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We have studied a two-dimensional multiband Hubbard model describing Cu02 sheets in the
high-T, oxides. The simulations were performed for a grand-canonical ensemble on lattice sizes up
to 16 unit cells of three atoms each and temperatures down to kz T- t/30, where t is the Cu-0 hy-
bridization. For generally accepted values of the Hubbard coupling on the Cu sites Ud 6t, two
different regimes can be distinguished in the magnetic properties of the model. In the half-filled

band case we see for b & Ud/2 (b, =a~ —cd being the charge-transfer energy) the formation of a
correlation gap, as expected for a charge-transfer insulator. For 5 & Ud/2, on the other hand, no

gap is visible in the considered temperature region. In this (mixed-valence) situation only a very
weak dependence of the magnetic structure form factor on doping is obtained, in contrast to the
charge-transfer situation, where a strong decrease of the same quantity is observed for very low con-
centrations of dopant holes (5 0.05). The existence of antiferromagnetic long-range order in the
two different parameter regions is studied with finite-size scaling in the low-temperature regime.
We also investigated the possibility of singlet formation between 0 holes and the Cu hole on one
plaquette, as suggested by Zhang and Rice. The amplitude squared of such a singlet increases
strongly as a function of doping, reaching saturation at 5=0.2. Finally, we find evidence for an at-
tractive pairing interaction only in the extended s-wave channel for 5=0.2 and P ~ 4/t, although no
phase transition to a superconducting state could be seen.

I. INTRODUCTION

The CuOz layers present in most of the ceramic super-
conductors' are the physical relevant elements for the re-
markable magnetic properties and almost certainly for
the high critical temperature as well. The long-range an-
tiferromagnetic (AF) order observed in La2CuO„and
YBa2Cu306 (the undoped phases) is a clear indication of
strong electronic correlation as first pointed out by An-
derson at the outset. Various mechanisms involving AF
correlations, in an essential way, such as resonating
valence bonds, ' spin bags, and spin fluctuations ' have
been proposed based on the one-band two-dimensional
(2D) Hubbard model. However, spectroscopic data
show that the explicit inclusion of 2p orbitals on the 0
sites is necessary to properly describe the charge carriers
introduced by doping, thus lending more support to mul-
tiband models as the one proposed by Emery. "

The strong interparticle correlations and fluctuations
induced by Hubbard-type interactions make clear the
need of rigorous or exact results beyond mean-field ap-
proximations. Due to the fact that exact analytic results
are almost nonexistent for dimensions D ~ 2, an increas-
ing amount of numerical work in the form of Monte Car-
lo simulations' and exact diagonalizations was
performed for both one- and multiband Hubbard models.
Particularly interesting are the advances in Monte Carlo
simulation techniques with stabilization algo-
rithms ' ' ' ' that allow now to study strongly corre-
lated systems from the high-temperature limit down to
essentially T~O. Nevertheless, a serious diSculty, due
to the so-called minus-sign problem, remains and does
not allow for simulations in the low-temperature limit for
arbitrary fillings in Hubbard models.

We present in this article a Monte Carlo study of a
multiband Hubbard model"' for the Cu02 layers. The
motivation for this model and a detailed description are
given in Sec. II. The algorithm used for our simulations
is due to Blankenbecler, Scalapino, and Sugar (BSS) and
Hirsch, ' improved with stabilization techniques '
that allowed us to reach the low-temperature limit of the
model. In order to make our paper self-contained we
give a short survey of the simulation technique in Sec.
III. The numerical results are described in Sec. IV. We
first show (Sec. IV A) several results that demonstrate the
ability and limitations of the algorithm in dealing with
the three-band Hubbard model. The magnetic properties
of the model are discussed in Sec. IV B. On the basis of
these properties and the electronic compressibility we dis-
tinguish a charge-transfer from a mixed-valence type of
behavior as a function of the parameter values. We fur-
ther address the question, of whether AF long-range or-
der is present in the system. In Sec. IVC we first study
the formation of a local singlet between a hole on a Cu
site and a hole on the four nearest-neighbor 0 sites.
Zhang and Rice ' suggested, that in the limit of strong
repulsion on the Cu sites, the low-energy behavior of the
multiband model can be described by such a singlet, al-
lowing for a reduction to an effective one-band Hubbard
model, or rather to a t-J model. In the second half of Sec.
IV C we examine pairing correlation functions and sus-
ceptibilities. In the last Sec. V we summarize our numer-
ical results.

