function and
V(8, ,82) an arbitrary periodic potential satisfying (3.11).
The "magnetic" field

is periodic with period 2m in both 8, and 8z. B(8; ) fur-
ther satisfies

The ground state of (3.14) is found to be q-fold degen-
erate. One way to prove this result is to notice that 0 in
(3.14) commutes with the magnetic translations T, and

T2

T, :8,~8,+2m,

T2:8q~8~+ 2m. .

T, and T2 satisfy an algebra

T T =e" 'J'T T2 2 2 1

(3.15}

(3.16)

whose irreducible representation has a dimension of q.
The ground states of H must form a representation of
(3.16) and hence have to be at least q-fold degenerate.
Sometimes the ground states may be nq-fold degenerate if
difFerent irreducible representations of (3.16) happen to
have the same lowest energy. However, this is not a gen-
eric situation.

We would like to remark that the magnetic transla-
tions T, and T2 are the quantum realization of the classi-
cal transformations in (3.10) with (m, n) equal to (1,0) and
(0,1), respectively. In the absence of the Chem-Simons
term the transformations (3.10) should be regarded as the
gauge symmetry. This means that we should identify 8,
with 8, +2~ and 8z with 82+ 2~. The 8 space is actually
finite However, . in the presence of the Chem-Simons
term the quasiparticles (and the quasiholes) carry a frac-
tional charge. The quasiparticle-quasihole tunneling pro-

J'"j"dd, dB,B(8, )=
o o

' ' '
q

(3.18)

The periodicity in 8& and 82 is a consequence of the
gauge symmetry (3.10) and the 2n/q flux is .determined
by the coefficient of the Chem-Simons term. Therefore,
we expect that the Hamiltonian for 8& and 82 has the
form of (3.17) even if we include all the quantum correc-
tions (except for a nonperturbative effect which vanishes
exponentially in thermodynamic limit). (See Sec. V.}

Now let us include the impurity potential in our sys-
tem. In the framework of the effective theory, the effects
of the impurity potential may be include by allowing the
various coefficients in the effective GL theory to have a
spatial dependence, except that the coefficient in front of
the Chem-Simons terms which must be a constant as re-
quired by the gauge symmetry. We also alIow the mag-
netic field B to have a spatial dependence. In this general
situation, the above discussions are still valid. The trans-
formations (3.10) remain a symmetry of the path integral
in (3.8) and the Hamiltonian for 8, and Oz still takes the
form in (3.17). Thus, the ground states remain q-fold de-
generate.

We would like to stress that the derivation presented in
this section is not strictly correct. To obtain the effective
theory for 8; we have assumed that 8, are slow variables.
But the 8; and other local fluctuations actually have a
similar energy scale. The separation of the global and the
local fluctuations is quite artificial in this case. However,
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the effective theory of 8; does contain correct algebraic
structure. This is the reason why we obtain the correct
result. A more rigorous and abstract derivation will be
presented in the next section.

IV. TRANSFORMATION-ALGEBRA ANOMALY
AND THE GROUND-STATE DEGENERACY

OF THE FQH STATES

In this section we are going to give a general proof of
the ground-state degeneracy of the FQH states on a
torus. We will construct operators similar to, but more
general than, the magnetic translation operators intro-
duced in Sec. II. These operators commute with the
Hamiltonian of the system, but not with each other, im-

plying the degeneracy of the energy eigenstates of the sys-
tems. The proof given here is general enough to apply to
situations with random potential, spatial-dependent mag-
netic field, and many other perturbations, as long as all
quasiparticle excitations have finite-energy gaps.

The essence of the approach in the last section to the
ground-state degeneracy is the magnetic translations
(3.15) (in t) space), which is nothing but the gauge trans-
formations (3.10). Therefore, the better approach is to
directly use the algebra of the gauge transformations
(3.10) to calculate the ground-state degeneracy without
deriving the effective Lagrangian (3.9) for the global exci-
tations. To do so we first need to quantize the Lagrang-
ian (3.1). In the following we will allow p, m, A, , and the
magnetic field in (3.1) to have a spatial dependence.

We may quantize the gauge field ' a„in the gauge

a0=0 .

The equation of motion for ao serves as a constraint:

(4.1}

G [f]=i fd'x f(x)
5ao

=i f d x f(x) —P*P— e'~f;
1

4~q
J

=i fd x f(x)G(x)=0, (4.2)

where f (x) is an arbitrary globally defined real function
on the torus. After quantization the constraint (4.2) is
met by demanding all the states in the physical Hilbert
space to satisfy (the Gauss law}

(4.3)

where f;(x) have a 2m jump along a loop in the x, direc-
tion which goes all the way around the torus (Fig. 2}.
One can check

T, 'fi; T, =&, +d, f, (x),
(4.8)

if (x)
Notice that t);f&(x) and e ' are smooth functions. TJ
generate nonsin gular transformations and are well-
defined operators. From (4.4) and (4.5) T, and Tz can be
shown to satisfy the famous algebra

T T =el(2~iq)T T1 2 2 1 (4.9)

The algebra (4.9} is very important. The noncommuni-
tivity of T, and T2 is purely a quantum effect. Classical-
ly the transformations generated by f, and f2 definitely
commute with each other. Due to the algebra (4.9), there
is no state which is invariant under both T, and T2.
Despite the classical Lagrangian being invariant under
the transformation (4.8), the quantum states cannot be in-
variant under T& and T2. We will call this phenomenon
transformation-algebra anomaly. T, and 1, are physical
operators in the sense that they are generated by the
physical tunneling process discussed in Sec. V. The phys-
ical Hilbert space is defined as a representation of the
physical operators. In particular, the physical Hilbert
space forms a representation of the algebra (4.9). Because
the gauge transformation must commute with all the
physical operators, we cannot regard T& and T2 as gauge
transformations. However, froin (4.9) we find that Tf
and T) commute with T] and Tz. We may regard T'f
and Tf as generators of (large) gauge transformations.
Since Tf and Tf commute, we may require the physical

On the other hand, (4.3) implies that e ' ~%~„„)
=~%~h„), meaning that the physical state should be
gauge invariant. Because f (x) is single valued on the
torus we will call e' ~fl a local gauge transformation.

