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We discuss the problems that arise in the numerical simulation of many-electron systems when

the measure of the functional integrals is not positive definite. We present theoretical arguments
and numerical data which indicate that the expectation value of the sign of the measure decreases
exponentially as the inverse temperature P increases, unless the measure is forced to be positive by
an explicit symmetry. We therefore conclude that a recent proposal for dealing with the sign prob-
lem due to Sorella et al. leads to an uncontrolled approximation. In the cases we have studied it is a
good approximation for the ground-state energy, and we present a method for calculating the
correction needed to make it exact. However, for some physical quantities, such as the d-wave pair
field susceptibility, the neglect of signs can yield misleading results.

I. INTRODUCTION

Numerical simulations can be a powerful tool for the
study of systems of strongly correlated electrons. How-
ever, in many problems of physical interest the functional
integrals that are to be evaluated numerically do not have
a positive definite measure. In this paper we discuss the
problems that arise in simulations when the measure is
not positive definite, and present data from simulations of
the two-dimensional Hubbard model. We also discuss a
recent suggestion for dealing with this sign problem due
to Sorella et al. '

Numerical simulations have been performed at finite
temperature within the grand canonical ensemble and
at zero temperature for a fixed number of electrons. "
To carry out these simulations one must first integrate
out the electron degree of freedom. This is possible if the
Hamiltonian is quadratic in the electron creation and an-
nihilation operators, or can be made so through a
Hubbard-Stratonovich transformation. One is then left
with an expression for the expectation value of a physical
observable 0 of the general form

g„p(x)O(x)
g„.p(x')

Here g„represents either a set of integrals over continu-
ous variables or a sum over discrete spin variables. For
the grand canonical ensemble, the measure p(x) is pro-
portional to the well-known fermion determinants for the
spin-up and spin-down electrons.

If p(x) is positive semidefinite, then the right-hand side
of Eq. (1) can be evaluated by importance-sampling tech-
niques. One generates a sequence of configurations [x I

with a probability distribution

p(x)P(x}=

p(x) = Ip(x) IS (x), (3)

with S(x)=+1. Then, introducing the probability func-
tion

p( )
Ip(x)I

y„'Ip(x }I
'

Eq. (1) can be rewritten as

&OS)p

(S)P

(4)

and measures O(x) in these configurations. There are a
limited number of models for which one can prove that
p(x) is positive semidefinite. The single-band Hubbard
model with a repulsive Coulomb interaction and a half-
filled band is one example. The Hubbard model with an
attractive Coulomb interaction and electron-phonon
models in which the phonon field couples identically to
the spin-up and spin-down electrons are examples of
models for which p(x) is positive semidefinite for arbi-
trary fillings. In all cases that we are aware of, the posi-
tivity of p(x) follows from a discrete symmetry of the
model.

There are many models for which p(x } is not positive
semidefinite: the repulsive Hubbard model away from
half-filling, the attractive Hubbard model, and electron-
phonon models in external magnetic fields are examples.
For such models simulations can, in some cases, still be
carried out. One can write
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where ( )z indicates an average with respect to the prob-

ability distribution P. Equation (5) is a useful starting
point for numerical simulations only if (S)z is not "too
small. " Otherwise, there will be large cancellations in

(OS) p and (S)p, and statistical fluctuations will make

an accurate evaluation of (0 ) extremely difficult.
As will be discussed in Sec. II, we expect that in calcu-

lations with the grand canonical ensemble (S)~ will go
to zero exponentially as the inverse temperature P in-

creases. In calculations of ground-state properties one
uses the operator exp( )pH—) to project the ground-

state wave function from a trial wave function. Again in
the limit of large p, which is necessary for the projection,
we expect (S)p to go to zero exponentially. In Sec. III
we present numerical results for the two-dimensional
Hubbard model that are in accord with these expecta-
tions. We find that the rate at which (S)p approaches
zero depends strongly on the band filling and on the cou-
pling.

