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Spin-density-wave and charge-density-wave fluctuation and electric conductivity
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Making use of a microscopic model, we study theoretically the fluctuation contribution to the
electric conductivity in the vicinity of the spin-density-wave (SDW) or the charge-density-wave
(CDW) transition. We find that the vertex corrections associated with the SDW (or the CDW) fluc-

tuation, which are neglected in earlier works, are of prime importance. For example, we find the ex-
cess resistance in the vicinity of the SDW (or the CDW) transition diverges like iw~, with
a= —,'(4 —D) and ~=ln( T/T, ), where D is the dimension of the fluctuation in the clean system. This

exponent is larger by unity from the value obtained by Horn and Guiddoti [Phys. Rev. B 16, 491
(1977)]. In dirtier samples in which the vertex renormalization is not so important, we recover the
result of Horn and Guiddoti. Further, we find a non-Ohmic term in the fluctuation regime. The
non-Ohmic conductivity increases with an external electric field c,. Moreover, the effect of c is
equivalent to the shift in the temperature Thy ls T = —7g(3)(eviEi){4trT, ) ', with g(3) =1.202 and
v the Fermi velocity in the chain direction. These results account nicely for recent experimental re-
sults by Richard et al. , which found no explanation until now.

I. INTRODUCTION

As is well known, a number of quasi-one-dimensional
charge-density-wave (CDW) and spin-density-wave
(SDW) systems exhibit sharp rises in the electric resis-
tance at the CD% and the SDW transition, which is
commonly interpreted in terms of a model proposed by
Horn and Guiddoti. ' However, when this model is used
to analyze the resistivity anomaly at the second CDW
transition in NbSe3, it appears to yield an unphysical di-
mension D =0. Further, Richard et al. observed a
non-Ohmic component of the resistivity above the CDW
transitions of both orthorhombic and monoclinic TaS3 as
well as of NbSe3, which decreases with applied electric
field.

The object of this paper is to study systematically the
fluctuation induced conductivity in both SDW and CDW
in the vicinity of the SDW and the CD% transition. As a
model we take an anisotropic Hubbard model as used by
Yamaji" in analyzing the SDW transition in Bechgaard
salts, since as long as the fluctuation contribution to the
electric conductivity in the vicinity of T=T, is con-
cerned, there is no difference between the SDW and the
CD%. Further, Yamaji s model is slightly simpler than
the Frohlich's model for the CD%'. Further recent ob-
servations of the Frohlich conduction in the SDW's of
the Bechgaard salts ' support the idea that the similar
principle works for both the SDW and the CDW. '

In order to analyze properly the transport properties, it
is crucial to include the dissipation mechanism, which we
introduce by means of randomly distributed impurities.
Then the fluctuation contribution to the electric conduc-
tivity is classified in terms of diagrams as in a related
analysis in a superconductor. ' '" However, unlike in a
superconductor one of the contributions (which we call
the regular term in analogy to the one in a superconduc-

tor) depends on whether the SDW (or the CDW) is
pinned or not. Indeed this term gives rise to the non-
Ohmic contribution in the fluctuation regime. The
anomalous term, on the other hand, is essentially the one
considered by Horn and Guiddoti. ' However, introduc-
tion of the vertex renormalization due to the impurity
scattering which they neglected modifies strongly their
conclusion. Especially in the clean limit ( l /g ) 10,
where l is the electron mean free path and )=v/2trT, is
the coherence distance) the derivative of the resistance in
the vicinity of T = T, diverges like

dp/dT ~ i7.
~

AT = —7g(3 leviEi(4mT). (2)

where v is the Fermi velocity in the chain direction and
g(3) =1.202. . . . The present result describes quite well

where r =ln( T/T, ) and D is the dimension of the fluctua-
tion. This is because the vertex renormalization intro-
duces an extra diffusionlike pole in the total scattering
amplitude so that the total scattering is much enhanced
from the one without vertex renormalization. " There-
fore we interpret the exponents 1.5 and 2 observed for the
CDW of 0-TaS3 and NbSe3 as associated with D =3 and
D =2 fluctuations, respectively. We have another evi-
dence' that D =2 is most likely for the first CDW in
NbSe3. On the other hand, in dirtier samples (say
l/g(10) we recover the result by Horn and Guiddoti
since here the vertex renormalization is not so important.