Using C(x) we can also construct so-called large trans-

formations. Consider the operators

Ti =exp i f d x f, ( x)Q( x)

(4.7)
Ti=exp i f d x fi(x)G(x)

From (3.1) we see that a, and a2 canonically conjugate to
each other

[a, (x),a2(y)]=i2nq6 (x —y) .

Similarly,

(4.4)

(4.5)

Using (4.4) and (4.5) one can easily check that G gen-
erates a gauge transformation

e '
a, e'G f]=a +it) f,

—iG[f]y iG[f] —if'
(4.6) FIG. 2. f, (x) and f2(x) have a 2m. jump along the two loops

1 and 2, respectively.
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states to be invariant under these large gauge transforma-
tions

""~pi+ 1.p2& ~

I~lp), p, &=e' ""
lp, p, +I& .

(4.14)

(4.10)

Because T, and T2 commute with T'f and T), T, and T~
naturally act on the physical Hilbert space, i.e., a physi-
cal state when acted on by T, and T2 still remains a
physical state.

The Hamiltonian of the system (3.1) is given by

H= —
—,'P (8;+ia;+ieA; ) (r);+ia, +ieA; )P

—p(x)p p+&(x)(p p)' . (4.11)

The Hamiltonian commutes with G (f), Tt, and T).
Therefore, H acts on the physical Hilbert space. H also
commutes with T~ and T2. Therefore, each energy level
of H is q-fold degenerate and forms an irreducible repre-
sentation of (4.9). In particular, the ground states of the
FQH state are at least q-fold degenerate on the torus.

We would like to remark that once written in the GL
form, the system has a degeneracy, despite the disorders
in the coefficients (A„p,l, , m) of the theory, as has been
proven in Sec. III and this section. However, the reader
should be warned that the effect of disorder in the origi-
nal theory is a difFerent story and is discussed in Secs. II
and V. Disorder in the original theory may give rise, in
addition to the disorder in the GL theory, to corrections
in the GL Hamiltonian (4.11), which breaks the sym-
metries of T, and T2.

In the following we would like to discuss the ground
state wave functions of the FQH state. In the boson P
condensed phase, the Hilbert space is divided into sec-
tors. The states in each sector describe the quantum fluc-
tuations around the stationary point

The ground states in different sectors all have the same
energy.

In the above discussion we did not consider the gauge
symmetries. The ground states in different sectors, in
general, are not the physical states, i.e., they do not satis-
fy (4.3) and (4.10). Only some particular superpositions
of those ground states correspond to the physical ground
states. In the absence of the Chem-Simons term, all
physical operators commute with T& and T2. Since T,
and T2 commute, we may require the physical states to
be invariant under T& and T2.

(4.15)

l0,p„&=g p)p2& . (4.16)

Therefore, in the absence of the Chem-Simons term, the
ground state is nondegenerate as we expected.

In the presence of the Chem-Simons term, T& and T2
are the physical operators. The physical ground states
form a representation of (4.9). In terms of ~p,pz &, the q
physical ground states satisfying (4.10) and forming a rep-
resentation of (4.9) are given by

'""Ip)p~&, (4.17)

We may choose the phase of ~p, pz & such that a(p, pz)
and P(p, p2) in (4.14) are equal to zero. This is possible
because T, and Tz commute. It is not difficult to see
that, in using ~p, p2 &, we can only construct one physical
ground state satisfying (4.15):

2m'a;= —eA;+p,
(4.12)

where n =1, . . . , q. The phases of ~p, p2& have been
chosen such that

where P is given by (3.12). Thus, different sectors are
P)P2

labeled by two integers (p&,pz). The states in the sector
(p&,p2 ) are given by the wave functional (4.18)

27Tp
%[a, ,P]=% —eA, + +5a, , g +5/ (4.13) One can check that this choice of the phases is consistent

with the algebra (4.9). The states ~n z„&satisfy

where 5a; and 5$ are small Auctuations around the sta-
tionary point. In the thermodynamic limit, the states in
the different sectors do not mix, i.e., the quantum fluctua-
tions cannot connect a state in one sector to another state
in a different sector. The Hamiltonian does not contain
off-diagonal terms (in the thermodynamic limit) which
mix two different sectors. Let ~p, ,p2 & denote the lowest-
energy state (the ground state) in the sector (p„p2). No-
tice that T& and T2 map a state in one sector to a state in
a different sector. Since T, and T2 commute with the
Hamiltonian, they map the ground state of one sector to
the ground state of another sector:

7',
I
n p, y &

= l(n +1)p,y &,

T ~n &=e ' " '"~n
2 phy phy

I npgy &
= I(n +q)p~y & .

(4.19)

In the thermodynamic limit the perturbative Hamil-
tonian does not mix different physical ground states, and
all the physical ground states have the same energy.
However, for finite system the tunnel process described in
Sec. V induces a term in the Hamiltonian which mixes
the different ground states and lifts the ground-state de-
generacy.
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V. ENERGY SPLIT OF THE GROUND STATES
OF FINITE SYSTEM

In Sec. IV we show that the ground states of the FQH
state are q-fold degenerate even in presence of random
potentials. This is because the generators of the algebra
(4.9) commute with the Hamiltonian of the system. How-
ever, the above result is only valid in the thermodynamic
limit. For systems with finite size there is a nonperturba-
tive effect. After including the nonperturbative effect, the
Hamiltonian obtains a small correction proportional to

—L(m 6)ye ' ' which does not commute with T1 and T2.
Therefore, the energy of the ground states can be shown

—L[m*w]'"to have a split of order ye
The nonperturbative effect comes from the following

tunneling process. A pair of quasiparticles and
quasiholes is virtually created at a time to. The quasipar-
ticle and quasihole move in opposite directions and prop-
agate all the way around the torus. When they meet on
the opposite side of the torus, they annihilate at time
to+ T. The resulting new ground state is different from
the old ground state. The magnitude of the tunneling
amplitude is given by

