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Recent numerical studies of chaotic dynamics in magnetic systems have featured a small number
of interacting modes. By applying the S-theory formalism of Zakharov et al. , we derive a set of
dynamical equations that govern the behavior of the spin waves and their interactions for an easy-
plane ferromagnet and an orthorhombic antiferromagnet under parallel-pumping conditions. A11

parameters in these equations are expressed in terms of the interaction constants of their respective
microscopic Hamiltonian. Two distinguishing results follow from the analytical and numerical
studies of these equations. First, the system tends to equilibrium states where only modes in a de-

generate manifold are excited. The total population in this manifold is described by an analytic ex-

pression, but the individual occupation numbers are dependent on the initial conditions. Second,
within this manifold, all spin-wave pair-correlation functions attain a common phase before the sys-
tem reaches equilibrium. We refer to this phenomenon as "phase locking. " In the presence of
phase locking, we show that the approach to equilibrium for macroscopic number of modes is de-
scribed by a pair of coupled first-order differential equations. These two results offer a possible
mechanism for the reduction in the effective number of modes that could be used to describe such
systems.

I. INTRODUCTION

The phenomena of spin-wave instabilities have been in-
tensely scrutinized since the early experiments of
Damon' and Bloembergen and Wang, where anomalies
to the then-accepted notion of magnetic resonance were
uncovered. The main features were satisfactorily ex-
plained by Suhl for perpendicularly pumped ferromag-
nets. Spin waves were introduced to account for the ex-
perimental findings. Several years later, Zakharov et al.
presented a microscopic theory of the parametric excita-
tion of spin waves, which subsequently became known as
the S theory. Although the existence of low-frequency
self-oscillations was observed in the early experiments,
they were summarily dismissed. In the last few years, the
existence of chaotic dynamics in nonlinear dissipative
systems renewed interest in these self-oscillations. Since
the class of experiments involving yttrium iron garnet
(YIG) samples is among the cleanest and most readily
modeled by well-known microscopic Hamiltonians, it is
hoped that any new phenomena would shed more light
on the understanding of such systems.

Armed with the S theory, Nakamura et al. were the
first to predict the existence of chaotic behavior in fer-
romagnets under a strong parallel oscillating microwave
field. Gibson and JC6'ries were the first to report a
period-doubling bifurcation in the oscillations of the
absorbed-microwave power enroute to chaos. Their ex-
periment was performed on YIG in the perpendicular-
pumping configuration. Since then, various authors have
investigated the nature of instabilities in spin waves both
experimentally and numerically (see Refs. 7 —12 and
references therein). There is no doubt that such systems

are rich in chaotic dynamics.
However, in all the preceding numerical case studies,

the values of the parameters were chosen ad hoc and the
numbers of modes were kept small. Although the few
mode approximations were able to reproduce some of the
primary features of the experiments, it is important to
understand, why this is the case. The works of Suhl and
Zhang"' and Gill and Zachary' are relevant here. In
these papers arguments were made that an entire mani-
fold of spin waves get excited. With these two points in
mind, we chose to study a specific problem —that of an
easy-plane ferromagnet with parallel static and oscillating
fields that lie in the easy plane. Starting from a model
microscopic Hamiltonian, we were able to express the pa-
rameters in the equations of the S theory in terms of the
parameters of the Hamiltonian. With these specific pa-
rameters, the dynamical equations were studied numeri-
cally and analytically without restriction to a small num-
ber of modes. It was found that a thermal distribution of
modes evolves into a single degenerate manifold. This
manifold is situated at a value given by an explicit expres-
sion involving the parameters and the pumping strength
of the microwave field. Within this manifold, the phases
of each mode attain a common value before equilibrium
is reached. We have referred to this phenomenon as
"phase locking, " and the related consequences have been
reported in our earlier work. ' ' We wish to concentrate
here on showing the evolution to this single degenerate
manifold and give an analytical argument for phase lock-
ing. We conclude with a discussion on how this could
lead to a possible explanation for the fact that only a
small number of modes need to be used to model chaos in
magnetic systems.
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An easy-plane ferromagnet with parallel static and mi-
crowave fields in the easy plane is modeled by the micro-
scopic Hamiltonian

&=—g' JS; S/+g'DS;"S" p—gHQS'