In the presence of a large electric field the regular
term, which was completely neglected by Horn and
Guiddoti, gives rise to the non-Ohmic contribution to the
resistance. Indeed the E dependence of the non-Ohmic
term is equivalent to the shift in the temperature T by
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II. FLUCTUATION PROPAGATOR

We shall consider an anisotropic Hubbard model given
b4

H =g g(p)C& Cz + U g n
&

n t (3)

where

g(p) = 2t, cos—ap, 2tbcosb—p2 2t, cos—cp3 —p

= u ( ip, i

—
pF )

—2tbcosbpz —cocos(2bp2 ),
with typical values for the Bechgaard salts

t, :tb.t, = 10:1:0.03,
and p is the chemical potential

EQ
= ,' tb cosapF—( t—,sin apF )

the observed non-Ohmic conductivity in 0-TaS3 in the
region T& T, .

So far we considered only the SDW (or the CDW) fiuc-
tuation. In the SDW there are spin-wave fluctuations as
well. They contribute to the anomalous term the same as
the one due to the SDW fluctuation since they have two
more degrees of freedom. On the other hand, there will
be no regular term due to spin wave since they do not
couple to the electric current. Therefore in an ordinary
antiferromagnet we expect the diverging resistance with
the same exponent as given above but no non-Ohmic
effect.

by Hasegawa and Fukuyama. ' At low temperatures the
system described by the Hamiltonian (3} undergoes the
SDW transition with the SDW transition temperature
given by '

no

l=nTU g (co +s)

where U=N0U and ~„ is the Matsubara frequency and
No is the density of states at the Fermi surface per spin
and the co„sum is cut off at co„=EF the Fermi energy.

0

In the following we consider only the small-so limit for
simplicity. The electron Green's function in the normal
state (i.e., for T) T, } is given by

G(co„,p} '=ico„—g(p) .

So far we have neglected the scattering term. In the pres-
ence of impurities the effect of the impurity scattering is
incorporated in the Green's function (7) by replacing co„

by Q„where

co. =co. ( I+ I /lco. I )

and I =
—,'(I, + I z) and I, and I 2 are the forward and

the back scattering rate due to the impurities. Further,
in order to determine the SDW transition temperature
and the fluctuation propagator in the presence of the im-
purity scattering we have to include the vertex renormal-
ization associated with the SDW order parameter h(q);
in the presence of the impurity scattering b (q) is replaced
by b, (q) where

and U is the on-site Coulomb repulsion. In the second
line of Eq. (4) we make use of a simplification introduced

I

and

b (q) =A(co„,co„+„',q)b, (q) (9)

1 for co„co„+ &0,
A COn, COn +~',

[(co„+co„+„)+g ][leo„+co„+„~(~co„+co„+„~+2I)+g ] ' for co„co„+„)0, (10)

and

r=r, +-,'r, ,

g2 u 2q 2 + u 2q 2 + u 2q 2

u =2t, a sinapF, u2=&2tbb, u3=&3t, c .

Then in the presence of impurities the fluctuation propa-
gator is given by

D (q, co ) = ( [5b„56])0(1 —
—,
' U( [55,5b ])0}

N
—1

1 +
~

~+ 0 g2
T, 8T ' 2m3T

(12)

where T, the transition temperature is given by

and T,o is the transition temperature in the absence of the
impurity scattering and g(z) is the di-gamma function.
In deriving Eq. (12) we assumed that I /2m T, ((1 (the
clean limit). In the following we consider only the clean
limit. Unlike in a superconductor the dirty limit here is
of no interest, since the SDW transition will be complete-
ly suppressed.

We note that Eq. (12) is almost the same as that in a
superconductor except the numerical coeScient of g .
This difFerence arises from the quasi one dimensionality
of the present system. Derivation of Eqs. (9) and (12) will
be sketched in Appendix A. Now we are ready to ana-
lyze the fluctuation contribution to the electric conduc-
tivity.

III. ELECTRIC CONDUCTIVITY

Tc 1 I—ln =f —+
co ~ c

—P( ,' ) =mI/4T, —.(13)
Within the present model the electric conductivity in

the normal state in the most conducting direction is givenb'
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oo=(eu) N&I z
' . (14)

The lowest-order corrections due to the SDW fluctua-
tions to the electric conductivity are shown in Fig. 1,
where the diagrams a, b, and b' give rise to the anoma-
lous term" while these c and c' contribute to the regular
term. ' However, unlike in a superconductor the regular
term is sensitive to whether the SDW is pinned or not
and we can neglect the regular term when the SDW is
pinned. ' The effect of the pinning may be approximated
by a negative shift in the transition temperature in the
fluctuation propagator, though this shift should not

change the actual transition temperature. Then an ap-
plied electric field can remove this shift. As we shall see
then the regular term gives rise to the non-Ohmic term in
the fluctuation regime.

