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Random walks in percolating networks with two jump frequencies
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The time dependence of the mean-squared displacement of a random walker on a random net-
work is studied, for the case that there are two very different jump probabilities and that the con-
centration of the better conducting bond is close to percolation. A scaling theory is proposed and
discussed, and numerical simulations of the three-dimensional bond problem are used to verify the
scaling predictions.

I. SCALING LAWS

How are the laws of diffusion and transport modified
when the medium in question is a random AB mixture of
good- and poor-conducting regions? Hong et al. ' have
given a scaling theory and qualitative discussion in
response to this question. The purpose of this paper is to
present a slightly different interpretation of this scaling
theory, and to give some simulation results that demon-
strate that this alternate discussion is correct.

The system under consideration is modeled as a lattice
with a random distribution of jump rates assigned to its
bonds. Specifically there is a concentration p of good-
conductor bonds with (large) jump rate 8, and a concen-
tration 1 —

p of poor-conductor bonds with (small) jump
rate A. At long times the mean-squared displacement of
a random walk on this lattice will in general grow linearly
with time T, at a rate determined by the diffusion con-
stant. The behavior of the diffusion constant near the
percolation threshold is the same as that of the conduc-
tivity in the corresponding network, which exhibits
singular behavior as p~p, and A/8~0. Building upon
the scaling theory for that problem ' and the scaling
theory for the A =0 case, we consider a scaling law

(R )—:TD(E, A, B,T ')

=is T D(e/A, , A, 'A /is, A, '8 lp, d p, 'A, '~ "'T '),

where e=(p —p, )/p„d is the lattice spacing (or any oth-
er microscopic length), and A, and p are arbitrary parame-
ters. This equation only holds in the critical region,
which restricts its applicability to the limits that e is
small, A is much less than B, and T is large. It asserts an
internal structure to D, such that it holds constant value
along curves in the e, A, B, T parameter space. The scal-
ing in p states how the diffusion constant and the rate
coeScients transform under a change of units for T and is
a simple consequence of dimensional analysis. Hong
et al. ' have attempted to make something more out of it,
claiming that it links two limiting problems. However,
the only difference between an "ant" problem (such as
A =0.001, 8= 1) and a "termite" problem (A = 1,
8= 1000) is a scale factor (here 1000) in the diffusion con-
stant and time scale.

The scaling in A, is nontrivial, and implies that for
smaller e the same value of ( R ) /T will be observed if A
is decreased while B and the time scale are increased in
specified ways. The form of the function is determined
by matching to the standard special cases, which will now
be verified.

The diffusion function D is only singular when the
three arguments e, A /8, and T ' are simultaneously
zero; if we identify the largest of these, we can perform
expansions in the other variables. Thus for
~e~ ) ( A /8 )' '+" and long times, expanding in the small
parameters gives

( R ) =e'BT D(sgne, 0, 1,0)

+E 'ATD(sgne, O', 1,0)

+ e~ 'd D(sgne, 0, 1,0')+

P—2v+sd 2y A (4)

They identify w as being the time required for the random
walker to explore the typical finite cluster and ~H as the

where the prime indicates a partial derivative on the indi-
cated variable, and values @=Be' and A, =e been chosen
to simplify the representation.

For e) 0, D(1,0, 1,0) is nonzero and the leading term
describes the diffusio'n in the percolating phase. The last
term is an offset due to small time behavior, and the
second term is unimportant in this case.

For @&0, there is no diffusion for A =0, so that
D( —1,0, 1,0) vanishes. The second term now describes
the small diffusion below the percolation threshold, and
the last term is the contribution from finite clusters. The
prefactor of the last term is e~ " rather than g =e
because this is the average over walks rather than the
average over clusters: the ensemble weights differ in
that the probability that the random walker is on any
given site of a cluster is inversely proportional to the size
of the cluster.

In both of these cases "large T" is defined relative to
the time scale

P—2v —td 2yg

Hong et al. ' define a second time constant
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A t/(s+t)B s/(s+ t)
C

and the characteristic length scale is

( A /B )
— l( t v+ s )

(6)

For short times, the fourth argument of D is control-
ling, and the scaling law becomes

(2v —j9)/(t+2v —P)

D(0,0, 1, 1)

(t+s+2v —P)/(t+2v —P)
Ad BT

d2

XD(0,0', l, l)+O(e) .