IAl=e

a0=0,
i (z —zp)

a i (z)+ ia2(z) =
2 2 ~1 e~2

lz —z, l'+ g"

(5.3)

where z =x, +ix2 and zo is the position of the quasiparti-
cle. g and g' in (5.3) are positive, which determines the
size of the quasiparticle. A pair of the quasiparticles and
quasiholes is describes by the ansatz

y(z) [z z(i(—t)][z —z('i (t)]+f (Iz(i —zpl/g)

lz —z (t)llz —z (t)I+('
i (z —z(i)

ai(z)=iaz(z) =
Iz —z, I'+g'

(5.4}

tion is exponentially small.
In order to obtain the explicit form of the nonperturba-

tive corrections and to show that the corrections do not
commute with T, and T2, we need to study the tunneling
process in more detail. The quasiparticle in the FQH
state is given by a vortex in the P field. The ansatz of the
quasiparticle may be chosen to be

y(z) z —zo{t}
v n lz —z (t)l+g

'2

S=Th+2 —,
'm' T,L

(5.1) i (z —z(i)
2 2 ~1 ~2

z —
z(i +g'

—L(t( i (5.&)

Therefore, the magnitude of the nonperturbative correc-

where 6 is the energy gap of the quasiparticle-quasihole
pair creation, m' is the effective mass of the quasi-
particle, and L is the size of the torus. (In this section
we will assume L i =L2 =L.) S is minimized
at T= ,'L(m'!6)' —with the minimum value
S=L(bm')'~ . Hence,

where zo and zo are the positions of the quasiparticle and
the quasihole, respectively. The function f(x) in (5.4)
satisfies f (0)=g and f (x)=Ol„». When Izp —zo I

is

large, (5.4) describes a vortex and an antivortex. When
zp zp =0 (5.4} describes a meail field vacuum state.
Thus, by separating zo and Zp, (5.4} describes a process of
creation of a quasiparticle and quasihole.

In order to construct the quasiparticle and the
quasihole on the torus, P and a, must satisfy the periodic
boundary conditions. We find that, on the torus, a pair
of the quasiparticles and the quasihole is given by

$(z)

2%F (zlzp zp )L +f(zp zp )exp i
2

Re(zp Zp }Imz
L 2

IF(zlzo, zi )I+&'
(5.5)

i(z —zp —Z „)
a, (z)+iaz(z)= g z —zp —Z„+P

i (z —zo —Z~„)
2 2 ~1 ~2

lz —z, —Z „I'+('
where Z „=mL+inL. f (zp, zp) is a positive periodic function of zp and zp:

f (zp+mL+inL, zp+mL+inL)=f(zp, zp) . (5.6)

f (z z o)is pnonzero only when Izp —zo —Z
„

I (g for some m and n. f (zp, zp)=g'. F(zlzp, zp) in (5.8) is a periodic func-
tion in z:

F(z+Llzp, zp) =F(z+iLlzp, zp)

Fhas a zero at zo,

=F(zlzp, zp) . (5.7)

F{zlzp,zp)-(z zp}l, (5.8)
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and an "antizero" at zp,

F(zlzp, zp) (z' —zp ) I, (5.9)

An order O(1) function F satisfying (5.7)—(5.9) is given by

F(zlzp»p}=exp i—
2 Re(zp —r p)[I m2z+L] exp — [Im(z —zp)]2 — [Im(z:z )]2

X8)
z ZQ z zp

(5.10)

where 8)(ulv) is the odd elliptic 8 function satisfying

a)((( + 1
l
~)

8)(u lr)

8)(u +rl~)
8)(u lr)

(5.11)

8)((il~)-(i .
when zp

=z
p or z p

=zp+L, F satisfies

F(zlzp zp)=lF(z zp zp)l

F(zlz(), z()+L)=e ' " " 'lF(zlz(), z())l .
(5.12)

When zp and zp are well separated, f in (5.5) can be
dropped and (5.5) describes a quasiparticle at zp and a
quasihole at zp. When zp and zp are close to each other
(5.5) describes creation or annihilation of the quasiparti-
cle and the quasihole.

The tunneling process described at the beginning of
this section is obtained by choosing zp(t) and zp(t) in (5.5)
to be

field vacua

v'n

—i (2n//L)(pl xi +p~x2 )

2a;= p, —eA, .
(5.16)

The different vacua are connected by transformations T,
and T2. From (5.14) and (5.15) we see that the tunneling
process for the quasiparticle moving in the x& direction
changes the (0,0) vacuum to the (0,1) vacuum. Similarly,
the tunneling in the x2 direction changes the (0,0} vacu-
um to the (

—1,0) vacuum. We may define the amplitudes
of the above tunnelings, (0,0)~(0, 1) and (0,0)~( —1,0)
to have zero phase (i.e., the amplitudes are real and posi-
tive). The tunneling from, say, (p„p2)to (p„p2+1}can
be obtained by making a gauge transformation. The
configuration describing the tunneling

(p) p2}-(p) p2+I)
is given by

—i(2~/L)(p)x) +p2x2)'=e
l

zp(r)=zp(r)=0, r &rp,

zp(r)= —zp(r)= r, t, &t &tp+T,L
(5.13)

2m'
a =a;+ p;,

(5.17)

Lzp(r)= zp(r)= —,r &rp+T .

where (ii and (2; are given by (5.5). The phase of the tun-
neling amplitude is

Before the tunneling (t & tp) the vacuum state is given by
(5.5) withzp=zp:

a1+~a2 ~A
&

ieA2
n

(5.14)

After the tunneling (t & tp+ T) we have zp= zp=L/2—
and the vacuum state is given by

—i(2x/L)x—=e 2

n

2m—eA& 2 A2 .
(5.15)

The two states (5.14) and (5.15) are related by the trans-
formation T2. This result is easy to understand because
from Fig. 3 one can see that the quasiparticle-quasihole
tunneling adds a unit a„flux quantum to the hole of the
torus.