II. THE MODEL

In order to model the Cu02 layers, several features
have to be taken into account. According to local-
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density calculations and spectroscopic data, ' the
relevant electronic elements should be given by d 2 & or-

x —
y

bitals on the Cu sites strongly hybridized with p or p„
orbitals on the oxygen atoms. Furthermore, a strong
Coulomb repulsion on the Cu atoms must be present in
order to account for the magnetic properties of the these
materials. Moreover, the explicit inclusion of the 0 lev-
els seems necessary since photoemission data' clearly
show that the dopant holes have preferential 0 character.
A11 the elements mentioned are contained in a rnultiband
model that was originally proposed by Emery. "

The three-band model studied in this paper is given by
the Hamiltonian, "'

The p-d hybridization between d 2 2 orbitals on the Cux —y
sites and p or py orbitals on the 0 sites is given by '

a,"tj= tc o( 1) (2)

where a; =1 if j =i+ 'x or i —
—,'y, and a,J=2 if

j =i —
—,'x or i + —,'y. The phase factors in Eq. (2) are due

to the d and p symmetry of the Cu and 0 orbitals, respec-
tively (Fig. 1). The O-O hopping tnatrix element is
defined in a similar way:

H= g t,j(d; c +H c )+. .g t'(c c' +H c.}.
(, )-" ' '

(j j'&0
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.
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(4)

where P =1 if j'=j—
—,'x —

—,'y or j'=j+ —,'x+ —,'y, and

P '=2 if j'=j—
—,'x+ —,'y or j'=j +—,'x —

—,'y. The index i

denotes the Cu sites and j the 0 sites. The local-orbital
levels are given by c. and cd and the charge-transfer en-

ergy is 6=c —Fd. Ud and U are the Hubbard cou-
plings on the Cu and 0 sites.

The three-band Hubbard model of Eq. (1) and varia-
tions of it were studied recently by several authors both
analytically" ' ' ' ' and numerically ' ' In
the following we briefly enumerate some essential points
for a characterization of the Hamiltonian of Eq. (1), that
emerged from the studies cited above.

The two key parameters of the system are the Coulomb
repulsion Ud and the charge-transfer energy h. Based on
the experience with transition metal oxides, Zaanen
and Oles' proposed several regimes in a Ud versus 6 dia-
gram. For Ud ))b„a charge-transfer (CT) or a mixed-
valence (MV) situation is present depending on whether
5 is much larger or of the order of the bandwidth W. In
the opposite case ( Ud ((6} a one-band Hubbard model is
appropriate if Ud ))8' whereas a metallic Brinkman-
Rice regime was suggested if Ud ~ 8'. Further mean-
Geld calculations based on the Hartree-Fock and
Gutzwiller approximations were used to study the CT
and MV regions that are thought to be relevant for the
high-T, materials. ' '

In the limit Ud ))6 ))W, the model can be reduced to
a spin-Fermion system' ' ' ' with a fully developed local-
ized spin on the Cu sites interacting with carriers on the
0 sites through a Kondo-like exchange:

I

I

I

+g~+
I

L

I

P I

I

I

+g~+
X —)( J

FIG. 1. Scheme of the underlying topology. On the copper
sites we consider the d 2 z orbitals and on the oxygen sites the

x —y

p„and py orbitals. The appropriate phase factors are also indi-
cated.

Moreover, a Heisenberg exchange coupling between
nearest-neighbor Cu spins is obtained in the next higher
order,

4tc -o
4

JCu-Cu

that would lead to a Neel state at half-filling (one hole per
unit cell) and T=O. A further simplification was pro-
posed by Zhang and Rice ' who assumed that the
doped carriers strongly bind to the Cu spins in a singlet
state, thereby allowing for a mapping of the low-energy
region of the model into a one-band Hubbard model or
rather a t-J model. It was further proved by Zhang that
this limit is exactly attained in the case where h~ ~,
Ud ~ ao but Ud

—b, is finite. Since, according to Eq. (5),
this limit implies the cancellation of the antiferromagnet-
ic exchange between Cu spins, the question arises of
whether those singlets are still stable in the presence of
low-lying magnetic excitations due to an exchange-
coupling constant Jcu cu

—o00 K.
In the MV itinerant situation, a few studies in the

frame of a random-phase approximation (RPA} diagram-
matic expansion were performed. ' Antiferrornagnetic
long-range order is obtained at half-filling, but it survives
up to fairly high-dopant concentrations if realistic values
of U& are used. Thus, the inclusion of higher-order
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corrections (e.g., in the frame of a conserving approxima-
tion ) seems necessary. Nevertheless, a weak-coupling
approach could still be qualitatively correct if the picture
of a Fermi liquid, as suggested by some photoemission ex-
periments, is confirmed.