Sorella et al. ' have recently suggested that in calcula-
tions of ground-state properties there may be some
fillings and parameter regimes for which the tnal func-
tion can be chosen so that (S ) ~ will approach a constant
as P~ ~. In such cases they argue that some quantities
of physical interest can be calculated by neglecting the
sign of p(x). They also present alternative, positive
definite weight functions, which they argue will produce
the same physical results for these quantities. We have
repeated some of their calculations for the two-
dimensional Hubbard model, and find that in all cases
(S)~ approaches zero exponentially with increasing P.
We are therefore led to the conclusion that their compu-
tational method is an uncontrolled approximation. How-
ever, in tests that we have made on small lattices for
which we can compare Monte Carlo results with those
obtained by exact diagonalization of the Hamiltonian, it
does give a good approximation to the ground-state ener-

gy and some other physical quantities. Furthermore, one
can calculate the difference in the ground-state energy
obtained with and without signs very accurately by
measuring the rate of exponential decay of the sign.
There are corresponding calculations that allow one to
determine the difference in any physical quantity calcu-
lated with and without signs, but they require high-
precision measurements. Finally we show that the d-
wave pairing susceptibility has very different behavior at
low temperatures when calculated with and without in-
clusion of the signs. This example clearly illustrates the
uncontrolled nature of the approximation.

II. THEORETICAL CONSIDERATIONS

We shall consider both calculations within the grand
canonical ensemble and calculations of ground-state
properties for a fixed number of electrons. In the former
case the expectation value of a physical observable Q is
given by

tro —P(H —Pw)
&o&= '

—P(,H —pN)

where H is the Hamiltonian, p the chemical potential,
and P the inverse temperature. To obtain ground-state
properties one replaces the traces in Eq. (6) by expecta-
tion values in a trial wave function with n electrons,
l%& ). Denoting the eigenvectors and eigenvalues of H in
the n-electron sector by l P( ) and E(, respectively, one
can write

l%'(p/2)&=e ' ~ lq(" &=ye 'lip(&&i/(l)I(" &

I

e PH ye —hr—A(L)—. . . Er&(2)e —hrlf(—1)

x
(9)

The effective Hamiltonian for the lth time slice, &(I), has
the general form

%(i)= g c, h; (x, )c, (10)

where c; and c; are the creation and annihilation
operators for electrons on the ith lattice site with z com-
ponent of spin 0, and x& are the Hubbard-Stratonovich
variables for the 1th time slice. The Hubbard-
Stratonovich field x& will have one or more components
on each lattice site. In electron-phonon models in which
the fermions are coupled to the phonons by an interac-
tion which is quadratic in the creation and annihilation
operators, the Hubbard-Stratonovich field is replaced by
a dynamical phonon field. In what follows we shall not
distinguish between these fields, and refer to them both as
Hubbard-Stratonovich fields.

Although the operator exp( PH) is positive de—finite,
the individual terms on the right-hand side of Eq. (9) in
general are not. This is why the weight function p(x)
defined in Eq. (I) need not be positive definite although Z
is. The traces over the electron degrees of freedom can
be done explicitly for the grand canonical ensemble, and
one finds that p(x) can be written in the form

Clearly, for large P, l+(P/2)) becomes proportional to
lqo&, and

& q (g/2) lo l~(p/2) )
& +(P/2)

l
+(P/2)

The quantity

& +(P/2) I +(P/2) &
=

& +"r
I exp( PH )

I

+—r &

plays the same role in simulations of ground-state proper-
ties as the partition function tr exp[ P(H p—N)] do—es in
the grand-canonical-ensemble simulations. The in-
tegrands of the path integrals for these quantities provide
the probability distributions for the numerical simula-
tions. We shall use the symbol Z for both of them.