Let us use two integers (p),p2) to label diff'erent mean-

FIG. 3. A solinoid (represented by the dotted lines) creates a
quasiparticle and a quasihole when pearing through the torus.
The particle-hole tunnel process discussed here can be viewed as
a solinoid cutting through the torus. Such a process adds unit
flux to the hole, which changes the winding number of (}}going
around the hole.
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f'( )( +1) d + GL a(sV' |-L aI~9'
Similarly, we find that for the tunneling (p, ,pz)

2&P 1= Jd'x BOa2-
4aq L

2&P 2
~oa,

(5.18)

277@2
+(Pl P2)(Pl 1 P2)

q
(5.20)

27TP 1

'P(1, 2)(1, 2+ ) (5.19)

where a, is given by (5.5). After some calculations we
find that

,
,

as the phase of the hopping amplitude be-
(P2 P2)(P1 P2)

tween two different states is not a physically observable
quantity. Physically observable quantities are the phases
of tunneling with the same initial and final states. Let us
consider the following tunneling process:

(pl p2) (pl p2+1) (pl 1 p2+1) (pl 1 p2) (pl p2)

(see Fig. 4). The total phase of the tunneling is given by

=2~
Pl'P2 Pl'P2 Pl'P2 Pl 'P2 Pl 'P2 Pl 'P2 Pl'P2 Pl 'P2

q
(5.21)

The tunneling in the x, direction, (p„p2)~(p„pz+1),
changes one ground state to another and defines a unitary
matrix U1 acting on the ground states. The tunneling in
the x2 direction, (p&,p2)~(p, —l,p2), defines a unitary
matrix U2 acting on the ground states. The result (5.21)
implies that U, and U2 satisfy the algebra

U U U U = '(n'q
2 1 2 (5.22)

U1=y2T2

U2 =y1T1
(5.23)

After including the nonperturbative effects, the Hamil-
tonian (4.11) receives a correction

which is identical to the algebra satisfyed by T1 and T2.
Noticing that U, (U2) changes a state to its transformed
state by T2 ( T, ), we may conclude that, in the subspace
spanned by the degenerate ground states, U2 and U, are
proportional to T, and T2, respectively,

hH= A ( U) + Ut+ U2+ U2 )

= A(y, T, +y2T2+H. c. ),
—l. (hm )

+ 1/2

(5.24)

hH does not commute with T1 and T2. The ground-state
degeneracy is lifted by the nonoerturbative effects. The

—L(sm )'"
energy split js of order ye

We would like to point out that the tunneling process
described by Fig. 4 can be deformed into two linking
loops (Fig. 5). Therefore, the phase in (5.21) is equal to
the phase we obtained by moving one quasiparticle
around another. This phase is given by 28 where 8 is the
statistical angle of the quasiparticle. Thus, (5.22) can be
rewritten as

U 'U 'UU =e'
2 1 2 1 (5.25)

Because the ground states form a representation of the
algebra (5.25), the ground-state degeneracy is directly
determined by the statistics of the quasiparticles.

We would like to remark that the tunnelings along two
different tuneling paths given by, say, x2 =0 and x2 =hx2

B

FIG. 4. The four particle-hole tunnel processes are represent-
ed by the four directed paths in the space time. ABCD
represents the torus. AB is identified with CD and BC is
identified with AD.

A

FIG. 5. The four tunnel paths in Fig. 4 can be deformed into
two linked loops.
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t (e B/q)b~2L L( *&)i/Zy~ dhx2e e (5.26)

If our system respects translation symmetry, m * and 5 in
(5.26) do not depend on Ax2 and we find that y=0. The
ground-state degeneracy is exact even in system with
finite size. This agrees with the result in Ref. 10. Only
when the translation symmetries are broken can the
ground-state degeneracy by really lifted by the nonper-
turbative effects.

Strictly speaking, the total tunneling amplitude is given
by the sum of the amplitudes of all different tunneling
paths C:

A ~ J Dx(t)exp i It
)—cd xA

q

m*.
Xexp —tt}cdt x(t)+b, + V(x(t))

(5.27)

where x(t) describes the tunneling path C and V(x) is the
random potential. Or equivalently, we may express the
tunneling amplitude A in terms of the Green functions of
the quasiparticle and the quasihole, G~ and 6":

A — d x dt G x,x + ;to, to +t-v

I.XG~ x,x ——;tp,tp+t (5.28)

If we ignore the phase factor |t)cdx A, the second
—L(hm )exponential in (5.27) gives rise to the factor e ™

in (5.24). The summation of the phase factor
exp[i(e/q) f cdx A] corresponds to the reduction fac-
tor y in (5.24). Because the phase factor changes ex-
tremely fast from path to path, the factor y itself may be
exponentially small.

In a potential produced by a single impurity (i.e., a po-
tential which is nonzero only in a finite region}, the quasi-
particle can only do circular motion due to the strong
magnetic field. The propagator of the quasiparticle is lo-
calized and takes the form

have a phase difference

e 8 ax, L
q

because the quasiparticle carries the electrical charge
e/q. Therefore, after summing up all the tunneling paths
associated with different Ax&, the factor y in the tunnel-

ing amplitude (5.24) takes a form

different because of possible resonance effects. Let us
consider a periodic potential V such that there is a multi-
ple of 2mq Aux going through each plaquette. Such a po-
tential changes the Landau levels of the quasiparticles
into energy bands with a finite width. The nontrivial
dispersion relation E(k) (k is the crystal momentum) im-
plies that the quasiparticles are delocalized by the period-
ic potential. In other words, the wave packet of the
quasiparticle moves in a straight line in the presence of
the periodic potential. In this case we expect the tunnel-
ing amplitude to be a linear exponential in L:

e
—a(L /I) (5.30)

~ ~ ~ ~ ~

~ ~ ~ ~

A more direct way to understand the above result is to
notice that the easy tunneling paths alpha by the periodic
potential have phase factors which only differ from each
other by a multiple of 2n (Fig. 6.) There is no cancella-
tion between the amplitudes of the easy paths. All the
easy paths together contribute to the total tunneling am-
plitude A, a term of order e

For generic random potentials, the qusiparticle Green
function is shown to have a form

~G(x x 'w }~ e
—a()x —x'~/g)

In this case the tunneling amplitude is expected to be
given by (5.30}.