Unfortunately the parameters for the multiband mod-
els as obtained from ab initio calculations are in an in-
termediate range. According to Ref. 40, the values of the
parameters are the following: tc„o= 1.3—1.6 eV,
Ud =8.5 —10.5 eV, 6=3.6 eV, U =4.0-7.5 eV,
fQ Q 0.65 eV, and U~d =0.6- 1.2 eV. The last parame-
ter corresponds to a Coulomb repulsion between nearest-
neighbor Cu and 0 sites. We did not include such an in-
teraction in our model, since the corresponding coupling
is apparently small. Furthermore, both weak- and
strong-Coulomb calculations did not show any
dramatic infiuence due to Ud. Nevertheless, such an
operator could be relevant in the presence of U as sug-
gested by exact diagonalization results. z4 From the
values above, it is rather dificult to decide a priori wheth-
er the (strong-coupling) CT or the (weak-coupling) MV
picture is more appropriate for the high-T, materials.
We will address this question in Sec. IV B by considering
the magnetic properties of the system and the opening of
a gap for different parameter sets.

III. THE SIMULATION

In this section we give a short description of the algo-
rithm used to perform finite-temperature studies of a
grand canonical ensemble. The basic developments are
due to Blankenbecler, Scalapino, and Sugar (BSS) and
Hirsch, ' who applied the algorithm for the first time to
the Hubbard model. Further improvements, that allow
for low-temperature simulations, were achieved very re-
cently.

Our aim is to calculate the expectation value of a phys-
ical observable 8, defined by

(@) Tr(ge ~ )

Tr(e ~ )
(6)

To this end a small imaginary time step br (13=1.b,r) is
introduced and, by means of the Trotter formula, the
partition function can be written in the form

Z=Tr(e ~
)

The first exponent corresponds to the p-d hybridization,

K, = g t;J(d; cj +H. c. )= g d; k ~"c
(i,j )o &i,j &o

and the second exponent is due to the direct O-O hop-
ping,

E2= g t,,'(c c' +H c )
(j,j')o.

(2)
J~ JJ J~

(j,j')o

The other terms refer to the potential and interaction

parts on both Cu and 0 sites:

V =U gn &n &+(e —p) g n (10)

where a corresponds to d or p depending on whether m is
a Cu or 0 site.

Now a discrete Hubbard-Stratonovich transforma-
tion is applied to the interaction terms in order to bring
them into a bilinear form:

exp( br—U, n &n ~ }

=-,' Tro, ,exp[A.o', , (n t
—n„, )

,'U b—r—(n &+n &)],

with

AALU
tanh = tanh

2 4

The Hubbard-Stratonovich transformation must be per-
formed on each lattice site m and at each time slice l,
therefore the auxiliary Ising variable o

&
has the corre-

sponding two space-time indices. Since the original
Hamiltonian was mapped into a free fermion system in-
teracting with a fluctuating classical field, the quantum-
mechanical trace can be now performed. The result
is30, 14

Z = g (det8+det0 ), (13)

with

and

0 =I+B~B—— BL L —1 1

+ & k(i) & k(2), (I) U2
—(l)

81 =e e e e

In Eq. (15) we denoted

U

2

R+RI' =
1+R +R

with

(17)

R*=
i(det8 —

)„di

v+—(1)=5 +I, cr (I)+b,r p —s,— . (16)

The Fermion determinants det8 —are functionals of the
Ising field u I. Notice that according to BSS only ma-
trices with space indices are necessary, since the temporal
part is taken into account through a time-evolution
operator.

A sequence of Hubbard-Stratonovich fields to I I is
generated, which is distributed according to
~det8+det8 ~/Z using a standard Monte Carlo method.
We reject or accept a spin Aip in the 3D Ising lattice ac-
cording to a heat-bath algorithm. The probability for
acceptance is
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The determinant (det8+ )„,„differs from (det8+ ),&d

through the fiipped Ising spin.
In these expressions the absolute value is taken since

the fermionic determinants have no definite sign. Ac-
cordingly, the average for a certain quantity A is given
by

A sgn(det8+det8 ) ~det8+det8

(~)= (19)
sgn( det8+ det8 ) ~

det8+ det8

0.2
C) 0—
V)

I

o —02—
—0.4

N=2x2
p=6

6=0. 0

Ud =8.0
0 =0.0

C —0 —1.0
tO —0 00
D =5.66

I I I i I I I I ( I I I I

In the case where the average sign in the denominator of
Eq. (19) is small ( —10 ), large fluctuations will com-
pletely deteriorate the measurements. This so-called
"minus-sign problem" appears as the temperature is
lowered.

The algorithm described delivers only reliable results
for P&4/t For l.ower temperature (larger P or L) round-
ing off errors seriously affect the accuracy with which the
product BI*BL

& B& can be calculated, since very
large and very small numbers are spread over the whole
matrix. This problem can be overcome by using matrix
factorization methods, for instance, the Gram-Schmidt
orthoyonalization procedure. The product
BI*BL

& B& is split in a product of L/k terms,
which themselves are numerically accurate, because we
choose a small enough k. Each term can be factorized as

B+- B =UD R +—

n+k —1 n (20)

U* is an orthogonal matrix, D+—a diagonal, and R +—an
upper triangular matrix. The diagonal matrix, which in-
corporates new elements with large variations in their
magnitude, is easy to handle under numerical operations
(especially under inversion). The practice shows that the
matrix R * is well conditioned, whereas U+—is well condi-
tioned since it is orthogonal.