First let us consider the anomalous term, which is
essentially studied by Horn and Guiddoti. ' However,
they neglected the vertex renormalization associated with
the CDW fluctuation, and their conclusion does not ap-
ply to the extremely clean samples (i.e., I;/m. T, (10 ).
Following the conventional method we obtain from dia-
grams a, b, and b'

o,„=( iso) —'(I, +2Ib) (15)

o an=

2T——[7g(3)]' (&r+&5) ' for D =3,
2 u2u3 I +I
8 u (r—5) 'In(r/5) for D =2,

8du2

(16)

where r = ln( T/T, ), 5=7((3)I I (2n T), and d is the sample thickness.
Here I, and Ib are evaluated as

I, =(eu) No 7g(3)[(2m. ) T] ' QD(q)

+ ko( —iap+2I —)( —ice+I +I )
' g [( iru+2—I )( Lct)+—2I')+g'] 'D(q)

4,
(17)

Ib= ,'(eu) N—o—[7((3)][(2~)T] 'QD(q),
q

(18)

where

D(q)=D(q, 0) . (19)

o =cro+o.,„. (20)

A derivation of Eqs. (16)—(18) is given in Appendix B.
The electric conductivity of the pinned SDW (or CDW)
for T & T, is then given by

The power law stated in the Introduction follows from
Eq. (16) when r))5-10 (i.e., in the clean samples).
For ir~ -5, on the other hand, Eq. (16) gives the same ex-
ponent as given by Horn and Guiddoti.

In the light of the present result we interpret the power
laws found in the electric resistance of the CDW's in 0-
TaS3 and NbSe3 as due to the D =3 and the D =2 fluc-
tuations, respectively. As already mentioned this D =2
behavior has been deduced from the temperature depen-
dence of the threshold field' in the first CDW of NbSe3.

Second, the regular term is given by

o„=(ev) No[7((3)] (m. T ) 'QD(q), (21)

16 [7g(3)]' (e Tu/u2v3)(c, &r) for D =—3,
28 (3) (22)

(e u/du2)( —inc) for D =2,
m4

C

FIG. 1. The lowest-order fluctuation contributions to the
electric conductivity are shown. We call the diagram a, b, and
b' the anomalous term, while the diagram c and c' is the regular
term. Here solid lines are the electron Green's function and
wavy lines are fluctuation propagators. Vertex renormalizations
are omitted from the figure for clarity.

where C& is the cutoff constant of the order of unity.
Here we made use of the fact that j, the electric current
associated with the SDW order parameter, is given by

j„=[7/(3)/(2mT) ]evN (2i) '[(d, h*)b, 58,b, ], (23)—
which is consistent with the well known formula for
T&T,
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j, =euNof
Bt

(24)

with f=[7/(3)/(2mT) ]b, for T= T, and P is the phase
of the order parameter.

We note that o.„gives the positive contribution to the
electric conductivity. Further the divergence of 0., is
weaker than that of 0.,„. Therefore o.„cannot cancel out
o,„even when the SDW fluctuation is completely de-
pinned. So far we neglect the pinning effect as well as the
E dependence of O.„where E is an electric field applied in
the sample. The non-Ohmic effect is easily incorporated
in Eq. (22), so that we have the electric conductivity for
T)T, as

follows. First in the absence of the fluctuation and when
the SDW is pinned oo in Eq. (14) is replaced by '

0 i
—cTp 4T (r2+gz)tn

Second, the fluctuation contribution associated with
the anomalous term is obtained by replacing r in Eq. (16)
by 2lrl=21n(T, /T). This follows from the fact the
SDW fluctuations below T=T, split into the phase and
the amplitude fluctuation and that D (q) in Eqs. (17) and
(18) are replaced by the amplitude fluctuation D„(q).
Here

cr =oo+ o,„+o „(E), (25) D&(q, cu„)=N& '(8T/n) lco, l+
21T3T

(29)

e =7$(3 )(eu I&I )(4~T, ) (26)

This follows from the fact that the effect of the electric
field is incorporated into D (q) by shifting g to

where the E dependence comes from the ~ dependence of
a„, which is now written v+ c, —c. where c., is the thresh-
old field for T)T, due to the pinning and

and

D„(q,co, ) =No ' 2lln(T/T, )

7g(3) (p
2m3T

(30)

g
—4eu (P)E,

which follows from the microscopic phase Hamiltonian
and (P) is the average of P, which we took (P) =n The.
effect of the electric field is identical to the shift in the
temperature T to lower temperatures. Indeed this scaling
behavior has been already observed in the non-Ohmic
conductivity of TaS3 above T = T, .