At the percolation threshold and for A =0, the "sma11-
tirne" regime extends to infinity, and (R ) has a pure

time required to escape from it, and give a sketch in
which ( R ) is increasing for T & r, has a plateau for
r & T & rH, and exhibits a linear (diffusive) increase for
~H & T. This picture is based on the assertion that most
of the sites on the perimeter of a finite cluster are interior
to it. However, with the exception of the two-
dimensional square bond problem, this is generally not
true. In three dimensions (p, =0.2492) the poorly con-
ducting region occupies three fourths of the lattice and is
quite well linked; almost every perimeter site can be used
to escape from the cluster.

It is contended here that there is only one relevant time
scale, just as there is only one length scale. This time
scale characterizes the length of time required to ade-
quately sample the various environments of the percolat-
ing system; on time scales larger than ~ the inhomogenei-
ty has been averaged out allowing the linear-in-T behav-
ior (which is already present at the earliest times) to be
clearly perceived. Note that for A =8, the linear in-
crease of (R ) starts immediately at T=O with no time
constant required. The time penalty to the random walk-
er to finally escape from a finite cluster of B links (as dis-
tinct from leaving the cluster for a region interior to it) is
already included in the conductivity exponent t. The
time interval ~H can be retrieved from the theory as being
the time required for a mean-squared displacement of or-
der e~ " (a characterization of the size of the finite clus-
ters) for a diffusion process with diffusion constant of or-
der A e ', however, nothing interesting happens on this
time scale. Numerical evidence for this contention will
be given below.

The scaling law (1) can also be used to discuss the
large-time behavior for ~e~ & ( A /B)' "+'. In this region
the A /B is the controlling parameter and we can expand
in e and 1/T:

(R 2) -( A /B)'l"+'BT D(0, 1, 1,0)

+e( A /B )' '+"BTD(0', 1, 1,0)

+(A/B)'~ "' "+'D(0, 1, 1,0')

for small A the range of e is quite small. The first term
introduces the characteristic conductivity

power-law behavior for all but the shortest times (where
nonuniversal behavior is most likely to be encountered).

Fitting this power law is an alternative route to the
determination of the exponent t, which has both advan-
tages and disadvantages relative to the Kirchhoff law ap-
proach. The greatest advantage is that the simulation
program is very simple, and trivially vectorized (by con-
sidering a set of noninteracting walkers). A major draw-
back is that a large number of walks needs to be con-
sidered to extract the diffusion constant from the statisti-
cal noise; but this is partly discounted by the observation
that what is wanted is not the diffusion constant for any
one network but the diffusion constant for an ensemble of
them: the KirchhoFs law approach gives too much in-
formation (at great expense) about one realization and en-
counters the statistical fluctuation problem in the ensem-
ble averaging; the random walk method gives incomplete
information about one realization quite cheaply, allowing
a large number of configurations to be averaged in. This
approach has been used to determine the ratio t /v to
good accuracy.

The foregoing discussion assumes that one of the three
parameters e, A/B, or 1/T is controlling. However, in
the crossover region where, for example, e'+ " ~ and
T ' are comparable, both scaling laws apply and the cor-
responding terms match.

Gefen et al. ' have given a different result for short
times (A =0):

(R 2) T2v/i)+2v —p) (9)

II. SIMULATION RESULTS

The foregoing ideals were tested by generating random
walks on percolating clusters on the simple cubic lattice,
for which" p, =0.2492. The three-dimensional percola-
tion exponents are believed to have the values'
P=0.454+0.008, v=0. 88+0.01, t =1.94+0.1, and

Their theory differs from the present one in that ( R ) is
calculated using only the walkers which are on the
infinite cluster. Close to the percolation threshold the
density of the infinite cluster is vanishing (with exponent
P); the behavior is difFerent since it is a miniscule and
rather anomalous subset of all walkers that is being con-
sidered. The usefulness of this alternate definition is de-
batable: we observe that the restriction to the infinite
cluster is only meaningful when A =0, and that their re-
sult is not obtained as the A ~0 limit. In a transport
measurement, the current resulting from a finite frequen-
cy driving field (which would be sensitive to the value of
the time constant) would include contributions from
finite clusters intersected by the electrodes, and there
would be response currents in internal finite clusters,
which also experience the driving field. The Gefen et al.
definition has the attractive feature that it studies the
most interesting clusters, but it not been used for numeri-
cal simulations, since it requires identifying the infinite
cluster (i.e., one that extends beyond the boundaries of
the simulation box); close to p, in a large box it will be
relatively uncommon that the "infinite" cluster includes
the origin, making it difficult to get good statistics.
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40- III. FREQUENCY DOMAIN
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FIG. 4. (R') as a function of time, for p=p, =0.2494. The
values of A considered (starting from the lowest curve) are 0.0,
0.0001, 0.0002, 0.0003, 0.0004, and 0.0005. Each curve
represents 128 X 5000 walks of 5000 steps on a 61' cube.

