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We introduce a new representation of S =
—,
' quantum spins in terms of bond operators. The bond

operators create and annihilate singlet and triplet bonds between a pair of spins. The representation

is useful in describing the transition between dimerized and magnetically ordered phases of quan-

turn antiferromagnets. It is used to obtain a mean-field theory of the two-dimensional frustrated

quantum Heisenberg antiferromagnets considered recently by Gelfand, Singh, and Huse. The

method should also be useful in the analysis of random quantum antiferromagnets.

I. INTRODUCTION

The discovery of high-temperature superconductivity
in La2, Sr, Cu04 has led to a resurgence of interest in

the properties of two-dimensional quantum Heisenberg
antiferromagnets. ' There now appears to be a consensus
that the nearest-neighbor S =

—,
' SU(2) Heisenberg antifer-

romagnet on a square lattice displays long-range Neel or-
der in its ground state. Attention has therefore focused
on different methods of perturbing the nearest-neighbor
model to enhance the effect of quantum fluctuations,
leading to a destruction of magnetic order in the ground
state. There is evidence ' that nearest-neighbor,
square lattice SU(N antiferromagnets with quadratric ex-
change have two candidate ground states: (i) a Neel or-
dered state and (ii) a quantum disordered state that is
spontaneously dimerized for 2SAO (mod 4). Gelfand
et al. have recently examined frustrated S =

—,', SU(2)

quantum antiferromagnets on a square lattice by a series
expansion method. They found evidence for spontaneous
dimerization in the ground state. Additional supporting
evidence for spontaneous dimerization in frustrated SU(2)
antiferromagnets has emerged in the exact diagonaliza-
tion studies of Dagotto and Moreo. 6 (We note, however,
that alternative proposals on the nature of the quantum
disordered phase have also been made. ) Dimerized
phases were actually considered several years ago by
Bhatt and Lee' in their study of random spin- —,

' quantum

antiferromagnets which modeled the insulating phase of
doped semiconductors. We note that, in contrast to the
square-lattice models just discussed, the dimerization in
these random antiferromagnets is not spontaneous in that
no symmetry of the Hamiltonian is broken by the ground
state.

In this paper we shall introduce a new bond-operator
representation of quantum S =

—,
' spins that is specifically

designed to understand the properties of dimerized
phases. The method applies to both spontaneously and
intrinsically dimerized phases. It also displays the

boundary of instability of these phases to magnetically
ordered states. We will illustrate the method by applying
it to frustrated antiferromagnets considered by Gelfand
et al. These are square-lattice antiferromagnets with
first (J,), second (Jz), and third (J3) neighbor exchange
interaction. In addition a parameter A, multiplies some of
the interactions and is used to interpolate between an ex-
actly solvable dimerized limit A, =O and the limit with the
full symmetry of the square lattice A, = l. Our results are
summarized in Figs. 3, 4, and 5 and are in close agree-
ment with those of Ref. 5. Promising applications of the
methods of this paper to random antiferromagnets also
exist but will be postponed for future investigation.

The outline of the rest of the paper is as follows: In
Sec. II we introduce the bond-operator representation.
Sections III and IV presents results of a mean-field theory
calculation on the frustrated quantum Heisenberg anti-
ferromagnets considered by Gelfand et al. Finally, Sec.
V recapitulates and outlines proposals for further work.

II. BOND OPERATORS

- (It t &+Ill &),
(2.1)

We introduce the representation by considering two
S=—,

' spins, S, and S2. The four states in the Hilbert
space can be combined to form the singlet state Is ) and
the three triplet states I t„), I

t ), and I t, ) . We introduce
singlet and triplet creation operators that create these
states out of the vacuum IO). Thus

—(it&& —l~t&»1

v'2
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By considering the various matrix elements (s~S, ~t

(s~Sz~t &, . . . , it can be seen in a straightforward
manner that the action of S, and S2 on the singlet and
triplet states leads to the representation

S, = ,'(s —r +t~ i—e p tpt ),
Sz =

—,'( —s r r~—ie —
p tpt ),

(2.2)

(2.3)

So far we have not specified the algebra of the s and t
operators. it turns out that either the canonical commu-
tation ("bosonic") or the canonical anticommutation
("fermionic") relations reproduce the correct algebra of
the spin operators. However, the anticommuting opera-
tors were not found to lead a physically meaningful
mean-field theory and will therefore not be discussed fur-
ther. We will therefore use operators satisfying the bo-
sonic commutation relations