+/L/gI/ cos(co t)Q S; .
J

The primes signify summation over nearest neighbors
only, and both the exchange integral J and the anisotropy
constant D are positive. The third term is the Zeeman in-
teraction and the last term represents the microwave
field. The S theory involves the ensemble averages of the
following correlation functions of Bose operators, ck and

ck, that diagonalize the zeroth-order Hamiltonian

(c/, (t)ck(t) )=nk(t),
1N(ck(t)c k(t))=ok(t)e

After a time of order 1/rk, where yk is the decay rate
for the kth spin wave, the system evolves to a regime
where the phases of the spin-wave pair are fully correlat-
ed. ' In this case we have //k=n /, and loki=///(
which we can write in terms of n„adna phase tj/„:

DSz AH
4 [pgH(ItgH+ 2DSz ) ]'~2

Dz 2pgH +DSz
4N pgH+ 2DSz

cok =
l [2JSz(1—

A, /, )+pgH

+2DSzlk][2JSz(1 —
Ak )+pgH] I

'~2,

where z is the number of nearest neighbors and 5 con-
nects the nearest neighbors. N is the total number of
spins in the system. The preceding equations of motion
are somewhat simplified —the decay rates are the same
for all modes and the values of V and T are all taken as
that of the k=0 mode (long-wavelength approximation).
VA'th these assumptions, we are now ready to address the
problem.

II. ANALYSIS

We first study the system of equations (2) and (3)
without the nonlinear terms

uk=nke' k 1 «k =n (
—y+ Vsing ),k k (4)

In terms of n/, and gk, the equations of motion assume
the form' 1 dg„ =Aco„+ V cosg„

2 dt
1 nk

2 dt

1 d'6 ~/
=co/, — +2T+nk + V cosfk

2 dt 2

+~nk cos(Pk —
gk ),

=n/, [ —y+ V»nqk+ Ty n/, »n(y/, —
y/, )],

k'

(3)

with b,cok =cok —co~/2. Equation (5) has two solutions'
that depend on the values of Vand beck.

(1) For b,co„)V, we have the solution

2 , (hook —V )tan(t(k/2)
tan ' =2(t +c),2 V2)1 jz ACOk+ V

with

k'
where c is the constant of integration. From Eq. (4) we
have

1 dn„2V(beak —V )tan[(hco2k —V )' ~(t+c)]"= -r+
/beak —V+(bco/, + V)tan [(beak —V )'~ (t +c)]

Since the tangent is a periodic function, when averaged over time the time-dependent part is zero; so

implying that nk(t) tends to zero for yt )& 1.
(2) For b,cok ( V, the solution is

1 ( V —hco„)' tan(fk/2)+ V+6,co/,ln, =2(t +c),
( V —hcoq )' ( V hook )' tan(P„—/2) —V ha)k—

where once again c is the constant of integration. Then Eq. (4) results in

1 dn

2 dt

2V( V —Acok )' tanh[( V —bcok )' (t +c)]=.—r+
V+bcok+( V —beak )tanh [( V —hook )' (t +c)] nk .
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As t —+~, ( A 2 y2)1/2 & Qg & ( A 2 y2)1/2 (10)

tanh[( V b—tok )'/ (t +c )]~1
so that

~[—y+(V —ba)k)' ]nk .

For growth, we must have —y+ ( V —bco„)'/ )0 or

( V2 y2)1/2 (g~ ( ( V2 y2)1/2

Equation (7) defines the range of b,co„ for which growth
is possible. The maximum value for dnk/2dt occurs
when hook =0. This analysis shows that there is an insta-
bility threshold when V) y and that the modes around
b,&ok =0 are the ones that get excited (see Fig. 1).

If we now include the nonlinear terms, it can be readily
shown that the equations of motion can be put in the
form

We now conjecture that there is a single mode, denoted
by the wave vector Ito, which is a stable fixed point of this
system of equations, and that all other modes suffer decay
in time. If this is the case, since (10) denotes a band of
growth, this band must be of zero width. In other words,
we have

A =y and ha)k =0.
0

For this mode to be a fixed point, dnk /dt=0 and

d1(k /dt =0. These two conditions together with Eqs. (9}
0

and (11)can be solved to give

2 2 1/2
( V2 y2)l/2

ko

gk =sin —1

0

1 dnk = [—y+ A sin( 1( k
—8)]nk,

1 dil/k
=DENT + A cos(f —8),k

where

A = ( V+ Tg n/, cosg„) + ( Tg nk sing/, )
k k

(9)