The point of the above discussion is the following. The
strength of the tunneling amplitude A depends on wheth-
er the quasiparticles are localized or not in the potential
V. If the quasiparticles are not localized (e.g., in the
periodic potential), the amplitude A is expected to be of
order e ' ~". If the quasiparticles are localized (e.g., in
the single impurity potential}, the amplitude A is expect-
ed to be smaller than e ' ", or more precisely,
ln~ A~/L ~—~ ~L „.In case of single impurity poten-

—a(L /I )tial we further expect A -e
Before ending this section we would like to mention

that Haldane has suggested that the tunneling process
discussed in this section may change one ground state of
the FQH system to another ground state. In the topolog-

~
G(x,x', w)

~

-e ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

(5.29)

When the potential V is periodic, the situation is very

where I is the magnetic length and a an O(l) constant.
Therefore, we expect the total tunneling amplitude A to
be a quadratic exponential in I.:

e
—a(L /I )

FIG. 6. The dotted lines represent the minima of the poten-
tial. The two easy paths (a) and (b) favored by the potential en-
close an integer number of plaquettes. The phase of tunneling
amplitudes of (a) and (b) only differ by a multiple of 2m. .
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ical Chem-Simons theory the algebra of the tunneling
loops (or Wilson lines) (5.22) has been used to construct
all the ground states. Read has also pointed out that the
tunneling loops satisfy the algebra (5.22) which may be
used to construct the ground states. These physical pic-
tures and ideas are demonstrated explicitly in this section
in the frame work of the effective GL theory of the FQH
effects.

N

eI (i op a—Ip
e—I' 3p )el

I'= 1

+ 41(i8;—ar; —eq'2;) 4
1?lI

+ Vl(e )
'—e&"'ar„O~u

4~q
(6.1a)

VI. THE GROUND-STATE DEGENERACY
OF THE HIERARCHY FQH STATES

+ V(4) — e"" a„8~i
4mq

(6.1)

with e' = (r /s)e where (r, s) and (p, q ) are two pairs of in-
commensurable integers. The Hall conductance is given
by

P e02 Pr2 e2

iii -2 fiq qs

and the filling fraction v=pr /qs =p/q. We always re-
scale a„such that 4 carries a unit a„charge. To obtain
(6.1) we include the possibility that the FQH state is
given by an n-boson condensed state (P")%0. Thus, 4
in (6.1} may correspond to P" in (3.1}. In this case q in
(6.1) can be an even integer. However, an electron sys-
tem may not be able to produce the general GL theory
(6.1) with all possible integer pairs (r, s) and (p, q). It is
possible that only a subset of the integer pair (r, s) and
(p, q) is realized by electron systems.

When (r,s)=(1,1) and (P,q)=(1 3), (6.1) describes a
Laughlin state with filling factors v= —,'. The wave func-
tion of this FQH state is given by

For the general filling fraction v=p/q, the FQH states
are given by the hierarchy scheme suggested in Ref. 29.
The hierarchy FQH states may be described phenomeno-
logically by the following effective GL theory:

XoL=4'(imp ap——e'Ap)4+ 4'(iB; —a; —e*A;) 41

If we choose eI'=e and pr=qr=l, (6.1a) describes an
IQH state with N-filled Landau levels. For simplicity we
will concentrate on the efFective GL theory in (6.1). Most
of the results obtained for (6.1) can be easily generalized
so that they also apply to (6.1a).

The discussions in Secs. II and III can be directly gen-
eralized to apply to (6.1). The transformations T, and T2
defined in (3.7) now obey an algebra

T T = i(2~Plif)T T&
—e 2 1

(6.2)

The ground states of (6.1) defined on the torus have q-fold
degeneracy in the thermodynamic limit.

The quasiparticle in (6.1) has a fractional statistics
given by e=nP/q The d. enominator of the statistical an-
gle is directly related to the ground-state degeneracy.
The statistical angle 8, however, is not directly related to
the Hall conductance o or the filling fraction
Pr /qs =p/q

We would like to remark that the two hierarchy FQH
states given by the same (p, q ) and different (r, s) have the
same (low-energy) topological structure or topological or-
der. They only differ by a rescaling of the electric charge.
On the other hand, two FQH states with the same Hall
conductance (and filling fraction p /q) may have a
different topological order corresponding to different
(P, q) [and (r, s)].

We would like to make a side remark here. We know
that in the mean-field approach the anyon superQuid
states are closely related to the QH states. The filling
fraction v of the associated QH problem is determined by
the statistical angle 8 of the anyons:

g (z —z, ) exp
i &j

where z; =x;,+ix, z are coordinates of the electrons.
However, when (r, s}=(2,1} and (P,q)=(1, 12), (6.1) de-
scribes a different FQH states with the same fill factor
v= —,'. Such a FQH state can be regarded as a Laughlin
state for electron pairs, whose wave function is given by

g (Z; —Z )' exp
i&j

where Z; are center-of-mass coordinates of the electron
pairs.

We would like to remark that a more general effective
GL theory of the QH states may contain several boson

fields and gauge fields, for example, it may take a form

We know that the QH states with the same filling fraction
may have different topological orders. This fact suggests
that the anyon superfluid state may have different
phases. ' Each phase has a different topological order.
The quasiparticle excitations in different superAuid
phases may have different statistics. In particular, the
semion superfluid state obtained from the QH state of
two filled Landau levels does not support quasiparticles
with fractional statistics, while a different semion
superfluid state obtained from the (tide binding) semion
pair condensation does support semionic quasiparticle ex-
citations.

We would like to emphasize that in this paper we only
show that the ground states of the FQH state are at least
q-fold degenerate on the torus. Our proof does not ex-
clude the possibility that the ground-state degeneracy
may be large than q. However, our results do imply that
the ground-state degeneracy must be a multiple of q.
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VII. DUALITY PICTURE AND APPLICATIONS
TO THE CHIRAL SPIN STATES

The GL theory (6.1) has a dual form ' in which the
order parameter 4 is replaced by a U(1) gauge field a„.
Some discussions in the previous sections become more
transparent in the dual theory.