In order to carry out numerical calculations it is neces-
sary to integrate out the electron degrees of freedom. To
this end one divides the region 0 to P into L imaginary-
time slices of width hr. If the Hamiltonian is not quad-
ratic in the electron creation and annihilation operators,
one makes it so by introducing a Hubbard-Stratonovich
transformation on each time slice. The density operator
exp( PH) can the—n be written in the form
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p(x) =f(x)det[I +e~"A +(x)]det[I+e~" A (x)], (11) Z —~ (iPn ~e
—E~BtL). . . —Er&(2) —hr&(1)~itin )T e

where f (x) is positive definite and

—b, h ( ) —Ah ( ) —hh ( )

A (x)=e . . e 'e

For the zero-temperature, fixed particle number,
ground-state calculations,

= g p(x),

and then define Z+ by

Z+ = g p(x),
p(x) )0

Z = — g p(x) .

(14)

(15)

p(x) =f (x)det[Q+ A +(x)Q+ ]det[Q A (x)Q ],
(13)

where Q+ and Q are rectangular matrices that project
out the many-electron trial wave function ~4T). For
zero-temperature calculations the precise form of p(x)
depends on the trial state, ~%"r ), but in general it can be
written in terms of determinants of submatrices of the
A (x).

In order to integrate out the electron degrees of free-
dom one must evaluate the expectation value of individu-
al terms of the right-hand side of Eq. (9) between the trial
wave function for the zero-temperature calculation, and
between elements of a coinplete set of states for the
grand-canonical-ensemble calculation. These matrix ele-
ments can be expressed in terms of determinants of sub-
matrices of the A (x). The determinants are simply the
sum over all possible world lines of the electrons propa-
gating between the initial and final states. A particular
set of world lines will give a positive or negative contribu-
tion to the determinant depending on whether an even or
odd number of world lines wind around each other dur-
ing this propagation. Whether the positive or negative
contributions to the determinant dominate depends on
the values of the Hubbard-Stratonovich variables. The
models under present study all have only nearest-
neighbor hopping terms in the %((l). As a result, for
small values of P there is little chance for two world lines
to wind around each other, and therefore no sign prob-
lein. However, as P becomes large, there is no impedi-
ment to the world lines winding around each other.
Furthermore, the Hubbard-Stratonovich fields used in
studies of the Hubbard model, unlike phonon fields, have
no dynamics, so there are no time derivatives which
prevent them from undergoing large changes from one
imaginary-time slice to another. For large P we expect
that the world lines will lose knowledge of the initial
state, and that the number of windings per unit
imaginary-time interval will approach a constant. It then
follows that the average value of the sign of p(x) should
go to zero exponentially with increasing P. Similarly the
number of windings per unit time interval should grow
linearly with the spatial volume, which implies that the
expectation value of the sign should fall exponentially
with volume. Finally we expect the sign problem to wor-
sen as the coupling increases, since the inhomogeneities
in the Hubbard-Stratonovich field then become more
strongly emphasized.

In order to consider the sign in the zero-temperature
calculation in more detail we make use of Eq. (9) to write

p(x) (0

The expectation value of the sign can now be written as

Z+ Z
&'& =Z..Z

(16)

Since Z is positive, Z+ ~ Z, and 1 ~ (S)p ~0.
There are a limited number of possibilities. If the ratio

Z /Z+ approaches zero as P goes to infinity, then there
is no sign problem. If this ratio approaches a finite limit
different from unity, then (S)p approaches a constant.
This is the situation envisioned by Sorella et al. ' Since Z
has the eigenvalue expansion

(17)

if Z /Z+ approaches a constant, then both Z+ and Z
must become proportional to exp( PE&) for—large P.
Therefore, a measurement of the P dependence of
Z+ +Z, that is a measurement of Z ignoring the minus
signs, would yield the ground-state energy. If this behav-
ior were to persist over a range of parameters, then a
number of ground-state properties could be calculated by
differentiation of the ground-state energy. ' However, a
direct measurement of the correlation functions in which
signs are ignored would lead to incorrect results. If we
denote by 0+ the average value of 0(x) in configurations
with positive weights p(x)&0 and by 0 the average
value in configurations with negative weights, then

0+Z+ —0 Z0
Z+ —Z-

0+ —0
(18)

On the other hand, if we proceed by ignoring the sign of
p(x), we obtain

0+Z++0 Z(0),-= 0 —0+=0+ + —,'Z

(19)

Clearly these two expressions are equal only if
Z+Z (0+ —0 )=0. This can happen if Z =0, in
which case there is no sign problem, or if 0+ =0
There is no a priori reason to expect 0+ =0, but since
0+ and 0 are readily calculated, it would appear that
one at least has an internal check on the calculation.
However, when Z+ —Z is so small as to preclude a
straightforward calculation of observables according to
Eq. (5), the difference 0+ —0 will generally be too
small to make this check reliable.