Leo = —2Tnko ko s

which are seen to be independent of the initial conditions.
Note that since T(0, the value of nk is positive (for

0

physically realizable states). In order to prove our con-
jecture, we will show that this fixed point is stable. By
performing a linear stability analysis, we show that any
small deviation from the fixed point decays away ex-
ponentially; this proves our conjecture. We rewrite Eqs.
(2) and (3),

QQ)k =QQ)k +2~/ik
k'

ink singk
k'

8=tan '
V+ Tgn„.cosfk

k'

We see that these equations have the same form as the
linear equations provided the time interval is small
enough that d8/dt =0 and dhtok/dt =0. In this regime,
the modes that grow, by analogy, are those confined to
the interval

dig k = [—y+( V+ ink. cosgk. )sinfk
k'

—( ~sin1(//, )cos1/Jk ]/i/, ,
k'

1 dA
=~~/, +2'/ik +( V+ Ty/1/, cosy/, )cosy/,

2 dt k' k'

+ ( ink singk )sinPk
k'

Now define

X=y /1/, sin1(/, ,
k

Y=g n„cosf„,
k

nk .
k

Then one can readily show that
d = —y&+( V+ 3TY)Nr+ & b m/ nkcosPk'dt

(12}

(13)
d

Y= yY+ 3 TXNz —ghcok n/, »nQ„, —
dt k

2 2
T Iv'-~'

—,
' —N&= —yX~+ VX .

FIG. 1. Flot of dnk/2dt vs hook in linear approximation.
This shows range where dnk /2dt is positive.

Now consider the case where only a narrow band of
modes around the mode ko are macroscopically occupied.
Then we can approximate hcok=h~k = —2Tnk . For

0 0

small deviations about the fixed point with
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nk, = —«ospk IT and fk =sin '( y / V), we define the

following:

T ko T&

Y=nk cos1Pk +~a

X=nk sin1(k +b, ,

tions. To the lowest order in these quantities, the equa-
tions of motion are

—,'d AN&-/dt = —@ANT+ VA, ,

—2db, , /dt=3Tnk (cos1(tk )bNr+Tnk b,,—yh, ,

,'db,—ldt=3Tnk (sini)'tk )bNr Tn—k b,, —yb.. .

where the quantities hNT, h„and 6, are small devia- The solution to the preceding equations is of the form

e
—2(y —a b)t+t —i)/3/2(a —bit+ —iv3/2(a b)t] ——(2) +a+b)t

1, t) —$)e )$28 $3e

e
—2(y —a —b)t+tC iV3/2(a —b)t+ —iV3/2(a —bit] —(zy+a+b)t(t) —C)e gC28 C3e

e
—2(y —a —b)i+ rn e(V3/2(a b)t+—n e

—iV 3/2(a —b)t]e —(zy+ a b+)t
gn2e n3e

where n;, c;, and s, , i = 1,2, 3 are constants and

tz =[(V —yz)I —3y/2+[ y + ~( V —y )])
) ]

b =[(Vz yz) I 3y/'2 —[ yyz+ 64( Vz yz)])/2) ]) 3

It can readily be shown that y —a b& 0 an—d 2y+(2 +b & 0 for all values of V & y. Hence all deviations decay in time.
As already shown, for bc@ k & A, ,'dnk Id—t&0 so these modes decay. For hco k & A, when situated around the fixed

point ko, an explicit solution for this band of modes is

nk(t)=nk(0)exp[[(bk/Y)+2T sin((('tk b,, —2T cosgk b,, 4T Eked—Nr]t I,
with 4k —=&uk —cok . As h„A„and ANT all decay exponentially with time, the above shows that all modes away from

ko (i.e., b,k %0) decay in time, whereas ko itself is stable. This proves our conjecture.
The question now arises —how does the system evolve to the state where only the stable mode is macroscopically oc-

cupied? The analysis leading to Eq. (10) shows that the band that gets excited is centered around bZok

(=tok —co~/2+2T+k nk ) so at the early states of pumping, only those modes near co /2 get excited. We now show
that given any macroscopically excited mode that is not the stable mode ko, the system will shift towards ko.