So far we limit ourselves to T) T, . The fluctuation
contribution to the conductivity for T (T, is obtained as

I

Therefore for a pinned SDW for T (T, we obtain

0 =0 i+Oan ~ (31)

where r in o,„ is replaced by 2lrl. When the SDW is

completely unpinned, we obtain instead of 0. ,

cr„„=oo[1+7((3)b,/2rr T ] . (32)

Further, in the presence of the fluctuation 5 is replaced
by (6 ) with

(b, )=b, ' —TQD„(q),
q

(33)

[7g(3)) ~ (2trT) T(t&t, ) '(c, —&2lrl) for D =3,
(a') =a'—

[7g(3)] '2&2(nT) Ttb '(c/d)[ —in(2lrl)] for D =2 . (34)

o =o„„p(A ~(b, ))+cr,„+cr„=o„„+o,„. (35)

Derivations of Eq. (33) and o „are given in Appendix C.

IV. CONCLUDING REMARKS

We have studied the fluctuation contribution to the
electric conductivity in the vicinity of the SDW transi-
tion within a microscopic model. Although we limit our

Second, we have to include cr,„, which is more singular
than the correction term given above. Finally we have to
add o.„below T = T, . Though the general expression of
o.„below T = T, is different from the one given in Eqs.
(21) and (22) it takes the identical form in the low fre-
quency limit if we replace r by lv. l. Therefore when the
SDW is unpinned the electric conductivity is given by

analysis to the SDW transition, the present result applies
for the CDW in the quasi-one-dimensional systems. We
find that the fluctuation contribution is quite different de-
pending on whether the SDW (or CDW) is pinned or not.
When the SDW (or the CDW) is pinned the electric con-
ductivity for T) T, is given by Eq. (20). Further, in the
clean limit o,„ is negative and diverges like lrl
for not too small ~. The present exponent is larger by
unity from the one obtained by Horn and Guiddoti. For
samples with intermediate cleanness, on the other hand,
we recover the early result of Horn and Guiddoti. The
present result shows that the CDW fluctuation in 0-TaS3
is three dimensional and not one dimensional as assumed
until now. Indeed we have accumulating evidences that
the CDW fluctuation in most of quasi-one-dimensional
CDW systems is three dimensional. The only exception
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we know is that in NbSe3, which appears to be two di-
mensional. '

In the presence of an electric field the conductivity is
now given by Eq. (25). In particular the regular term de-
pends on E. The dependence of E scales with the shift in
T. The present results describe quite well a number of ex-
perimental results, ' which are unexplained until now.
We have extended the similar analysis to the sound prop-
agation, ' which will be published elsewhere. The theory
predicts a dip in the elastic constant at T = T, when the
SDW (or the CDW) is pinned. When the SDW (or the
CDW) is unpinned, the dip will disappear completely.

I

The theory also predicts a sharp peak in the sound at-
tenuation at T = T„when the SDW (or the CDW) is
pinned. When the SDW (or the CDW) is unpinned, the
magnitude of the attenuation almost doubles.
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APPENDIX A: VERTEX RENORMALIZATION AND FLUCTUATION PROPAGATOR

Making use of the Green s function (7) with co„replaced by co„, the equation for A is given by

2

A(co„,co„+„,q)=1+n,
I V, f, (ico„—g) 'A(co„,co„+„,nq)(ico„+„+g+v q)(2~)'

=1+e( „„,„)r I .+-„,„I(l~„+~„,l'+g')-'A,

where e(z) is the step function and

g2 U 2q 2 + U 2q 2 +U 2q 2

(A 1)

(A2)

and V& is the Fourier component of the impurity potential with the zero momentum transfer. Then (Al) is solved as
Eq. (10) in the text.

Now the fluctuation propagator is obtained from the first line of Eq. (12), where

3

([56,5b]) =Tg f ~, (ico„g) —'(ico„„+g+uq) 'A
(2n. )

e( Ico„+co„+,I )

(co„+co„i„) +g

I con + con + vl=2~TN, y e
I .+ . .I(l .I+I . .I+21)+g'

1

lco„ I+ lco„,l+2r
I .+ . .I(l .I+I „„I+21)'

E,F=No 1 I co. 7g(3)
2 2~T 4m T 4(2~T)

=No 2( U) '+ln
T

7g(3)g
4(2m. T)

(A3)

where we neglected the higher-order terms in I /2m T, and I /2mT, Inserting this. into the first line of Eq. (12) we find
the fluctuation propagator.