With this modified algorithm we can reach inverse
temperatures as low as /=30/t or even lower ones. This
improvement allows for simulations of electronic systems
down to essentially T =0, except in cases where the
minus-sign problem appears. In the simulation of a
three-band Hubbard model, it is our experience that
minus signs play an important role for inverse tempera-
tures P ~ 10/t and for hole doping 5%0. Notice that in
this case no particle-hole symmetry is present for 5=0, as
is the case for the one-band Hubbard model.

I I I I I I I I I I I-0.6 '

20
x 1000

5 10 15
MC Averages

FIG. 2. Asymmetry in the spin-spin correlation function
versus Monte Carlo averages. The difference for the nearest-
neighbor spin-spin correlation in the x and y direction is negli-
gible for more than -8000 MC averages. Here and in the fol-
lowing data the solid lines serve only as a guide for the eye.

m =—g( —1)'(n;& n;~)—1

l

(22)

as a function of MC averages. The sum is carried out
only at the Cu sites. Reliable results can be obtained for

"~0

N=2x2
0.8 —p=s

0.6 -= ~

C —0
t 0—0 0'0
6=0. 0

Ud =8.0
U =0.0

P
h, =r.66

for a few thousand Monte Carlo (MC) averages there is
still a considerable di8'erence in the nearest-neighbor
spin-spin correlation function when comparing the x
(S(l„=l,l =0)) and the y direction (S(l„=0,1 =1)).
The quadratic symmetry of the lattice is numerically re-
stored only after -8000 averages for relative large values
of Ud. The parameters chosen in Fig. 2 are such (system
size N=2X2 unit cells; Ud=8. 0; tc„o=1.0; b, =5.66;
doping 5=0.0; all other parameters are zero) that almost
one hole is located on the copper site.

Figure 3 shows the staggered magnetization

IV. NUMERICAL RESULTS

A. Tests

1S(l„,l )=—g ((n, & n;&)(n;+&t n;+I&), ——(21)

In order to demonstrate the ability of the implemented
algorithm, we present here some test results. We consid-
er first the spin-spin correlation function

0.2

0 I I I I I I l I I I I I I I i )

5 10 15
MC Averages

20
x l000

where the index i corresponds to the copper sites and N is
the number of elementary cells. As can be seen in Fig. 2,

FIG. 3. Staggered magnetization as a function of Monte Car-
lo averages. Statistics of a few thousand averages is suf6cient to
obtain convergence.
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less MC steps, than in the case of Fig. 2, since for such lo-
cal quantities the statistics is better.

Next we present some results concerning the magnetic
structure form factor

S(q)= pe'q'S(l„, l ) .
I

(23)

The data plotted in Fig. 4 show that, by means of the
low-temperature algorithm described above, it is possible
to reach the T=0 limit of the model Hamiltonian, Eq.
(1},since for different values of U„and 6, the MC data
converge to the triangles at P=34!r, which were calcu-
lated with an exact diagonalization Lanczos method.

The results we present in the following were obtained
with -2000 averages and checked eventually with some
-1000 averages more. It is our experience that qualita-
tive differences can already be seen (for the considered
parameter regions) with this statistics. Furthermore, a
value of 5~=0. 125 was used for the simulations with
Ud =6. The units of energy are given by tc„o= 1.0.

B. Magnetic properties

First we discuss the magnetic properties of the system
described by Eq. (1},since antiferromagnetism is a clear
experimental feature for the Cu-based superconductors in
the undoped case. We will concentrate mainly in two
diferent parameter sets such that at half-filling one corre-
sponds to a hole almost localized on the Cu site, whereas
for the other one the hole is evenly spread in the unit cell.
These two regimes will be then identified as the CT and
MV regions discussed in Sec. II.

We consider first the squared local magnetic moment

&S,'&=S(0,0)=—y &(n,", n,", )'&, —1

I

where the sum is carried out only on the Cu sites.
Figure 5 shows the squared moment (S, & as a func-