Assume there is one dominant mode k@ko, for simplicity. Then one can readily see that for this case,

4k=4k, *

b,cok+ Vcos1(k
0nk=

3T

sin(1(k —
qk

—p) nk

For any mode k'Wk, the preceding conditions give
1/2

1dnk .
l

2 ~k= -r+ ~'+
2 dt 3

(15)

1 d0k
y2+

' 1/2
k

cos( tI('k
—

))tk
—P } (16)

where p=tan '(3y/t))k ). Note that for k=ko, the system is already at the stable position (hk =0) so that Eq. (15}gives

,'(dnk Idt ) & 0, as s—hould be the case. Once again we can solve these equations.
(1) For (bk —6k/3) & y +(bk/3), the arguments leading to Eq. (6) once again result in —((nk ), = —y(nk )t so

that modes in this range suffer exponential decay.
(2) For

2

k'

2

& y'+
3

we get

1 dn„. 2E(E —v„.)' tanh[(E —v„)'/ (t+e)]=.—y+ wn

E vk +(E+v„)tanh [—(E vk. )' (t+c)]—
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with E=[y +(bk/3} ]', vk. =6k —26k/3 and c is a
constant of integration. For large values of t,

—,'&k I
—y +[y'+(~k /3 }' —(~k

so that 2dnk. /dt is symmetric about its maximum value

of

dominant mode is below the stable mode. All other
modes decay away. In both cases, the width of the band
of growth is —',

~
b k ~

so that the closer the dominant mode
is to the stable mode, the narrower is this band. Also the
maximum growth rate within the band,

' 2 1/2

I [y'+(~k /3)']'" y—I &k
2' y+

3
—r ~k.

centered at b, k =26k /3. For modes to grow, we require

[y2+(Q /3)2 (Q 2Q /3)2]l/2) y

This translates to

-'~k — & ~k &-'~k+
3 3 3 3

We now consider two cases.
(a} hk )0 (the present peak is above the stable fixed

mode ko). Then ,'dnk—/dt.)0 when

—,'l&kl «k & l&kl « ~k, +-,'1&k l &~k &~k .

This is illustrated in Fig. 2.
(b) b, k &0 (the present peak is below the stable fixed

mode ko). Then ,'dnk /dt —)0 when

—l~kI &~k'& l~kl « ~k &~k'&~k

This is illustrated in Fig. 3.
Thus we see that if the dominant mode is above the

stable 6xed point, the band with a positive growth rate is
below the dominant mode. The converse is true if the

is smaller the closer the dominant mode is to the stable
mode. We ofFer numerical evidence for this behavior.
Solving the set of coupled equations (2) and (3) with a
uniform distribution of modes and arbitrary initial condi-
tions, we see that the system evolves towards the stable
peak ko. Figures 4 and 5 illustrate this for the two
different cases: one when the dominant mode is above ko
and the other when it is below ko. Also indicated are the
values of &ok and nk .

0 0
What happens if there are other modes that are degen-

erate or very close in energy to ko? To answer this ques-
tion we go back to Eqs. (12},(13), and (14). These can be
manipulated to give

——(X + Y N) = ——y(X + Y N)—1 d
4 dt T T

+ g ~~knknk'»n(tt'k —
4k }

k, k'

It has been established that ko is a stable mode. For
modes very close to ko, Amok—-hcok =constant. In this

0

case, the second term is identically zero. Hence

z ~~av+( —) 7p

3
k — Present, Dornin

k 0
—S t.a b le Mode

k' —General Mode

Corresponds
to huz

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

2b, ~

8

FIG. 2. Plot of dnk /2dt vs 5k for hz & 0 when nonlinear terms are included. This shows band of positive growth for dnk l2dt.
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zv+( —)3

I

I

J

I

I

I

l

I

l

I

Iz~„I
3

esenL Dominant Mode

table Mode

enerat Mode

Corresponds
t, o !KGJ)

0

3

FIG. 3. Plot of dnk /2dt vs hk for 6k & 0 when nonlinear terms are included. This shows band of positive growth for dnk /2dt.