[according to Eq. (8)] with the exponent
(2v P)/(t+—2v —P)=OAO; it was verified that the bot-
tom curve in this figure can be reasonably fit using the ex-
ponent values given previously.

The scaling laws (8) and (5) can be combined to show
that the family of curves shown in Fig. 4 should coalesce
into a single universal curve if ( A /B)' " ~' "+'(R ) is
plotted as a function of z=(A/B)"+ " ~' "+'BT/d .
Figure 5 shows that the curves do superimpose when
plotted this way. The result is one not very sensitive to
the value of s. The resulting curve can be fairly success-
fully represented by the function a +bz+ cz

Several different definitions have been given for a
frequency-dependent conductivity or diffusion constant,
based on different models for the transport mechanism.

Gefen and Goldhirsch' have discussed the response of
a diffusion model to time-dependent sources. They find

that the ratio of current to driving field depends strongly
on sample dimension, so that conductivity is no longer a
useful definition. This model takes the equivalence of dc
conductivity and the diffusion constant too literally; in
general currents are driven by fields, not concentration
gradients.

In another model for the inhomogeneous conductor at
finite frequency, the resistors become impedances. ' '
Capacitance between grains provides a significant reac-
tive part to the poor conductances A. This model is most
appropriate to the low-frequency domain, below the plas-
ma frequency of the good conductor. Note that in the
low-frequency limit, there is no field in dead-ended
branches: it is screened out very quickly by the electron
gas. The theory for this model is a simple generalization
(making all conductivity variables complex) of the theory
of the two-component conductor. Thus at p„ the ac con-
ductivity is expected to have a co'~"+' ( =co '

) frequency
dependence [compare Eq. (6)].

A different model considers particles that do not in-
teract or interact via a short-ranged force and which are
driven by a uniform external field. ' This model might
also apply to the low concentration limit of the diffusion
of charged particles (for which the plasma frequency is
very low). Now particles are carried into the dead-end
branches by the field, and the time required for a
diffusing particle to sample the various environments be-
comes significant to the dynamics. Linear response
theory applies to this case, and the frequency-dependent
conductivity is proportional to the Fourier transform of
(R').

o(co)~ —co j e ' " (R (T))dT, (10)
0

where g is a positive convergence factor. A scaling
theory similar to Eq. (1) can be given for cr:

o(e, A, B,co)=po(e/A, , A, 'A/p, A, 'B/p, d )Lc
'A~ "co),

FIO 5 {A /B)(2v —P)l( +s)( (R 2 ) &s z —{A /B)((+2v —P)l( +s()

XBT/d', using the same data as Fig. 4.

which can be discussed exactly as has been discussed pre-
viously. For example, at p, the frequency dependence of
the conductivity is predicted to be 0. =co' ~ =co
o(co) can also be related to a network problem, but now
the capacitances are between the sites and a ground
plane, rather than between sites.

There is a very good reason for pursuing this approach:
The function (R (t) ) contains information about all fre-
quencies, and constructing its Fourier transform is
equivalent to solving the network equations many times.
In this respect the random walk method gives more infor-
mation than the Kirchhoff law approach, which only
gives the conductivity for one frequency at a time; the
counterbalancing diSculty is that to get the true zero-
frequency conductivity, the random walks must extend to
very long times.
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Attempting to perform the Fourier transform on the
simulation results, one runs into several problems. For
nonzero 3 or p )p„ the integral in Eq. (10) should be
divergent (as ar ) for small co, but this will only be repro-
duced by the numerical integration if the range of in-
tegration is several times larger than I/co. Integrating
Eq. (10) by parts eliminates this problem but requires
differentiation of the numerical data, which amplifies the
statistical Auctuations in it. The coefticient of the diver-
gence (which is the dc conductivity) is determined by the
asymptotic slope of ( R ( T) ), which cannot be accurately
determined for most of the curves shown in Figs. 1 and 2

(r is too large). The statistical fluctuations also become
prominent for frequencies comparable to the reciprocal
of the time step. The needed extrapolation and smooth-
ing of (R ) can be provided by fitting it to a suitable
functional form. Thus, the ability to fit the data for
p=p, to the function a+bT+cT demonstrates that
0 (co) is well represented by the scaling form
0 &+ceo '
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