The remaining possibility is that the ratio Z /Z+ ap-
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proaches unity as p goes to infinity. This is the result we

find in our numerical studies of the Hubbard model away
from half filling. In this case, as Sorella et al. have indi-

cated, ' one cannot expect to obtain exact results from
calculations that ignore the sign of p(x}. We see from

Eq. (18) that ( 0 ) will approach a finite limit as

Z+ ~Z only if 0+ ~0 . Under these circumstances

(O)p~O+, so (O)p=(O) only if (0+ —0 )/
(Z+ —Z ) goes to zero, and in general there is no reason
to expect such a result. If one assumes that the leading
asymptotic behavior of Z+ and Z continues to be ex-

ponential, then one sees from Eq. (17) that the expecta-
tion value of the sign will fall exponentially with p bar-
ring an accidental degeneracy. That is, both Z+ and
Z will have asymptotic behavior of the form
exp( pI Ea——b, I ) with b, )0. However, this leading be-
havior will cancel in Z+ —Z so (5 )p will go to zero as

exp( —pb ).
If it is possible to view calculations made ignoring the

sign of p(x} as arising from an effective Hamiltonian with
ground-state wave function and energy

~ $0) and
ED=ED —b, , then for large p

(20)

L —b, h ( )
detA (x)= g det[e ' ]&0,

1=1
(21)

so no eigenvalue can pass through zero. For zero cou-
pling or for high temperatures all of the eigenvalues lie
on the positive real axis. How then can p(x) become neg-
ative? As the coupling is increased or the temperature
decreased a pair of eigenvalues can collide and move into
the complex plane. They can collide again on the nega-
tive real axis and move apart. If a negative eigenvalue

In this picture if the expectation value of the sign were to
approach a finite limit at large p, then the ground-state
energies of the true and effective Hamiltonians would
have to be equal. The fact that the average sign is small
at large P indicates that even if the ground-state energies
are equal, the ground-state wave functions have different
properties. The ground-state energies obey E0 ~ ED.
Had we ignored the sign even in the calculation of p(x),
using permanents instead of determinants, the ground-
state energy would have dropped further, to the bosonic
many-body ground-state energy.

An identical discussion can be made for calculations
within the grand canonical ensemble. Once again we ex-
pect that the average sign to fall exponentially with in-
creasing p. As we have previously observed, the average
sign depends strongly on band filling and coupling as well
as on temperature. Some insight can be gained into this
situation by considering the behavior of the eigenvalues
of the A (x) matrices. For the two-dimensional Hub-
bard model with (M measured from —U/2, particle-hole
symmetry ensures that for each eigenvalue of A +(x), )(,„
there will be a corresponding eigenvalue of A (x), 1/A, ;.
Since the A (x) are real matrices, their eigenvalues are
real or come in complex conjugate pairs. Finally,

One sees at once that at p=0, that is at half filling, p(x)
is positive definite.