0

Time= 18y
V=3.0y

0

Time=18y 7=3.0y

n~- ——————
~0

Time =98y Time =98y

II.n~- ——————————
~o

Time =2500y Time =2500y

0

CJg
I I I I I I I I I I I I I I I I I I I I L

2 4 6 8 10 12
6&I (unlfs of y)

2 4 6 B 10 12
Awk(units of y)

FIG. 4. Profile of magnon population at various times only
nondegenerate modes are shown. One hundred modes are in-
cluded. Initial conditions were chosen so that steady state is ap-
proached from below. V =3y, T= —y. Also shown are
No = —( V —y )

' /T and co«, the analytical equilibrium
values.

FIG. 5. Profile of magnon population at various times only
nondegenerate modes are shown. One hundred modes are in-
cluded. Initial conditions were chosen so that steady state is ap-
proached from above. V =3y, T= —y. Also shown are
No = —( V' —y')' '/T and ~ko, the analytical equilibrium
values.
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——(X +F N—)~—y(X +Y N—)
1 d 2 2 2

4 dt T T

implying that

(ynksinqk ) +(y nkcoslt/k ) ~ (ink)
k k f ~ oo

or
3

I I I I I I I I

X "knk'~cos(fk 1('k')
k, k' t~ oo

For k =k', this is identically satisfied. For krak', the
preceding implies that all modes that are close to ko must
either be unoccupied or else they have equal phases.
That is, gk =gk mod2Ir, for all macroscopically occupied
pairs k and k' when they are degenerate (or nearly so).
We refer to this as "phase locking. " Equation (17) shows
that phase locking occurs on a time scale of —,'y. The
threshold for instability is at V&y. In the limit as
V~ ~, it can be readily shown that gk nk(t) approaches
its equilibrium value at a rate of I /y. For small values of
V, the rate is much slower. Hence it is safe to conclude
that phase locking is not a steady-state result but should
happen before equilibrium is established. This has been
confirmed by our previous work (see Refs. 15 and 16}. If
we use this fact in our analysis that leads to the stable
mode ko already given, what we get instead is a whole
manifold m of stable almost-degenerate modes. We then
have

0
0

I I I I I

100
I I I I I

200 300 400

Tj.me yt

( I/2 ~2)1/22 2 1/2

kFm

———2T y /Ik
——2( y' —y )

kEm

(19)

(20)

FIG. 7. Total population of magnon modes (at the same
conditions as Fig. 6) vs time. Also shown are
No = —( V —y )

' /T and coko, the analytical equilibrium
values.

4k E 1('k =»n
—1

I I I I I I I I I I I I l I I I I I I I I I I I

V=5.0y
T1IDe=7'7

(18) We conclude here that in the system being pumped a
set of modes are selectively excited, consistent with Eqs.
(19) and (20). Numerically, the relative values of the oc-
cupation numbers of the di6'erent modes within this man-
ifold depend on the initial conditions but the sum of all
the occupation numbers obeys

( y2 ~2)1/22 2 1/2

kEm

(See Figs. 6 and 7).

Time=37'

Time=500'

I I I I I I I I I I I I I I I I I I I I I I I I

0 2 4 6 8 10 18
EIu&(units of y}

FIG. 6. Profile of magnon population for forty sets of degen-
erate modes, each set having five modes. V=sy, T= —y. This
result is typical of a single run with arbitrary initial conditions.

III. GENERALIZATION

Given that our system evolves towards the stable mani-
fold determined by Eq. (20}, what happens if this condi-
tion cannot be satisfied because of a gap in the energy
spectrum? What we expect and find to be the case nu-
merically is the same evolution towards the stable mani-
fold except that the system piles up at the edge of the
gap. See Figs. 8 and 9. When this happens, the degen-

erate manifold at the edge simply builds up to a certain
level and remains a stable point of the system. This is
equivalent to the case of a constant 4cok when hook is the
value at the edge of the gap. This is exactly the case we
have studied earlier (see Refs. 15 and 16). All the results
there carry over even to the case when EQk =0 is

satisfied, which is a special case of the constant-Amok case.
We quote the main results. At the fixed point [be it given

by Eq. (20) or edge of gap],

0 =sin
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I I I I t I I 1 f I l t t I I l t 1 1 f t I t —4co —V cosgo
X &k=

Time =7y

TID18=37$

Time=75'

Gap

Gap

V=3.0y
This fixed point is stable against small perturbations. For
small values above threshold, evolution towards the
stable fixed point is exponential, and for larger values, the
system exhibits damped oscillatory behavior. The cross-
over value of pumping-field strength V agrees fairly well
with that obtained from a linear stability analysis. The
behavior does not depend qualitatively on the number of
modes considered. We have investigated this up to 1SO

modes. Phase locking is observed numerically in all
cases, with no exception. With phase locking we can ac-
tually reduce the large number of equations considered to
two:

1 AT =Nr( —y+ Vsing),
2 t

=hco+3NrT+ Vcosf .1 d
2 t

Gap
I I I t I I I t I t I I I t I I I t I t I I

0 2 4 S 8 10 12

6621 (units of g)

FIG. 8. Profile of magnon population at various times with

gap. Final steady state is below the peak mode which is in the

gap. There are fifty modes each above and below the gap.
V=3y, T= —y.

Since the parameters in the system are fixed by the pa-
rameters of the microscopic Hamiltonian, we have no
freedom to vary them. For this set of equations, no
chaotic behavior was found. We have also studied the or-
thorhombic antiferromagnet, which under certain condi-
tions, yields an identical set of equations (see the Appen-
dix).

IV. DISCUSSION

t S I I t I l I I I t I I t I 1 I I f I 1 l I

Time=7'7 V=3.0y

Gap

Time =37'

Gap

Time =75'

Ga
I t i I i I i%& s i t s t t & s i I

Q 8 4 6 8 10 12
Au) t, (units of y )

FIG. 9. Profile of magnon population at various times with

gap. Final steady state is above the peak mode which is in the
gap. There are fifty modes each above and below the gap.
V=3y, T= —y.

From our analysis, we learn that under parallel-
pumping conditions a ferromagnet with easy-plane an-
isotropy and the orthorhornbic antiferromagnet evolve to
a stable state where a single manifold of degenerate
modes are excited. Within this manifold the individual
occupation numbers cannot be determined since they de-
pend on the initial conditions. ' However the sum of all
these occupation numbers, which is directly related to the
measured magnetization, is a well-defined number. The
important phenomenon phase locking enables us to treat
this single manifold as a single mode. This reduction,
which is accomplished first through the evolution of the
system to a degenerate manifold and second through
phase locking, is of particular interest. The theoretical
and numerical studies of the various above-mentioned au-
thors assumed only a very small number of modes in their
work. As far as our results indicate, there is no difference
in the total occupation number whether we have two
modes or more than a hundred. Since the total occupa-
tion number is the connection between theory and experi-
ment, like those of the previous authors, our results could
also be modeled by a two-mode system.

With ad hoc choices for the parameters, many experi-
mental features were simulated numerically with low-
dimensional systems. This has prompted the belief that
such systems can be described by only a few variables.
The e8'ective reduction in the number of modes through
phase locking may offer just such an explanation. If the
macroscopic number of modes that are excited are con-
centrated around two degenerate manifolds, then phase
locking would "reduce" this down to an effective-two-
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mode system, where one represents each manifold. Al-

though derived from a microscopic Hamiltonian, our S
and T parameters in the S theory are calculated only in
the long-wavelength limit. Should the two degenerate
manifolds be far apart so that the k dependence of S and
T becomes significant, we can have different S and T
values that connect the different manifolds so that chaot-
ic dynamics may result. However, in the long-
wavelength regime we find only one degenerate manifold
in our system. It may be this lack of multiple manifolds,
and hence lack of possibly different parameters connect-
ing them, that leads to our failure to observe chaos.

Recently, Suhl and Zhang analyzed a number of high-
power effects in ferromagnetic resonance using an ap-
proach that is largely complementary to the analysis
presented here. ' ' In their characterization of parallel
pumping, they neglect detuning and assume a single dom-
inant mode. There is coupling between the dominant
mode and each of the inferior modes, but not among the
inferior modes themselves. Such a model is qualitatively
similar to the limiting behavior outlined in Sec. II. In a
sense, the results in this paper show how the system
evolves in time to a point where the Suhl-Zhang approxi-
mation is appropriate.