To give a simple heuristic derivation of the dual theory
of the GL theory (6.1), let us first turn off a„and A„in
(6.1). Now (6.1) described a superfluid state. However,
the low-lying excitations have a spectrum of the form
sk=k /2m corresponding to the free-boson condensa-
tion. For interacting bosons the low-lying spectrum is
linear e, k =c,k which describes a phonon mode. There-
fore, the low-lying excitation of the superfuid is rather
described by

L=fd x (B~)
2g

(7.1)

after including the interactions. In (7.1) we have set the
phonon velocity c, =l. g in (7.1) is the rigidness con-
stant. y is the phase of 4. The superfluid current J; is
given by

We would like to mention that the FQH state for ex-
ample, at filling fraction v= —'„may be described by (6.1)
with (P,q)=(1, 10} and (r,s)=(2,1). The quasiparticle
carries a charge e/5 and has a statistic 0=m/10. It is
not clear whether the integer pair (p, q ) = (2, 5) and
(r,s}=(1,1) can be realized by (spinless) electron systems
or not.

J„(a"+e*A")— a„B~&e""
4mq

"
to (7.5) we obtain the dual theory of the GL theory

2

LdGL= x
2 „,+

4
a„+e*A„,~c."'

4~

a„B~&e"""+—,
' ((Bo+iao)%(

4mq
"

,'c2—[(B—,+ia, )q f' ——,'m„'fef' (7.6)

After integrating out a„weget

2

LdGL= d x „+A„,&e"'
4

particle such that it creates a minimum quantized vortex
[see (7.4}]. There is no particle carrying fractional a„
charge because the circulation of a vortex is quantized.
The fact that the a„charge of the excitations in the dual
theory is quantized as an integer reflects that the
superfluid state is a single-boson 4 condensed state, i.e.,
(4)WO. Had the superfluid state come from the N
boson condensation, (4 )%0, the a„charge would be
quantized as a multiple of 1/N.

The GL theory (6.1) of the FQH effects is obtained by
coupling the superfluid current J„to a„+A„and includ-
ing the Chem-Simons term of a„.We may do the same
thing to the dual theory (7.3) of the superfluid to obtain
the dual theory of (6.1). After including

J;= By.1

g
2

(7.2) + q a„B~„e"'+-,'~(B,+ia, )q~'

Therefore, g =rn /n (in the limit c, = 1).
It is pointed out in Refs. 32 and 34 that (7.1) is

equivalent to a U(1) gauge theory described by

C'
/(B, +ia, )ef' ——,'m„'/e(' (7.7)

2
'x ~ (7.3)

where f„„=B„oBg„,if we —identify the superfluid
current J; and the sperfluid density Jo =n with e„&f~:

1 —
pJ„= e„&f~ . (7.4)

A vortex in the superfluid can be viewed as a particle
carrying „charge. Including the vortex-antivortex exci-
tations, the effective theory may be written as

I.= Jd x f„„+,'~(BO+iao)4~

—
—,'c„f(B,+ia;)4/ —

—,'m„/+/ (7.5)

The vortex density is given by Re(i+ Bo+). A qI particle
creates an "electric" field 7;o around it. From (7.4) we
see that the "electric" field in radial direction corre-
sponds to a superfluid current circulating around the 0
particle. Thus, the 4 particle indeed generates a vortex
in the superfluid. We have assigned a unit a„charge to 4

describes the quasiparticle (quasihole) excitations
above the FQH state. Due to the Chem-Simons term in
(7.7), the 4 particle (the quasiparticle) generates 2np/q
flux of the a„gauge field. As a bound state of charge and
flux, the quasiparticle has a fractional statistics
O=n(p/q). The quasiparticle carries fractional electric
charge (P/q )e' which can be derived from the coupling
(e'/4n ) A„f,i,e"""in (7.7).

To rigorously prove that (7.7) is eff'ective theory of the
FQH state, we need to prove that, after integrating out
a„and 0', (7.7) produces the same effective Lagrangian
Ldr( A„)as the electron system does. A relation similar
to (3.4) should be satisfied. Although here we cannot
show that (3.4) is satisfied by the dual theory (7.7), the
dual effective theory does reproduce (at least qualitative-
ly) all known low-energy properties of the FQH states.
Therefore, we expect that the FQH states are correctly
described by (7.7) at low energies and we may use (7.7) to
study another (unknown) low-energy properties of the
FQH states.

In order to use the dual theory (7.7) to study the
ground-state degeneracy of the FQH states, we first need
to quantize (7.7). At the moment let us ignore the
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=8;m'+ c'JB,a. =0 .
4mp

(7.8)

m' in (7.8) is the canonical momentum conjugated to a;:

quasiparticle field 4. Following the approach in Sec. IV,
we may quantize (7.7) in the gauge ao =0. The constraint
associated with the equation of motion is

G(x)= ~~dGL = g, a,.f"+ ~ 'au
&ap 4 2mp

strict the physical Hilbert space by requiring the physical
states to satisfy, for example,

(7.16)

because G [f, ] and 6~[f2 ] commute.
Notice that 6[af, ] and G[af2] commute with G[f].

When a=JJ/q, 6[af, ] and 6[af2] also commute with

G[f, ] and 6[f2]. Therefore,

g -OI+ 9'~ &I-aGL

5a, 4m 4m@

After the quantization the operators 8; and 8; satisfy

(7.9)

f2

(7.17)

[n.;(x),8 (y) ]= i5 (x —y) . (7.10)

Under the gauge transformations a, and m; transform as

8, ~8, + "r);f,
(7.11)

m., ~8';+ s"d~f,
4m

where f is a single-valued function on the torus. Using
(7.10}we see that the gauge transformation (7.11) is gen-
erated by the operator

G[f]=exp i J d x d,f m'+ e'~if~4'

TT —e' &&'TT
1 2 2 ] (7.18)

and the physical states form a representation of the alge-
bra (7.18). The Hamiltonian of the dual theory (7.7) is
given by (after ignoring ql field)

2 . 2
g (foi)2+ g (f 12)2 d2x (7.19)
8m 8m

act on the physical Hilbert space defined by (7.13) and
(7.16). Later we will show that T, and T2 are generated
by the quasiparticle tunneling described in Sec. V and
they are physical operators. T& and Tz satisfy the alge-
bra

=exp —i dx 6 x (7.12)

The constraint (7.8) is satisfied by the physical states,
6(x)IV~~„&=0. The condition (7.13) defines the physical
Hilbert space.