1.0

0.8

0.6
CO

C) 04 ~

0.2
U =0.0

P

6=0. 0

tion of Ud for one hole per unit cell (doping 5=0). The
charge-transfer energy was chosen as b =2Ud /3, in order
to have, for larger Ud, a well-localized spin on the Cu
sites (in the case of Ud =6 the hole occupation number on
Cu is (nc„&=0.85). For Ud ~ 6 the curve tends to satu-
rate (for 6=2/3 Ud and Ud -+ ~ it follows that
(S, &~1). Next we consider (S, & as function of b, for a
value of Uz =6 (Fig. 6). It can be seen that for very small
6, a moment is obtained that is very close to the value of
a noninteracting system ( Ud =0 in Fig. 5). On the other
hand, a well-developed magnetic moment is present for
b, ) Ud /2. The inverse temperature for the calculation in
Fig. 6 is P=3/t This is e.nough for a qualitative discus-
sion, since the local magnetic moment is very insensitive
with respect to temperature. We have checked our mea-
surements of the local magnetic moment in a 2 X 2 system
with data of an exact diagonalization program and found
very good agreement. For a system size N =4X4 and in-
verse temperature P=3/t, we have (S, & =0.830+0.002,
whereas for P=28/t, (S, &=0.834+0.001. The value

I

10
Ud

FIG. 5. Local magnetic moment squared S(0,0)=(S,') on
the Cu sites as a function of Ud. The curve saturates for values
of the coupling Ud ~6.
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FIG. 4. Structure form factor S(q) at the wave vector
q={m,n). The triangles at P=34/t are exact diagonalization
results {T =0). For low temperatures {high values of P) the MC
results converge to the exact data.

0
0

FIG. 6. (S,') as function of h. Saturation is reached for
Q)4
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from the exact diagonalization is 0.804.
In the following the Coulomb repulsion on Cu will be

fixed at Ud =6 since, from the data of Figs. 5 and 6, it is
seen that with this value it is already possible to distin-
guish the two different situations. Moreover, such a
value is in agreement with ab initio calculations made to
determine the parameters of multiband models. For
the localized regime a value of b, =4 (2Ud /3) will be tak-
en and for the itinerant region, 5, =1 ( Ud /6). The occu-
pation number on the Cu site for the latter parameter set
(Ud=6, b, =l) is (nc„)=0.56. Furthermore, the local
moment squared in this case is nearly the same as for
Ud =2, 5=1.33. In both cases we obtain (S, ) =0.54,
corresponding to a weak-coupling itinerant picture. Fi-
nally we would like to mention that for b, = Ud /6 no sat-
uration can be found in (S, ) even for Ud —12.

Figure 7 shows (S, ) as a function of doping for both
cases. Similar to the experimental results, ' they show
almost no dependence on doping. Unfortunately, only re-
sults about the integrated intensity have been published
so far (to our knowledge), making it difficult to compare
the values of the local moment obtained for the simula-
tion with experimental ones.

A dramatic difference between the two cases 6=4 and
b, = 1 appears in the magnetic structure form factor [Eq.
(23)] when studied as a function of doping (Fig. 8). For
b, =4, S(q) drops rapidly at very small doping (550.05),
whereas for 6 =1 almost no dependence is observed.
These data were taken at an inverse temperature
P=10/t; the lowest temperature we could reach without
having massive minus-sign problems at finite doping,
especially for 5-0.1. It is interesting to observe that the
range of doping where S(q) strongly decreases [curve (a)
in Fig. 8], is in qualitative agreement with experiments
where antiferromagnetic order ceases to be observed at
5-0.05.

In order to address the question whether long-range
antiferromagnetic order is present in the different param-
eter regions, we performed finite-size studies. Due to the
computational time required, only systems up to 16 unit
cells (N=4X4) could be considered. Figure 9 shows
S(m, m. ) for systems with 4, 10, and 16 unit cells. The

N=4x4

t:
II

C3

V)

C —0
tO —0 OO

Ud =6
U =0

P

0 I

0. 1

I

0. 2

FIG. 8. Magnetic structure form factor versus doping. The
CT case shows a strong decrease for very small doping 5 & 0.05,
whereas the MV curve shows almost no dependence.

0.5

system with 10 unit cells has the geometry proposed orig-
inally by Oitmaa and Betts. In order to ensure that the
ground-state properties are re6ected in our simulations,
an inverse temperature of 13=28/t was used. Both in this
case and in Fig. 10 we performed the finite-size studies at
the temperature where S(n, m ) saturates (for the largest
system size considered) as P is increased. Althou h in the
one-band Hubbard model the data scale as 1/ N (Refs.
24 and 22), the best fit in our case was obtained for a 1/N
law. This discrepancy is possibly due to the small sizes
used in the simulations. Nevertheless, one could specu-
late that the system studied is not well described by the
spin- —,

' Heisenberg model currently obtained in the
strong-coupling expansions of the Hubbard model, and
that other operators may also be relevant. Simulations
with better statistics and larger system sizes are presently
carried out in order to shed light in this point. A finite

1.0

M E

0.8

0.6
N=4x4

C3

(I) 0.4 —Il=g

Ud=6
02 -

u =0.0
P

(b)Z =~

t
C —0 —1.0

t 0—0 0'0

0
0

I

0. 1

I

0. 2
I

0. 3
6

I

0. 4 0. 5

FIG. 7. (S2) versus doping. Almost no dependence on dop-
ing can be seen in both cases.
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FIG. 9. Finite-size extrapolation of the structure form factor
S(q=(m, n. )) in the "strong-coupling" case for zero doping.
The extrapolation to X~ao indicates the existence of long-
range antiferromagnetic order. The inverse temperature is
@=28/r in order to ensure that the system is in the limit of
T =0.
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point. A finite value of m, =0.17+0.06 is obtained from
the extrapolation to N~~, indicating that lang-range
order is present.