[s,s ]=1, [t,tp]=5 p, [s, t ]=0. (2.5)

Now it can be verified that as a consequence of the repre-
sentation [(2.2) and (2.3)], the constraint [(2.4)], and the
commutation relations [(2.5)], we have

[S,~&S,p]=ie(zprS, r & [S2(„S2p]=le,prS2~ &

[S„,Szp] =0,
S)= —,', $2 —3

2 4

S& S2= —
—,s s+-, t t

(2.6)

where a,P, y take the values x,y, z, repeated indices are
summed over and e is the totally antisyrnmetric tensor.
The restriction that the physical states are either singlets
or triplets leads to the constraint

s s+t t =1. (2.4)

For the calculations in this paper to be meaningful for
Hamiltonians with the full symmetry of the square lat-
tice, it is necessary that the magnetically disordered
phase be spontaneously dimerized. As noted in Sec. I,
there is evidence that such a spontaneous dirneriza-
tion does occur. For Hamiltonians that do not have the
full symmetry of the lattice, or for random systems, there
is no such arbitrariness in the choice of dimerization. It
is then appropriate to choose a dimerization in which the
exchange constants on the dimers are as large as possible
and lead to the smallest ground-state energy. Our calcu-
lations yield two different classes of ground states.

(i) Dimerized phases Th.ese are magnetically disor-
dered states. The dimerization can be either spontaneous
or intrinsic. Such states have the following anomalous
expectation values:

(s&&0, (r &=0, (r rp&=C5 p, (2.7)

The wave vector and polarization of the mode at which
the t bosons condense determines the nature of the mag-
netic ordering. We note, however, that the mean-field ap-
proach of this paper does not restore the equivalence (if
any) between the bonds connected to a site, and will al-

ways lead to a coexistence of dimerization and magnetic
order.

III. MEAN-FIELD THEORY

where C is a nonzero constant. The relationships imply
that the t bosons have condensed in pairs, but there is
no single t boson condensation.

(ii) Magnetically ordered phases. Condensation of sin
gle t bosons leads to long-range magnetic order. The
anomalous expectation values are now

(2.8)

These are just the properties expected of spin- —,
' SU(2)

operators.
The group-theoretical interpretation of this representa-

tion is straightforward. The tensor product of the two
spin- —,

' states on sites 1 and 2 can be considered as a reali-
zation of a representation of the group SU(2) X SU(2).
The well-known homomorphism" between SU(2) X SU(2)
and SO(4) is now realized by noting that S&+$2 and

$,—Sz are the usual generators of SO(4) "rotations" and
"translations. " From Eqs. (2.2) and (2.3) we now see that
the s and t bosons merely yield the canonical
"Schwinger boson" representation of the generators
S&+Sz and S,—S2 of SO(4). Moreover, the constraint
(2.4) is invariant under SO(4) transformations.

The application of the bond-operator formalism to the
lattice begins by the choice of a close-packed dimeriza-
tion of the lattice. The spin operators on the sites are
now expressed in terms of the singlet and triplet bosons
on the dimer connected to the site. The choice of the lat-
tice dimerization necessarily breaks the symmetry of any
Hamiltonian with the full symmetry of the lattice. In any
exact calculation this should have no effect on the form
of the final result. The symmetry will, however, not be
fully restored in an approximate mean-field calculation.

+J3 g S, .S
3NN

(3.1)

where (ij & denotes nearest neighbors, 2NN denotes
second neighbors (e.g. , i and i+x+y), 3NN denotes
third neighbors (e.g. , i and i +2x), and J, ,J2,J3 are posi-
tive exchange constants. ' The parameter A, controls the
strength of the intrinsic dimerization. At X=O, H con-
sists of independent dimers and is therefore trivially solv-
able. At A, =1, the full symmetry of the square lattice is
restored and the properties of H& should be independent
of 2).