The analysis of Suhl and Zhang was based in part on
center-manifold theory, which provides a systematic
method for approximating the effect of the decaying
modes on the evolution of the unstable modes. Such an
approach can presumably be applied to the model dis-
cussed in this paper. However, the analysis is likely to be
even more complicated than what was outlined in Ref.
21, and thus far more complicated than our own ap-
proach, since a central feature of our model is the con-
tinuous distribution of spin-wave frequencies. This 1eads
to a situation where the modes with growing amplitudes
change with time [cf. Eq. (15)]. Furthermore, even in the
case of a degenerate spin-wave manifold, the application
of center-manifold theory is not without problems. '

The Suhl-Zhang analysis is also complementary to the
treatment of parallel pumping given in Refs. 15 and 16.
There it was assumed that all modes had the same detun-
ing and the same interactions, in contrast to the
dominant-mode scenario. According to the S theory,
with common detuning and interactions, the phases be-
come locked, and the total magnon population ap-
proaches an asymptotic value determined by V, y, hcu,
and T, independent of initial conditions.
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APPENDIX: ORTHORHOMBIC ANTIFERROMAGNET

In this Appendix we will derive the equations of
motion for the case of an orthorhombic antiferromagnet
that is characterized by different effective fields for dis-
placements in the x and y directions. This is represented
by the microscopic Hamiltonian

&=Jg S/ S/+s+pgHQ S)'+K, Q(S/") +Keg(S) ).
j,5 J J J

(Al)
where j is summed over two sublattices, and 5 connects
nearest neighbors that are from different sublattices. H is
the usual Zeeman field and J is the positive exchange en-

ergy. K, and K2 are positive and represent the anisotro-

py energies in the x and y directions, respectively. The
positive exchange energy means that spins next to one
another tend to line up antiparallel so, unlike the fer-
romagnetic case, we have two intermeshed sublattices of
spins. Within each sublattice, the spins are parallel but
one sublattice lines up antiparallel to the other. The best
way to describe this system is to denote each sublattice
differently. Let the Zeeman field denote the positive
direction so that one sublattice points along it and the
other antiparallel to it. Then the elementary excitations
in the two sublattices consist of deviations from the posi-
tive z axis in one case and the negative z axis in the other.
Hence the Holstein-Primakoff transformations in this
case are

S+=(2S—a a )' a.

S+=b (2S bb )'—j
where a is the atomic-annihilation operator for the sub-
lattice that points along the z axis and b, that for the sub-
lattice that points antiparallel to the z axis. We have as-
sumed that both sublattices have equal spin magnitude S.
On applying these transformations, keeping second-order
terms and expressing the results in terms of spin-wave
coordinates, we get

&—&0+%(+%2,
where %o is a constant and

&i=+ 2JSzlk(akbk+akbk )+g[2JSz pgH+S(K/+K—~)]akak
k k

+g[2JSz+pgH+S(K&+K&)]bkbk+ ,'(Ki K2)g(aka —k+a—ka k+bkb k+bkb k),
k k

[rk, ak bk bk3bk ~k, +k, , k +k, +(yk bk ak ak ak +2Yk —k ak ak bk bk )~k +k, k +k ]t t

1 4

K)+E~
[(ak ak ak ak +bk bk bk bk )~k +k, k +k ]

I 4

K) —J( ~

X (ak ak ak ak +bk bk bk bk Nk +k k +k + «rmitia c»iuga«
I 4

(A2)
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where z is once again the number of nearest neighbors, N
is the number of spins in each sublattice and
A,k=gk e'" /z. We will first diagonalize the quadratic
part of the Hamiltonian &I. To do this we employ the
Bogoliubov transformation

O'k = u &ak+ uza k+ u3bk+u4b (A3)

First, denote

Ak =2JSzA, k,
8 =2JS, +S(K1+Kz ) IzgH-,

C =2JS, +S(K1+Kz )+ AH,

D=S(K1 Kz) .—

~ 300—
4
Q)

tzG

Qz

ZOO—

100

I I I I

2000 4000 6000
H(Gj

Solving the secular equation we get the roots

cuk, =[—,'(8 +C —2Ak 2D—

+I(8 —C) [(8+C) —4Ak]

+ 16A 2D2
I

1/2)]1/2

=[ '{8 +C —2Akz —2D
7 2

—I(B —C) [(8+C) —4Ak]

+ 16A 2D 2] 1/2)]1/2

k3 ~kj ~

k, 4= k, z

Solving for the values of u &, u z, u 3, and u4 we get

ul i

uz i=

u3i

AkD(8 +C+2cIIk;)u4;

(cok;+ C )(8 cuk; D) —Ak(co—k;+8—)

Ak [D Ak+ (8 —C—)cok;+BC]u4;