We consider next our mixed-valence set of parameters
(Ud=6 b, = 1). We can see in Fig. 10 that for this case
AF long-range order is also present. The extrapolated
value is m, =0.06+0.01. It is about 3 times smaller than
the one obtained from Fig. 9. These results would imply
that a spin-density wave is also present in the "weak-
coupling" limit in agreement with perturbative re-
sults. '4 "

Finally, Fig. 11 shows results with the same parameters
as in Fig. 10, but now the doping is 5=0.2. We see that
the extrapolated value of m, is practically zero
(m, =0.007+0.004), indicating the vanishing of the AF
long-range order under doping. However, currently it is
not possible to go beyond a qualitative description, keep-
ing in mind the size of the simulated systems used for the
extrapolation.

We conclude this section with a study of the metallic
and insulating phases of the system that complements the
description of the magnetic properties discussed earlier.
First we consider the case Ud =6, b, =4. In Fig. 12(a) we
have plotted the total hole occupation number per ele-
mentary cell as a function of the chemical potential p.
With decreasing temperature a large region develops
where (n ) remains constant as the chemical potential is
moved. Therefore, for this parameter set the system is in
the CT regime with an appreciable gap opening at low
enough temperatures (P= 10/t ).

A quantitative measure of a gap is given by the elec-
tronic compressibility

1 B(n)K= (25)
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FIG. 11. Finite-size study for the case Ud=6, 6=1, and

5=0.2. For finite doping a vanishing magnetization results
from the extrapolation.

We have taken numerically the derivative of the curve in
Fig 12(a) and calculated tr. Figure 12(b) shows very clear-
ly that a gap opens at suSciently low temperatures. In
that case ~ is 0 over a very broad range of values of p.
The estimated gap is hcT=1.2. This is a lower bound
since the data were taken at a finite temperature. Unfor-
tunately we were not able to go to much lower tempera-
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FIG. 12. (a) Hole occupation number per elementary cell as a
function of chemical potential. A large charge-transfer gap de-

velops for low enough temperatures (P=10/t). (b) Electronic
compressibility sc as function of chemical potential. The forma-
tion of a gap with decreasing temperature is clearly visible.
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tures (@=20/t) due to the minus-sign problem. Never-
theless it is interesting to notice that the value obtained
from the simulation agrees very well with the correspond-
ing experimental value (AcT,„~,= l.7 eV).

Figure 13 shows the same quantities as the previous
case but now for Ud =6 and 6= 1. It can be seen that no
feature indicative of a gap is present even at the lowest
temperature. In particular, the compressibility ~ is clear-
ly nonzero. This fact shows that we are in the MV re-
gion, where the gap —if it exists—should be much smaller
than k~T=0. 1. Furthermore, it explains the difFerence
between curves (a) and (b) in Fig. 8. Whereas in the CT
case ( Ud =6, b, =4}an appreciable gap is present, also in
agreement with the large value of rn obtained from the
finite-size study in Fig. 9, the MV situation is almost not
perturbed by doping since no gap is observable at the
temperatures reached. However, a hint for the presence
of a gap also in the MV regime is given by the finite value
obtained for m from Fig. 10. This may indicate that at
13=20lt a gap structure can already be observed. Fur-
ther studies for lower temperatures in this regime are
presently being carried out. Nevertheless, it is interesting
to notice that although the values of the parameters seem
to lie in an intermediate coupling region, a clear
difference between a CT and a MV regime can be seen.

C. Correlation functions and susceptibilities

In this section we first discuss the formation of a sing-
let between a hole on a Cu site and a hole in a symmetric
combination of the four nearest-neighbor 0 sites, as in-
troduced by Zhang and Rice (ZR). ' This picture was
originally suggested in the parameter region where a spin
is localized on the Cu site and the dopant hole resides
mainly on the 0 sites. It was proved to be exact in the
limit Ud~oo, b, ~oo but Ud

—b, finite, a limit where
the antiferromagnetic interaction between Cu sites is can-
celed. In the following we study such a singlet in the CT
region but for more realistic parameters.