This section will use the bond-boson representation of
Sec. II to developed a mean-field theory of the frustrated
square-lattice antiferromagnetic of Gelfand et al. The
definition of these models requires the choice of a dimeri-
zation 2) of the square lattice. All of the calculations in
this paper will use either the "columnar" [X=2)„Fig.
1(a)] or "staggered" [2)=2)„Fig. 1(b)] dimerizations.
Each dimerization 2) is now associated with a square-
lattice antiferromagnet

Hg)=J, g S S+A, J, g S S+J~gS S
(&j)&S (ij )&$2NN
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H, = g a(i,j )(t; tj~js, +t; tj .s,s;+H. c.),
ij &2)'

H2= g b(i j)(ie p~t, t,pt, rs, +H. c. ),
i,j E2)'

H3= P ( &j)( iajajpip ia jpja ip)
i,j FS'

(3.2}

We have introduced site-dependent chemical potentials

p; to impose the constraint (2.4} and the functions a, b, c,
which depend on 2),$' and the exchange constants.

The mean-field theory of H& is obtained by decoupling
the quartic terms to yield an effective quadratic Hamil-
tonian H . For simplicity we will limit further discus-
sion in the next two paragraphs to the cases X=2K=2),
or 2), . In this case we can use the translation invariance
of the problem to perform a Fourier transformation with
a single bond per unit cell.

Because of the —(Ji /4)s s term in Ho, it is clear that

We now substitute the operator representation in Eq.
(2.2} on the sites of the A sublattice and the representa-
tion in Eq. (2.3) on the sites of the B sublattice into the
Hamiltonian H. The bond bosons are chosen to reside
on a dimerization 2)' which is not necessarily the same as
2). It is clear that for small A, , the choice &=2)' will inin-
imize the energy; however, it is possible that for values of
A, near 1, a different choice may be appropriate. This
procedure transforms H into the following rather com-
plicated form

H~ =Ho+H)+H2+H3,

J)+ g —
p, +2k, A~(s) ti, tk

k

+A, +Bi,(s)(ti, t i, +ti, t i, }, (3.3}
k

where N is the number of dimers on the lattice. The
functions A k, 8k will have contributions from H

&
and H3

while all the quadratic decouplings of H2 are identically
zero. 3 i, and Bi, therefore depend upon ( ti, t i, ) and

(t&~t&~ ), where the expectation values have to be deter-
mined self-consistently in the ground state of H &. The
parameters p and s are determined by the saddle-point
equations

(3.4)

This decoupling procedure just discussed is equivalent to
determining the best variational wave function of the
form

In&=C'exp g», —g fkt&.t'&. 10& (3.5)

as the ground state of H , while satisfying the con-
straint (2.4}on the average.

The Hamiltonian H + can be diagonalized by Bogo-
liubov rotation y«=ukt«+ vkt k leading to the result

H zi=EG+2+coky~ l'g (3.6}

single s bosons will condense, (s) =s. The terms in H,
will in turn lead necessarily to a nonzero expectation
value of (t t ). Moreover, the translation invariance of
the problem implies that we may assume p, =p, site in-
dependent. This procedure leads finally to

3J)
H rj(p, s)=N — s —

iMs
—

iM

where

J)
8

2

+RA (AB )—k k

1/2

(3.7)

FIG. 1. {a) Columnar {2)=2),) and {b) staggered Q)=X), ) di-
merizations.

For small values of A. we will always find a solution of the
self-consistency equations (3.4) such that cubi, is real and
positive everywhere in the Brillouin zone. Under such
conditions, the system is in a magnetically disordered
phase with (t )=0. It is possible, however, that at a
critical value of A. =A.„cok will vanish first at k=ko. This
will lead to a condensation of single t bosons at k=ko
for A, )A, At nonzero value of ( t ) implies that the sys-
tem is in a magnetically ordered phase. If
e p ( t p ) ( t ~ ) =0, we deduce from the bond-boson repre-
sentation of the spins in Eqs. (2.2) and (2.3) that the wave
vector for magnetic ordering is ko+ ( m, ~} [the (n, n ) term
arises from the relative minus sign between Eqs. (2.2) and
(2.3)]. The mean-field theory in the inagnetically ordered
phase was obtained by taking the zero-temperature limit
of a finite temperature theory. In d =2 there is no mag-
netic ordering at any finite temperature, and so the
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decouplings of the theory are identical to those already
discussed. At T =0, (t ) acquires a nonzero expectation
value.

The generalization of this formalism to the cases where
2)%2)' is straightforward. It is necessary to choose a
larger unit cell, and the Bogoliubov rotation involves the
matrix functions u& and v&. Details of this generalization
are tedious and will not be presented explicitly. We turn
instead to a presentation of the results of the numerical
solution of the mean-field equations for various choices of
the exchange constants and 2).