APPENDIX B: EVALUATION OF THE ANOMALOUS TERMS

First let us consider I„which is given by

3

I, = —2(ev ) T g g f (ico„—g) '(ico„+g+v q) 'A, (ico„+„g) '(ico„—+ +g+v.q) 'A2D(q),
(2n. )

where

A, =A(co„,co„;q) and A, =A(co„+„,co„+ ', q) .

(B1)

(B2)

Here we neglected the frequency dependence of D(q), which is not important. The momentum integration is easily
done and we obtain
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&. = —2~(eu)'N, T'g (~„+21)gl~„ll~„„l[l~„l(l~„I+I)+-,'0'] '[I~. .l(l~. .I+I)+-,'g'] '

+4+ A, A~ D(q),1

[2lco„I+2I' —(i/2)uq]
(B3)

where g, and g„means the frequency sum has to be done for co„co„+„&0(the anomalous region) and for co„co„+„&0
(the regular region), respectively. The sum over the regular region is easily done, since we can neglect the higher-order
termsin I and I and weland

—3

2~T g 21co„ I
+21' ——

uq A, A2-—7g(3)(4n T) (B4)

On the other hand the sum over the anomalous term gives

2 T& I „II@. ,I[I@.l(l .I+I')+-,'g'] '[Ico„.l(l „,I+I')+-,'g'] '

P"'( —,')[ (1—y) [co„+2I + —,'I'&(1 —y ')]

+(1+y) [co„+2I + —,'I &(1+y ')] '+2(1 —y )(co„+2I'+—,'I &)

[2(co„+2I ) (co„+I'+I') '[(co„+21 )(co„+21')+g ] 'j, (B5)

where

y
—I (I 2 4g2)

—ll2

Putting these together we obtain Eq. (17) in the text.
The analysis of Ib and Ib ( =Ib ) is done similarly. However, there is no contribution from the anomalous region and

we obtain Eq. (18) in text. The regular contribution from I„I&, and I& cancels out exactly.

APPENDIX C: EVALUATION OF THE REGULAR TERM

The diagram C is calculated as

I, =T[7((3)(8m2T2) '(euN0)] g(2co„+co„) gD, ( q) D(q)
P q

[7$(3)(8m~T~) '(eu)] N gOD (q),
q

where

D, (q) =D(q, co„+,), D2(q) =D(q, co„) .

Here we made use of the relation

T g (co„+co„+„)(lco„l+ A) '(lco„+„I+A) '=4Tco„A

(Cl)

(C2)

(C3)

For T(T„
g (co„+co„+„)D, (q)Dz(q)

has to be replaced by

g (co„+co„+„)D„,(q)D~~(q) .

Then this wi11 be transformed as

T g (co„+co„+„)D„,( )qD~~( )q= No 8T

—2
4TM„ CO~

2+ [B '(B co„) '+ C '( C +co„) ']
u +B+C (C4)

where
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8 =7/(3)(2m T) 'g, C =8 + ln( T, /T) .
16T

Therefore in the limit the external frequency tends to zero, cr„below T= T, is obtained from the one for T & T, by re-
placing 7 by lrl.

APPENDIX D: (b2& IN THE REGION T( T,

Perhaps it will be simplest to treat this term within the free energy functional in the Ginzburg-Landau region

(D 1)

where a, b, and e are identified as

a =Nein(T/T, ), b =No[7((3)/8nT], . and c =No[7$(3)/16n2T2] .

In the presence of fluctuations we replace F by (F ), where loop corrections' are included

&F & =«I~l'+D))+ —(I~l'+41~1'Dg+21~1'Dp+D f ),

(D2)

(D3)

where

D) = ( 15b 1') = 2(D~+D-~ ),
D = ((M )') =

& (56')') =-,'(D„—Dp ),
and

D~= T g D~(q),
q

T XD&(q)
q

Then by minimizing F in terms of lb 1, we obtain

a
1 2

(D4)

(D5)

On the other hand, we have

( f 6 1
) =

f
6

f
+D

&

= ——
D& D2 = 8r—r T [—7g(3 ) ] 'ln( T, /T) D„, — (D6)

which is essentially Eq. (33) in the text. The present result is fully consistent with the early analysis by Scalapino
et ah. "
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