We consider the propagator for those singlets defined
by

(26)

where P(x) corresponds to a singlet buildup by a Cu hole
and a symmetric combination of a hole on the four
nearest neighbors to the Cu site:

1
g(x;) = —(d; )P;) d;(P—;t)

2

with

(27}

P; = ,' g (——1) "c
jNNi

(28)

where a;J was defined in Eq. (2). Figure 14 shows the am-
plitude for a local singlet G, (0,0) in the localized region
as a function of doping for both the interacting (Ud =6,
circles) and noninteracting case. It can be seen that only
for 5~0.2 an appreciable enhancement is obtained. The
noninteracting case corresponds to Ud =0 in Eq. (1},but
with 5 corrected in such a way that the occupation num-
bers for both Cu and for 0 are equal to the ones when
Ud+0. In this way we take into account the Hartree-
type contributions. The remaining difference between the
two curves should give a measure of the tendency for the
formation of a local singlet due to the interaction. The
almost linear increase with doping seems to indicate that
the more holes are added, the more singlets are built up.
This conclusion is somewhat dangerous since, for the pa-
rameters considered here, part of the holes introduced by
doping go into the Cu sites.

Figure 15 shows the same data as in Fig. 14 but now
normalized to the number of holes present in oxygen.
For small doping concentrations, an increase is observed
up to 5=0.2 where saturation sets in. This indicates that
the amplitude of the singlets itself also increases with
doping until a maximum is reached. Thus, from the data
obtained to this point, we infer that in the parameter re-
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FIG. 13. Hole occupation number per elementary cell as a
function of chemical potential. In this case no feature indicative
of a gap is observed at half-filling (1 hole per cell).

FIG. 14. Squared amplitude for a local Cu-0 singlet versus

doping. Circles denote the interacting case; crosses the nonin-
teracting one. An enhancement of the interacting curve is ob-
tained for 5 ~0.2 only.
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FIG. 15. Squared amplitude for a local Cu-0 singlet, normal-
ized by 2(n~), versus doping. The amplitude increases with

doping until at 5=0.2 saturation sets in.

Q x Q
FIG. 17. Contributions to the calculated extended s-wave

singlet.

gion under study, the ZR singlets begin to dominate after
a certain dopant concentration is reached. This concen-
tration is well beyond the values where antiferromagnetic
correlations are important. In order to further clarify
this situation, calculations with larger Uz (where the Cu
local moment reaches the maximum value (S, ) =1) are
currently being carried out. The temperature behavior of
the Cu-0 singlet is shown in Fig. 16. Since the essential
coupling for building the singlet is the relatively large
Jc„z,the curves are nearly constant.

Next we present some results related to the possibility
of superconductivity in the present system. We 6rst con-
sider the pair correlation function for the order parame-
ter in the extended s-wave channel (SPX)

(29)

where

I+I) r+I f

I =x,y

with a,'=d;, a; =p, and a; =p;. Figure 17 shows the
combinations taken into account by the operator 8, . The
total singlet, as written in Eq. (30), is constructed as a su-
perposition of 6 contributions, which are denoted as lines
in Fig. 17. Each contribution is given by sites belonging
to diFerent unit cells. These cells are separated by one
lattice vector in the x or y direction. This ensures the
correct form factor f += cos( k„)+ cos(k y) for the total

singlet. The oxygen atoms in the elementary ceH are
marked with the numbers 1 and 2 for distinction.

For the mixed-valence case Fig. 18 shows the equal-
time pair-correlation function (v=0, q=0) as defined in
Eq. (29). The noninteracting case was again calculated
with a Hartree correction (as in the case of the Cu-0
singlets), i.e., with b, modified in such a way that the
same occupation numbers are obtained as in the interact-
ing case. An enhancement is seen for T~0.25. We have
also studied d-wave pair-correlation functions and
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FIG. 16. Temperature behavior of the Zhang-Rice singlet.
The calculated curve remains nearly constant in the considered
temperature region since the relevant coupling Jc„o is large
compared to the temperature.
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FIG. 18. Equal-time correlation function for extended s-wave
pairing in the mixed-valence case. Enhancement is obtained for
T(0.25.
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FIG. 19. Extended s-wave susceptibility versus b. The
difference between the curves calculated with and without Hub-
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FIG. 21. Pairing susceptibility for the extended s-wave chan-
nel. The parameters are the same as in Fig. 20 except that now

to~ =0.5.

different p-wave and s-wave cases, but the extended s
wave is the only channel where a fluctuation enhance-
ment in the ~=0 correlation function can be observed.
In the localized case we could not find such an enhance-
ment up to P=10lt Due .to minus-sign problems we
were not able to simulate lower temperatures.