The operator 6 [f] given by (7.12) is well defined even
when f is a multivalued function. In particular, 6 [af, ]
and G[af2] are well-defined operators, where f, and f2
are defined in (4.7) and a is a constant. Using (7.10) and
(7.12) one can check that 6[af, ] and G[I3f2] satisfy an
algebra

6[~f ]6[Pf ]=e"~"'"'6[Pf ]6[~f ]. (7.14}

Because the a„charge is quantized as integers, this is
equivalent to say that G[f, ] and G[f2] generate the
(large) gauge transformations and commute with all the
physical operators. However, because 6 [f, ] and 6 [f 2]
do not commute

6[f&]6[f2]=e'"""'6[f2]6[fi] (7.15)

ifp%1, we cannot require the physical states to be invari-
ant under both 6[f, ] and G[f2]. But we can further re-

Once again the constraint (7.8) generates the gauge trans-
formation. Due to the gauge invariance of the theory, all

physical operators commute, with 6[f]. Noticing that
6 [f] and 6 [f'] commute, we may require the physical
states (which form a representation of physical operators}
to satisfy

(7.13)

2m 8;
a, = +5a, (7.20)

from (7.4), we see that 8, (82) corresponds to a constant
current density in x2 (x, ) direction. Therefore, s'JB, are
proportional to the center-of-mass coordinate x„.The
operator T, and Tz shift 8;:

8;~8;+2m
g

(7.21)

if we choose f, =2'(x; /I. ; ). Thus, the operator T, (T2)
discussed in this section corresponds to the magnetic
translation T2 (T, ) discussed in Sec. II which also shifts
the center-of-mass coordinates. However, the operators
T; discussed in this section have a local definition and can

The Hamiltonian commutes with the gauge generators
G[f], G[f&], and G[f2]. Therefore, H acts on the phys-
ical Hilbert space. The Hamiltonian (7.19) also com-
mutes with the physical operators T, and Tz. Hence, the
ground states of H must form a representation of the
algebra (7.18) and are (at least) q-fold degenerate.

We would like to remark that the above discussions
demonstrate that the topological Chem-Simons theory of
compact U(1) gauge field can be (mathematically) con-
sistently quantized, even when the coefficient in front of
the Cern-Simons is a rational number. This is true at
least when the space-time metrics is kept fixed.

We would like to point out that if we separate the local
and the global excitations by writing
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be easily generalized to the high-genus Riemann surface.
Now let us consider the effects of the quasiparticle Auc-

tuations 4. First we notice that, for finite torus, two
operators

L

W& =e —i dx&a&

L
W& =e +i dxzaz

0

(7.22)

are invariant under the gauge transformations generated
by G[f], G[f~], and G[f&]. There is no reason to ex-
clude the gauge invariant term

bH=(c& W, +cz Wz+H. c. ) (7.23)

from the effective Hamiltonian. Indeed, after we in-
tegrate out the 4 field (with fixed a„),b,H is induced by
the quasiparticle fluctuations. It precisely comes from
the quasiparticle-quasihole tunneling process discussed in
Sec. V. Under T; the operators W; transform as

T 'W T =e " ~~'W

Tq 'W)T~= W

T) WqT] = 8'~,

T ] K T =e i(2nP/g) ~z z 2

(7.24)

When restricted to the subspace spanned by the ground
states [which are assumed to form an irreducible repre-
sentation of (7.18)], W& ( Wz ) can be shown to be propor-
tional to T~ (T&). Because AH does not commute with

T;, the ground-state degeneracy is lifted by the quasipar-
ticle tunneling effects.

Using the approach in Sec. V we can show explicitly
that the quasiparticle tunneling generates physical opera-
tors T, .

On the torus the quasiparticle-quasihole tunneling dis-
cussed in Sec. V is given by the following ansatz:

q .„~z—z, —Z.„~'+g'
i(z —z0 —Z „)

z —z, —Z „~'+g' (7.25)

g 21T
U2'(~1 ~2) ~1 ~2+

q L

277
Ui. (ai, az} ai—,a2

q L

(7.26)

where z0 and zo satisfying (5.13) are the coordinates of
the quasiparticle and the quasihole. After the tunneling
(in the x& direction), an initial configuration (a&,az) is
changed to a final configuration [a„a~+(p/q)(2m/L)].
The tunneling in the xz direction changes the
configuration (a &, a& ) to [a &

—(p /q)(2m'/L), a& ]. Let us
use operators U& to Uz to denote the above transforma-
tions:

P —1P—1P P i(271.P/q)
z (7.27)

From (7.26) and (7.27) we see that U, are proportional to
T--

According to Ref. 5, after setting A„=O, (7.7) with

p = 1 and q an even integer is precisely the effective
theory of the chiral spin states. The 0' field now de-
scribes the spinon excitations. Therefore, the discussions
in this paper about the FQH states also apply to the
chiral spin states. In particular, we find that the ground-
state degeneracy of the chiral spin is very robust as sug-
gested in Ref. 8. The degeneracy persists even when the
translation symmetry is broken, e.g. , when the spin-spin
coupling J; has a spatial dependence.