(cok;+ C )(8 cok; D) —Ak(cok—; +8—)
D(8 cu D+—A )u-

(cIrk;+C)(8 —cIIk, D) Ak(cIIk—;+8)—

(A4)

with i =1,2, 3,4. The Bogoliubov transformation is uni-
tary if [ak, ak]=1 or

(A5)

Since we are interested in positive energy solutions only,
there are actually only two acceptable energies. It can be
readily shown that for values of S(K1 Kz } small relativ—e
to 2JSz+S(K, +Kz), which is true for almost all cases,
the two positive energies are ~k, and cok z, which we now

FIG. 10. Plot of cok ~ vs Zeeman field H in the long-
wavelength limit. Parameter values appropriate to
CuC12 2HgO.

denote by cIIk +. Then %1 can be written thus

~l X(~k, +ak k +~k, PkPk }—
k

where

&I =Pgh cos(cur t)g(bkbk agar, )—
k

(A7)

and the higher-order terms %2, we have to invert Eqs.
(A6). Once again, we are interested in the long-
wavelength limit only so we replace A, k by 1. We get the
following:

uk ui k +u2a —k + "3pk +u4p k—
bk=w, a„+Wza k+w3pk+w4p k

(Ag)

The v's and m's can be obtained in terms of the known
u's. All other operators can be obtained from the preced-
ing equations with obvious changes. Then Eq. (A7) pro-
duces the pumping terms

ak=u] +ak+uz+a k+u3+bk+u4+b
(A6)

pk=ui ak+uz a k+u3 bk+u4 b k

and u; ~ can be obtained from Eqs. (A4} and (A5). To
deal with the pumping term

& =rzgh cos(cI3 t)QS',
J

which becomes

I CO t

I =pghg e ' [(w, wz uiuz}aka „+—(w, w4 u, u4)p„p-
k

+(WIW4+W2W, —u, u4 —uzu3)a„p „I + Hermitian conjugate .

For typical values of JSz, SE, , and SEz, for example, CuClz 2HzO, we have

2JSz =2150X 10 ' ergs,
SE,=7.3X10 ' ergs,
SEz=2. 1X10 ' ergs .

(A9)
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Using these numbers, we can show how the long-wavelength magnon energies vary with the Zeeman Geld. Such a vari-
ation is shown in Fig. 10 which is a plot of cok + versus the Zeeman 6eld H in the long-wavelength limit.

From the typical experimental values of pumping frequencies and applied static fields (see, for example, Ref. 24 for
CuClz. 2HzO) we find that only the lower-branch (k =0) magnons are excited. So for our analysis, we can neglect the

upper branch completely and retain only terms related to the lower branch. Then

IN t P f lN f

%,+% =gcok akak+ltgh(w, wz —
u, V2)g(e ' aka k+e ' aka k),

k k

which is already the same as the ferromagnetic case already considered. We now deal with the higher-order terms &z.
From Eqs. (A2) and (A8), after much algebra where only operators involving ak and ak which are number conserving
(scattering terms only) are kept, we finally arrive at the result

~2 T X + k)+ k~+ k3+k 45k) +k~k3+, k4
4

with

T= [2( uiw i+v 2N2)( ui+V2+w i+w 2) +2v iwi( U2+wi) +2U 2w 2( Ui+w i) +( Ui+U2)(w i+N2) +2v iu2N]w 2]
2N

lti++p 4 4 4 4 2 2 z z
3(I{ i It/)

2 2 2 2

2N
[Vi+U2+Wi+W +24 Uviol+4 WWi]2[UiU2(Vi+Up)+WiW2(Wi+W2)] .

2X

Once again, we note that in this long-wavelength limit, there is no k dependence to the coe5cients. The total Hamil-
tonian is now

l CO t f g LCD + +y ~k, —+k+k+ r(e +k+ —k+e +k+ —k )+ T rf +k, +k +k +k ~k +k, k +k
k] - k4

where V=pgh(w, w2
—u, uz) which is a constant. This

equation assumes the same form as the easy plane fer-
romagnet (see Ref. 15) but with difFerent expressions for
cok, V, and T. Therefore, provided the conditions are

I

such that only the lower branch of a two-sublattice anti-
ferromagnet is excited, essentially similar behavior
should be obtained as in the ferromagnetic case discussed
in the main text.
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