For zero coupling k; = exp( —pe, ) where e, are the en-

ergy levels for the free theory. Consider, as an example,
the case of a 4X4 square lattice. Then the states with en-

ergy +4t (t is the hopping parameter) are nondegenerate,
while those with energy +2t are fourfold degenerate and
those with energy 0 are sixfold degenerate. Once the cou-
pling is turned on the degeneracies of the A, , will be bro-
ken for any given Hubbard-Stratonovich configuration,
but for weak to moderate coupling they will not be badly
broken. It is these nearly degenerate eigenvalues that can
most easily collide on the real axis and eventually become
negative. If the chemical potential is fixed so that each
nearly degenerate set of A, , is either totally inside or out-
side the range

exp( —pp) &
~A, , ~

& exp(pp),

then the sign of p(x) will not oscillate rapidly as the
Hubbard-Stratonovich variables are changed. This ex-
plains the slow variation of the sign with p for fillings of
10 and 22 and the rapid variation near half filling for the
Hubbard model on a 4X4 lattice. For strong coupling
the eigen values change more rapidly in response to
changes in the Hubbard-Stratonovich variable, and the
sign oscillates more rapidly.

The same considerations apply to ground-state calcula-
tions. For a trial state with n+ spin-up electrons and n

spin-down electrons, the behavior of p(x) at low tempera-
tures is controlled by the n+ largest eigenvalues of
A+(x) and the n largest eigenvalues of A (x), and one
reaches the same conclusions regarding fluctuations in
the sign. All of these conclusions are born our numeri-
cally.

III. NUMERICAL RESULTS

In this section we present numerical results for the
two-dimensional Hubbard model. We write the Hamil-
tonian in the form

H= t g (c,+—c, +c+c; )-
(ij &, O

+ U g ( n, ~ —
—,
'

)( n, —
—,
' ), (22)

where n, =c; . The factors of —,
' have been included so

that the Hamiltonian is invariant under a particle-hole
transformation, and half filling corresponds to p=0. We
make use of Hirsch's discrete Hubbard-Stratonovich
transformation to obtain

&(I)= t g (c;+c, +c/+c—, )
j)

+g g x, ,k, (n, ~ n, ), — (23)

passes through the point
~

A, ; ~

= exp( +pp), then

det[I+exp(p(M) A+—(x)] will vanish. p(x) will be negative
only if an odd number of negative eigenvalues are in the
range

exp( pp—, ) &
~

A, ; ~ exp(p(((, ) .
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I I I Iwith A. defined by cosh( b rA, ) =exp( hr U/2), and
x, I =+1.

Our simulations are carried out with the Monte Carlo
algorithms described in details in Ref. 4. Unless other-
wise specified, we present data for 4X4 lattices, and for
ground-state calculations use a Hartree-Fock trial func-
tion for ~%"T). Where no error bars are shown, they lie
inside the plotting symbol. Both P and U are measured in
units of the hopping parameter t.

We begin by considering calculations of ground-state
properties. In Fig. 1 we plot the expectation value of the
sign as a function of P for U =8 with a density of 0.625
electrons per site. Sorella et al. ' have calculated the ex-
pectation value of the sign for the same lattice size, cou-
pling constant and filling. We disagree with their claim
that (S )p goes to a small, but finite, constant for large P.
Indeed for our three largest values of P, 40, 48, and 64,
we find (S )p

=0.009520.0018, 0.0039+0.0018, and
—0.0006+0.0015, respectively. In Fig. 2 we plot the log-
arithm of (S)p as a function of P. The solid squares are
the same data as in Fig. I, while the empty squares are
for a real-space trial function. The solid lines are least-
squares fits to the large P portion of the data Fo.r the
Hartree-Fock wave function we use results for P~8.0
and obtain a y of 4.7 for seven degrees of freedom. Our
results clearly indicate that (S )z falls exponentially with

P for large P. The points for the real-space trial function
have the same slope, within statistical errors, but a
different intercept, than those for the Hartree-Fock trial
function. In other words the trial function effects the
prefactor of (S )p, but not its rate of exponential falloff,
in accordance with our argument in Sec. II.