Since the equal-time correlation functions give only a
measure of the overlap of pair wave functions, the above
results can only be considered as a hint for superconduc-
tivity. The phase transition to a superconducting state
will be shown by a divergence of the susceptibility

y(co=0, q)= J d~ P(w, q) . (31)
0

We first search for a given Ud, the most favorable value
of 6 for superconductivity. This is shown in Fig. 19. We
see that the susceptibility in the correlated case increases
with decreasing b faster than the curve for Ud =0. The
smallest difference is obtained for b, =O, suggesting that
the mixed-valence region is the best candidate for a

search of superconductivity.
We show in Fig. 20 results for an extreme mixed-

valence case ( Ud =4, b, =0). Up to temperatures T- t l4
we cannot find an enhancement of the pair susceptibility
when compared to the uncorrelated case. Simulations at
lower temperatures are being carried out presently. To
complete our simulation results, we briefly discuss the
influence of the two parameters tQ Q and U~ of the model
Hamiltonian Eq. (1) not considered yet.

First we show in Fig. 21 results for tQQ=0. 5. This
value is in agreement with ab initio estimates. Since the
remaining parameters are the same as for the calculation
in Fig. 20, we can directly compare both pictures. The
effect of tQ Q is to shift the susceptibility to lower values.
The curve for the noninteracting case is also shifted in
such a way that no enhancement results. Next we intro-
duce a Hubbard repulsion U&=3 on the oxygen sites
(Fig. 22). Compared with Fig. 20 we see, that the correla-
tion curve is shifted to smaller values only very slightly
but the difference to the uncorrelated case becomes
larger.
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FIG. 20. Pairing susceptibility for a mixed-valence case (ex-
tended s wave). %e find no enhancement in the considered tem-
perature region.

I
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temperature T

FIG. 22. Pairing susceptibility for the extended s-wave chan-
nel. The parameters are the same as in Fig. 20 except that now

Up =3.
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V. SUMMARY

We presented in this paper a Monte Carlo study of a
three-band model that is generally believed to contain the
most relevant elements for a description of the Cu02 lay-
ers present in ceramic superconductors.

The simulations were performed using the BSS algo-
rithm complemented with stabilization techniques that at
half-filling (one hole per unit cell) allow to reach tempera-
tures as low as ksT-t/30 and lower. It is shown by
comparison with exact diagonalization results that at
such temperatures the ground-state properties of the
model are reflected in the simulation. Away from half-
filling, massive minus-sign problems are present for
ka T(t/10

We first discussed several magnetic properties of the
model that allowed us to distinguish a charge-transfer re-
gion with well-developed magnetic moments on the Cu
sites from an itinerant situation where the holes are even-

ly spread over the unit cell. The local magnetic moments
on the Cu sites were shown to be almost independent of
doping both in the CT and MV regions. A drastic
difference in the structure form factor was found as a
function of doping. Whereas a sharp decrease of this
quantity is observed in the CT region for doping 5 0.05,
almost no variation is seen in the MV situation. These
results appear natural when studying the electronic
compressibility of the system, where a well-developed
charge-transfer gap is obtained for Ud=6 and 5=4,
while no signature of a gap is seen in the MV region
( Ud =6,5= 1) up to temperatures as low as kz T- t /1 .0
However, the presence of a gap for the MV regime can-
not be completely dismissed since a signature for long-
range antiferromagnetic order can be observed in the
finite-size extrapolation of the structure form factor,
where a finite value for the staggered magnetization m, is
obtained in the limit N~ ~ at zero doping. The same
extrapolation results in an almost zero value of m, for a
doping of 5=0.2. In the CT region a rather large value
of m, is extrapolated. However, the results of the finite-
size studies still have to be confirmed by more extensive
calculations since we were able to simulate only moderate
lattice sizes (up to 4X4 unit cells). It is interesting to no-

tice that a distinction of a CT regime from a MV regime
is already possible for intermediate values of the coupling
constants that are in agreement with ab initio estimates.

We further studied the formation of a singlet between a
hole on a Cu site and a hole on the four nearest-neighbor
0 sites. We find that the amplitude squared of the singlet
per hole on the oxygen sites increases as a function of
doping up to 5 =0.2, reaching saturation for higher dop-
ing.

With respect to superconductivity we find an enhance-
ment of the equal-time correlation function only for the
extended s-wave channel for temperatures below
kaT-t/4 in the MV region. For the CT regime we

could not find any enhancement down to temperatures
ka T-t/10 Unf.ortunately, minus-sign problems did not
allow us to reach lower temperatures with doping. A
study of the susceptibilities suggests that the MV region
is more favorable for superconductivity but no enhance-
ment was found down to k~ T- t /4 when compared with
the noninteracting (Hartree) ones.

Finally, we briefly showed the effect of the direct O-O
hopping too and a Hubbard coupling Up on the 0 sites
on the pairing susceptibilities. In both cases a depression
occurs and the comparison with the corresponding
noninteracting susceptibilities shows no enhancement.
Efforts to reach lower temperatures are presently being
carried out.
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