VIII. GROUND-STATE DEGENERACY
OF THE FQH STATES

ON ARBITRARY RIEMANN SURFACE

(8.1)

where

and

D„4=(B„+ia„+A&)4

D 4'=(8 ia —ie*A —)4' .P P P P

g ~ in (8.1) is a two-dimensional metrics which, in general,
has a spatial dependence. The matrices g'~ is necessary
because we cannot choose a single coordinate patch to
cover the whole Riemann surface X with g%1. On the
Riemann surface X with g (1 the translation symmetry'
is bound to be broken.

We will use the method developed in Sec. IV to derive
our result. On a Riemann surface X there are 2g canoni-
cal one-cycle denoted as a, and P„a= 1, . . . , g (Fig. 7).
We choose 2g functions fb (b=l, . . . , 2g) on Xs such
that f, has a 2m jump along a, and f +, has a 2m jump
along P„herea = 1, . . . , g. However, we require d;f, to
be a smooth vector field on X . Using f, we define uni-
tary operators T, as the following:

T, =exp i fd x f, (x)C(x)

=exp i f d x 4 ~4—f,

In Ref. 7 the ground-state degeneracy of the chiral spin
states [described by (7.7) with p=1] is shown to be q s

(for a given chirality) on a Riemann surface with genus g.
In this section we will derive a similar result for the FQH
state. We will take the Lagrangian (6.1) as our starting
point. However, on an arbitrary Riemann surface X
with genus g%1, (6.1) needs to be generalized to

1XoL=C'iD04 g'~D—
,
C&'D 4

2m

Using the similar calculation performed in Sec. V [see
(5.16)—(5.22)], we find that U& and Uz satisfy

Xexp —i f d x a, B f,E'j, a =1, , 2g .
27Tq

(8.2)
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IX. DISCUSSIONS

FIG. 7. A Riemann surface and its canonical one-cycles a,
and P, (for g =3).

[&,(x),82(y)] =i2m+5~(x —y), (8.3)

we find that

T Tb exp l J d x B;f r} fbe TbTg
2&/

(8.4)

The exponent in (8.4) can be evaluated and we find

X i + J b 6 = 277 'Qzb

(8.5}

if
After a transformation by T„4~4'= e
remain a smooth function on Xg. Using the commuta-
tion relation

In this paper we show that the FQH states on the
Riemann surface X have q -fold degenerate ground
states if the quasiparticles in the FQH states have frac-
tional statistics O=mp/q. The fact that the ground-state
degeneracy depends on the topology of the space suggests
that the degeneracy is not due to the broken symmetry.
We also show that the ground-state degeneracy (in the
thermodynamic limit) is robust against arbitrary pertur-
bations. This means that the ground-state degeneracy
remains a constant in a finite region in the phase space.
Therefore, we may use the ground-state degeneracy to
characterize different phases in the phase space. We may
say that the phases with different ground-state degenera-
cy have different topological orders. As we change the
coupling constants in the theory, the ground-state degen-
eracy may jump which signals a phase transition between
two phases with different topological orders.

If one insists on a symmetry-breaking picture, one may
regard the ground-state degeneracy considered in this pa-
per as a result of broken "topological" symmetries. The
topological symmetry transformation is defined as the fol-
lowing. Consider a FQH state on a torus. We adiabati-
cally add a unit Aux through the hole of the torus [Fig.
9(a}]. The Hamiltonian is invariant after adding a unit
Aux. Therefore, the adiabatic process changes one

(r},b)=
0 1

j 0 Igxg

where Is&,s is a g Xg unit matrix. Therefore, (8.4} can be
rewritten as

i (2' lip )T Tg+ Tg+gTgjQ lj ~ ~ ~ jg

[T„Tb]=0,bAa+g, a, b =1, . . . , 2g,
(8.6)

where we have assumed T, +2g
= T, . The pairs of opera-

tors T, and T +, generate g copies of the algebra (6.2),
which commute with each other. Each copy of the alge-
bra contributes a factor q to the ground-state degeneracy.
The total ground-state degeneracy is q .

If we compactify the space into g copies disconnected
tori, the ground states of (6.1) are obviously q -fold de-
generate. The result in this section implies that the
ground-state degeneracy is unchanged after we connect
the g tori by tubes to form a genus g Riemann surface
(Fig. 8}.

FIG. 8. A genus-two Riemann surface is formed by connect-
ing two tori by a tube.

FIG. 9. A torus with Aux going (a) through the hole and (b)
through the tube.
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FIG. 10. Two ground states resulting from a broken symme-

try can be connected by a domain-wall-tunneling process in

which a domain sweeps over the whole system.

U tU iU U = t(2nP q)
1 2 1

(9.1)

where p/q is the filling fraction. Therefore, U, and U2

cannot be the identity in the subspace spanned by the
ground states. This implies that the topological symme-

try is spontaneously broken.

ground state of the FQH state to another. Such a trans-
formation can be represented by a unitary operator U,
which acts on the ground states. Similarly, the adiabatic
turning on a unit Aux going through the tube of the torus
[Fig. 9(b)] generates an operator U2 acting on the ground
states. We call the operators U, and U2 the topological
symmetry transformations. Notice that the topological
symmetry transformations can be defined only after we
specify the topology of the space. The very existence of
the topological symmetry depends on the topology of the
space. On the spheres there is no topological symmetry.
That is why the ground state of the FQH states is nonde-
generate on the sphere. On the Riemann surface X of
genus g, there are 2g topological symmetry transforma-
tions. From Ref. 13 we find that the operators U, and

U2 satisfy the algebra

On a finite system, the ground-state degeneracy may be
lifted by finite-size effects. For the degenerate ground
states associated with ordinary symmetry breaking, the

/ 2

energy split is expected to be of order e ~&, where g is
a microscopic length scale of the theory and L is the size
of system. This is because the different ground states as-
sociated with the broken symmetry can only be connect-
ed by a tunneling process in which a domain wall sweeps
over the whole system (Fig. 10). Such a domain-wall-

L 2/ 2

tunneling process has an amplitude of order e
However, the different ground states associated with the
broken topological symmetry can be connected by the
particle tunneling process (see Sec. V). In this case the
energy split is given by e ~. Such an energy split also
indicates that the ground-state degeneracy of the FQH
state is not due to the ordinary broken symmetry.
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