IV. NUMERICAL RESULTS

Numerical calculations were carried out to determine
the best variational ground state of H+ for columnar
(2)=S,) and staggered (2)=2), ) dimerizations. For both
choices of 2/, we used mean-field wave functions obtained
by placing the bosons on the bonds of the columnar
(2)'=2), ) or staggered (2)'=2), ) dimerizations. The di-
merization 2), which minimized the energy, was chosen
as the ground state. As already noted, for small values of
A, , we expect 2)'=2). It is also clear that the procedure
outlined cannot be reliable when A, is close to 1 and J2 or
J3 is large. We then expect a dimerization of the lattice
based upon second or third nearest neighbors to be ap-
propriate; such ansatzes were not used in the calculations
of this paper.

The staggered and columnar dimerizations are the only
possible dimerizations of the lattice with a unit cell of
two sites. Other dimerizations of the lattice with larger
unit cells are shown in Fig. 2. It is clearly possible to ex-
tend the calculations of this paper to such dimerizations
but the large increase in numerical complexity has kept
us from doing so.

A further numerical simplification has been made in
the solutions of the mean-field equations presented in the
following: the dependence of A„and B„[Eq.(3.3)] on

0.8

06-

0.4—
Columnar dimerization

0.2-

( t t ) and ( t t ) was omitted. This is expected to be a
good approximation because s ))(t t ) for small )(,.
This approximation is equivalent to omitting H2 and H3
from the Hamiltonian. All of the calculations in the
magnetically disordered phases were repeated without
this additional simplification and were found to lead to
shifts in the phase boundaries and energies smaller than
1S% at the largest values of A, (See Fig. 3). In the mag-
netically ordered phases, the dropping of H2 and H3
makes the energy independent of the polarization of
(t ). The splitting of the polarization degeneracy by
terms in H2 and H3 has not been numerically investigat-
ed, but, from our results on the magnetically disordered
phases, is expected to have little effect on the phase
boundary of the magnetically disordered region.

The most detailed calculations were carried out for
J3 =0. The results for the columnar dimerization,
2)=X)„are discussed in Sec. IV A and shown in Fig. 3,
while those for the staggered dimerization, 2)=2)„are
discussed in Sec. IVB and shown in Fig. 4. Finally, re-
sults for nonzero J3 but with J2 =0 and 2)=2), are dis-
cussed in Sec. IV C and shown in Fig. 5.

I

0.2
I I

0.4 0.6
J2/ Jy

I

0.8

(a) (b)

(c)

FIG. 2. Dimerizations with unit cells larger than two sites.

FIG. 3. Mean-field ground state of H~ for 2)=2)„ the
columnar dimerization, and J3 =0. Only wave functions based
upon bond bosons placed upon the dimers of 2)'=2), and 2),
were examined. The magnetically ordered phases are denoted
by the ordering wave vector and a subscript (e=columnar or
s=staggered) denoting the type of coexisting dimerization. The
solid circles denote the results of calculations carried out in the
approximation that omitted H2 and H3. The open squares
denote the position of the phase boundary between the magneti-
cally disordered phase and (vr, m), ordering calculated with H&

and H3 included. The separation between the open-squares line
and the solid-circles line is thus an estimate of the error due to
the omission of H& and H3. Solid lines denote second-order
transitions, while dashed lines denote first-order transitions.
The magnetically ordered phases break spin-rotation symmetry,
while the (m, 0), phase and entire line A, =1 break square-lattice
symmetries.
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0.8—

Columnar

(z,g)z dimerization
o

~
t'

/

(Ko

0.6

0.4-
Staggered dimerization

0.2-

I

0.2
I I

0.4 0.6
J2/ J1

0.8

FIG. 4. As in Fig. 3 but for S=S„the staggered dimeriza-
tion and J3 =0. Unlike Fig. 3, there is a region where the mag-
netically disordered state has S'=S,AS. The state with
columnar dimerization, the states (m, m), and (~,0), and the line

X=1 all break lattice symmetries. The Hamiltonian is invariant

under the full space group of the square lattice at A, =1: Notice
the identity of the lines 3,= 1 between this figure and Fig. 3.