Our calculations differ from those of Sorella et al. ' in
several respects: we have results at twice their largest
value of P, we employ a discrete rather than a continuous
Hubbard-Stratonovich transformation, and we use a
Monte Carlo, rather than a Langevin, algorithin. We

0—

A

V

I I I I I I I I I I I I I I I I I I I I I I I I I I

0 10 80 30 40 50

FIG. 2. The logarithm of (S ) p as a function of P on a 4X4
lattice with U =8 and (n ) =0.625. The solid squares are for a
Hartree-Fock trial function and the open squares for a real-
space trial function. The straight lines are least-squares Ats to
the large P portion of the data.

have previously performed calculations for the grand
canonical ensemble using continuous Hubbard-
Stratonovich variables. We find that over a range of
electron densities the expectation value of the sign agrees
within statistical errors with our present grand canonical
calculations employing discrete Hubbard-Stratonovich
variables. The calculations with continuous Hubbard-
Stratonovich variables were performed with a hybrid
Monte Carlo algorithm, which is quite different from our
present algorithms, and therefore provides an indepen-
dent check of them. We, and previously Hirsch, have
made extensive checks on the equilibration of the sign in
Monte Carlo algorithms. We find that these algorithms
have no trouble in tunneling between regions of positive

I I I
i

I I It
I I I l

]
I I I I

)

I I I I
I

I I I I
/

I I I I
f

I I I I
)

I I I I
i

I I I

U=8 10—1.0 —a

0.8 — ~

(N& =0.625—
0.8—

~ (N& =0.625—
o (N&=0.875—A

M
V

0.6—

0.4— 0.4—

0.2— 0.8—
o

~ ~
I I I I I I I I I I I I I I I

40 50 60

0
00 — oo o

I I I I I I I I I

0 20 40

00—
I I I I I I I I I I I I I I I I I I I

0 10 20 30
I

80
I

60

P
FIG. 1. The expectation value of the sign (S)p as a function

of P on a 4X4 lattice with U =8 and filling (n ) =0.625. These
data are from the ground-state algorithm, as are those in Figs.
2—5.

FIG. 3. The expectation value of the sign as a function of P
on a 4X4 lattice with U =4. The solid squares are for an elec-
tron density of 0.625 and the open squares for a density of 0.875.
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and negative p(x). On the other hand, it is known that
simulations employing the Langevin algorithm can go
out of equilibrium when crossing nodal surfaces.

In Fig. 3 we plot (S )p as a function of P at U =4 for
the ground-state algorithm. The solid squares are for an
electron density of 0.625 and the open squares for a den-
sity of 0.875. Figures 4 and 5 show semilog plots of the
same data. Again the straight lines are least-square fits to
the large P portion of the data. We see that (S)p falls

exponentially with P for both fillings, but with very
different decay rates. The variation in decay rates with
filling and coupling are in accordance with our discussion
in the preceding section.

In Fig. 6 we again plot the logarithm of (S)z as a
function of P for U =8 with a filling of 0.625. The solid
squares are the ground-state algorithm data of Figs. 1

and 2. The open squares are from a grand-canonical-
ensemble calculation. The straight lines are again least-
squares fits to the high P portion of the data. The slopes
of the two lines agree within statistical errors, but the line
from the grand-canonical-ensemble calculation has an in-
tercept that lies somewhat below that from the ground-
state calculation. We believe that the smaller value of the
sign in the grand-canonical-ensemble simulation is due to
electron number fluctuations. Finally we note that we
have previously presented data showing that for the
grand-canonical ensemble the sign falls with increasing
spatial volume.

In all calculations that we have preformed to date, we
find strong evidence that the expectation value of the sign
falls exponentially with P. This does not mean that one
cannot obtained useful information about the ground-
state energy. As Sorella et al. have pointed out, ' it is
straightforward to calculate the P dependence of
Z++Z, because no fluctuating signs are involved.
This calculation yields the quantity Eo =Eo —b, . A mea-
surement of the P dependence of (S)p yields b„and
therefore Eo. For example, for U=8 with a filling of

I I I
I

I I i
I

I l I
I

I I I
I

i I i
I

I I I
I

I I I
I

I i I0—

)=0.875

A

v

-10 I I I I I I I

0 2 4 6 8 10 12 14 16

FIG. 5. The logarithm of (S)p as a function of P on a 4X4
lattice with U =4 and (n ) =0.875. The straight line is a least-
squares fit to the large P portion of the data.