A. X)=2)„J3=0

The results of the calculation on Hri with 2)=2)„ the
columnar dimerization are shown in Fig. 3. Wave func-
tions based upon the columnar dimerization (2)'=2), )

were the lowest-energy states over the entire phase dia-
gram, except for a small region in the vicinity of A, =1
and Jz/Ji =I where, as already noted, the mean-field
theory is not expected to be reliable.

The magnetically disordered columnar phase is stable
for all 0(J2/J, 1 for 1,(0.46. The solid lines indicate
second order -transitions between the disordered and mag-
netically ordered phases. The spin ordering appears at
wave vectors k=(~, n) at small values of Jz/J, and at
k=(m, 0) for J2/Ji near 1 and is driven by Bose conden-
sation of the t bosons at the appropriate wave vectors.
The dimerization order persists everywhere in the mag-
netically ordered phase; this dimerization is columnar ex-
cept for a first-order transition into a staggered phase in
the vicinity of A, =l, Jz/J, =1. For A,W1, the columnar
order is natural and does not imply the existence of any
additional broken symmetry. However, the coexistence
of columnar and magnetic order at X= 1 does imply the
existence of a broken lattice symmetry. The formalism of
this paper clearly overestimates the tendency of the sys-
tem to dimerize: Thus the results of this paper cannot
conclusively settle the issue of whether spontaneous di-
merization can occur in a Neel state.

There is a regime 0.19(J2/Ji (0.66 in Fig. 3, where
the columnar dimerization, with no coexisting magnetic
order, is stable at A, =1. Thus, consistent with the results
of Refs. 4 and 5, we find a spontaneously dimerized
columnar phase in the Hamiltonian which has the full
symmetry of the square lattice (A. = 1).

0.5-

Columnar di
B. g)=g)„J,=0

0.0-

-0.5-

0.5 1.0
J3i J1

I

1.5

FIG. 5. Mean-field ground state of Hz as a function of J3/J&
and k for J2=0 and 2)=columnar dimer configuration in Fig.
1(a)~ Unlike Figs. 3 and 4, the calculations have been performed
only in the disordered phase. The dark lines denote instabilities
towards the appearance of magnetic order. The ordered phase
in the upper right is incommensurate and the ordering wave
vector at the phase boundary is (m/2, m

—(t) where

4 =cos (J 1 /4JB).

The results of the calculation on H& with g)=Q„ the
staggered dimerization are shown in Fig. 4. Unlike Fig.
3, however, wave functions with both choices of the di-
merization Xl'=2), and 2)'=2), were found to lead to
stable magnetically disordered phases. For small A, the
system is in a magnetically disordered staggered (2)'=2), )

phase and eventually undergoes second-order transitions
to magnetically ordered phases at wave vectors (m, n) and
(m, 0). At still larger values of A, , the system undergoes a
first-order transition to phases based upon columnar
(2)'=2), ) dimerization. The columnar dimerization is
present without any magnetic order in the range
0.19(J2/J, (0.66; this entire region therefore breaks a
symmetry of the underlying Hamiltonian which is based
upon 2) =2),. The columnar dimerization also persists in
the magnetically ordered phases, again breaking addition-
al lattice symmetries.

We note finally that at A, =1, Hz is independent of 2).
The phases along the line A, =1 in Figs. 3 and 4 are
therefore identical and represent the best variational
ground states of the spin- —,

' Heisenberg antiferromagnet
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with nearest-neighbor and second-neighbor interactions,
which have the full symmetry of the square lattice.

C. 2)=„Jz=0
Finally, we consider the effect of turning on a third-

neighbor coupling J3. We will restrict our analysis to the
case Jz =0 and Hamiltonian H& with XI=21,. Moreover,
because of the presence of incommensurate wave vectors
in the magnetically ordered phase, we will restrict our
analysis to the magnetically disordered phase and deter-
mine its boundary of instability to the appearance of
magnetic order. The results of the calculation are shown
in Fig. 5. Wave functions with columnar dimerization
(2)'=2), ) and no magnetic order were found to be stable
for 0.125&J3/J& &0.843 at A, = 1; in particular, they
were lower in energy than states with staggered dimeriza-
tion (2)'=2), ). This conclusion presumably holds at all
values of A, &1, as decreasing A. stabilizes the columnar
ordering. The magnetically disordered columnar phase
was found to have four different second-order phase
boundaries to magnetically ordered phases with the fol-
lowing wave vectors: (i) (m, m.) for A, )0 and small J3; (ii)

(n/2, m cos '(—J~/4J3)) for A. )0 and J3/J, near 1

(note that unlike other magnetically ordered phases the
wave vector is a continuous function of the exchange con-
stants); (iii) (m/2, 0) for A, &0 and small J3; and (iv) (m,0)
for A, &0 and J3/J& near l. All of the magnetically or-
dered phases and their ordering wave vectors are con-
sistent with the results of Gelfand et al. We note that
ordering wave vector has been determined only at the
boundary between the ordered and disordered phases. It
is possible that the wave vector will change in the interior
of the magnetically ordered phases.

(a)A, =1. The mean-field theory displayed a region of
values of J2/J~ and J3/J, at A, = 1 where a magnetically
disordered, spontaneously dimerized columnar phase is
the ground state. No other magnetically disordered
phase was found to be stable at A, =1. Thus our results
suggest that the magnetically disordered phase of certain
frustrated spin- —,

' antiferromagnets whose exchange con-
stants have the full symmetry of the square lattice, is
spontaneously dimerized in a columnar pattern. This re-
sult is consistent with the series expansions of Gelfand
et al. , the numerical diagonalization of Dagotto and
Moreo and the large-X results of Read and Sachdev.
Magnetically ordered states were also found at A, = 1, but
always with coexisting dimerizations. In contrast, the
large-N calculations do not find coexisting magnetic and
dimerization order. The calculations of this paper clearly
overemphasize the stability of the dimerization order,
and cannot be used to conclude that magnetic and dimer-
ization order can coexist. It remains an open question as
to whether there is a fundamental reason forbidding the
coexistence of magnetic and dimerization order.

(a)A, & 1. For A, & 1 the models were found to display a
large variety of magnetically ordered phases as shown in
Figs. 3—5. All of these phases and their ordering wave
vectors are consistent with the results of Gelfand et al.

A promising line for future study is the application of
this method to the disordered antiferromagnets con-
sidered by Bhatt and Lee. ' The physical picture
developed by them clearly indicates that a description in
terms of singlet bond operators is natural. The bond bo-
sons can be placed on the bonds with the largest ex-
change constants. Hartree-Fock decoupling of the Ham-
iltonian will lead to an effective Hamiltonian of the form

(4.1)

V. CONCLUSIONS

We have introduced a new bond-operator representa-
tion of quantum spin- —,

' operators. The representation is

specifically designed to investigate the properties spon-
taneously or intrinsically "dimerized" magnetically disor-
dered phases. A mean-field theory based upon this repre-
sentation yields a low-lying spectrum of spin-1 bosons.
At a critical value of the exchange constants the spin-1
bosons condense at a wave vector ko, leading to magnetic
ordering at k=ko+(~, m).

The bond-boson representation was used to determine
a mean-field phase diagram of the frustrated Heisenberg
antiferromagnets on a square lattice of the type con-
sidered recently by Gelfand et al. These are frustrated
antiferromagnets characterized by a dimerization 2) and
a parameter A, ; at A, =O, the ground state consists of
decoupled singlets on 2), while A, =1 restores the square-
lattice symmetry. It is useful to distinguish the cases
A, = 1 and k & 1 in the subsequent discussion.

where A;. and 8; depend upon the random exchange
constants. The localization properties of the bosonic ex-
citations of H, are not immediately apparent and are
presently being investigated. This method offers, in prin-
ciple, a systematic way of investigating the thermo-
dynamic and transport properties of random antifer-
romagnets.
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H=J)
(ij &el) ns

+A,2J,

S; S)+A, ,J,
ns

C C S

S;.S, +A, ,A.,J,

S; Sj

S, .Sj
(ij)eB —2) nn

S C S &ii) en, un,

+A)A2J, g S; S, +A, ,A,,J, g S, S, ,
2NN 3NN

where H~ corresponds to A, &=1, A,&=A., and Hz to k&=A.,
C S

A,&=1. Other values of 0& A, &, A,2 & 1 can be used to interpo-
late between H and H~ . For the case J3 =0, the phases of

C S

H are determined by the three parameters A, &, A,2, and J2/J&.
The phase diagrams obtained in this paper are two separate
two-dimensional cuts through this three-dimensional phase
space.