0—
i

I
I t & t

I
& i t i

0.625 and hz=0. 1 we find Eo =Eo—b = —17.75+0.06.
Our least-squares fit to the logarithm of (S)p yields a
correction, 6=0. 126+0.002. 5 varies significantly with
filling and coupling, but in all cases that we have studied
to date, it is a small compared to Eo. It should be possi-
ble to significantly reduce the error bars on Ep, so that at
least on small lattices this approach can be used to obtain
accurate measurements of the ground-state energy as a
function of filling and coupling. Whether this procedure
or a straightforward measurement including the signs
produces superior results is likely to depend on the rela-
tive size of b and the gap to the first excited state.

Our results suggests that it may be possible to perform

[
I I I

I
i t I

—0.02—
A

v

A
M
v

-0.04—

—0.06—

—0.08— I I I I I I I I I I I I I I I I i

0 10 20 30
I »» I

40 50

-0.10
0

I

20
I

40
I

60 80

FIG. 4. The logarithm of (S)p as a function of P on a 4X4
lattice with U =4 and (n ) =0.625. The straight line is a least-
squares fit to the large P portion of the data.

FIG. 6. The logarithm of (S)p as a function of P on a 4X4
lattice with U =8 and (n ) =0.625. The solid squares are data
from the ground-state algorithm and the open squares from the
grand-canonical-ensemble algorithm. The straight lines are
least-squares fits to the large P portions of the data. The slopes
of these lines agree with statistical errors.
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4x4, (~)=0.875, U=4

good statistics, since it does not involve minus signs. We
see from Eq. (18) that the correction term needed to make
an exact calculation is

0+ —0
Z

Z+ Z
1=

—,'(0+ —0 )
( )

—1

P
(24)

FIG. 7. The d-wave pairing susceptibility, Pd as a function of
temperature on a 4X4 lattice with U =4 and (n ) =0.875. The
solid triangles (solid line) are for a correct Monte Carlo calcula-
tion, and the open squares (dashed line) are for the same
configurations but neglecting the sign of the fermion deter-
minant.

calculations of ground-state properties of other quanti-
ties, but not with the accuracy that can be achieved for
the energy. The small value of 4 is an indication that the
neglect of signs yields a good first approximation for the
energy. We have performed ground-state calculations of
a variety a quantities, neglecting the sign, on 2 X 2 lattices
with an electron density of 0.75. For example, for the
structure function S(n, m ) we find 0.91+0.02 and

0.93+0.03 for U =4 and 8, respectively. Exact calcula-
tions yield 0.906 and 0.982 for these quantities. For the
potential energy at these two couplings we find

1.13+0.01 and 1.25+0.05 as compared to exact results
of 1.198 and 1.362. Similar calculations within the
grand-canonical ensemble do not produce quite such
good results. These calculations indicate that, at least on
the small lattices, the quantity 0+ is a good first approxi-
mation to ( 0 ). This quantity can be obtained with very

As long as this term remains a small correction to 0+,
the fact that it is noisy will not be too serious. Notice
that the correction tertn vanishes when (S)p=l. In
some instances it also becomes small when (S)p~0.
For example, on our standard 4 X4 lattice with U = 8 and
a density of 0.625, we find the S(n, n. )+ has the constant
value 0.775+0.008 in the entire range 12(P(24. For
this range of P the quantity S(rr, rr)+ S(n—,n) is zero
within statistical errors which are of order +0.02. To
make a precise determination of the correction term of
Eq. (24) requires a high-statistics calculation of the quan-
tity —,'(0+ —0 ). Whether this approach will lead to a
useful calculational method is under investigation.

It should be emphasized that the neglect of the sign of
the fermion determinant is an uncontrolled approxima-
tion, and can lead to misleading results if the correction
terms are not included. As an example, we show in Fig. 7
the d-wave pairing susceptibility Pd as a function of tem-
perature on a 4X4 lattice for U=4 and (n ) =0.875.
Recall that the interesting physical question is whether
Pd diverges at low temperature.
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