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A coarse-grained model for a Cu3Au system undergoing an order-disorder transition is construct-
ed. The model is characterized by a Ginzburg-Landau Hamiltonian with a three-component order
parameter and the symmetry of the Cu3Au system. The ordering dynamics of this model subjected
to a temperature quench are then studied by use of Langevin dynamics. The model is analyzed with

a generalization of the recently developed first-principles theory of unstable thermodynamic sys-

tems. The theoretical results are in agreement with the observed features in recent growth-kinetic
experiments on Cu3Au.

I. INTRODUCTION

In the past decade, our understanding of growth kinet-
ics' problems in relatively simple systems has advanced
considerably through simulations on kinetic Ising mod-
els and simple Langevin models which are believed to
describe some universal features of binary-alloy systems.
The most fascinating features observed in both numerical
simulations and real experiments on growth-kinetic phe-
nomena are the existence of a dominant time-dependent
length —the characteristic domain size L (t) and the scal-
ing behavior of the nonequilibrium structure factor
C(q, t) with respect to L(t) at late times. For most sys-
tems' the domain size shows a power-law growth at
late times, L(t) —t". Much work in this field has been
concentrated on the determination of the growth ex-
ponent n. The exponent n has been found to be quite
universal' and depends on only a few factors, such as
whether the order parameter is conserved or noncon-
served. Attention has been turning to the study of the
universal features of the structure factor. Some of the
most interesting universal features, such as Porod's law,
are very difficult to determine numerically. Recently,
Mazenko amd Mazenko, Valls, and Zanetti (MVZ) have
developed a first-principles theoretical approach for
studying the growth kinetics of simple Langevin equa-
tions subjected to a temperature quench. This approach
makes possible a more detailed study of the universal
features of the structure factor. In this paper, we extend
this approach to a richer model that faithfully describes
most of the observed growth-kinetic features of a Cu3Au
system undergoing an order-disorder transition.

The theory of Mazenko and MVZ is developed to deal
with the problem of separating the dynamics of the two
important length scales in the problem, the characteristic
domain size L (t) and the equilibrium correlation length

The former characterizes the growth of domains and
the latter the fluctuations within a domain. The main
physical motivation behind the formalism is the recogni-
tion that each field can be decomposed into the sum of a
pair of fields. One of these fields is associated with the
domain growth and the peak in the structure factor and

the other with the fluctuations within an ordered domain.
At low temperature T and long time t, the peak contribu-
tion to the structure factor is of order unity while the
fluctuation contribution is of order T. Here we extend
their approach to the case of Langevin equations ap-
propriate to Cu3Au. This requires the construction, in
Sec. II, of a coarse-grained Ginzburg-Landau Hamiltoni-
an characteristic of Cu3Au. This model involves a three-
component order parameter and a nonordering concen-
tration field. The order parameter is nonconserved while
the concentration is conserved. We study the Langevin
equations of this model subjected to a temperature
quench in Sec. III. Thus, by generalizing the theoretical
approach of Mazenko, we derive the equation of motion
for the ordering components of the order parameter. The
analytic and numerical results obtained from an analysis
of the resulting equation of motion are given in Sec. IV
where they are compared with the observed features in
recent growth-kinetic experiments ' on Cu3Au.

We summarize here the main results of our theory,
which agree with experiments. (i) The growth shows dis-
tinct physical regimes from early to late times, which can
be distinguished by the line shapes of the structure factor.
The line shape of the structure factor evolves from
Gaussian shape at early times to approximately
Lorentzian-squared shape at late stages. (ii) At late times
in the coarsening regime, the domain size grows with a
power law L (t)-t ' . (iii) The peak part of the structure
factor of the order parameter exhibits scaling of the form

C(q, t)=[ L(t)]"F,( qL(t))

where q is the deviation from the superlattice" ordering
wave vector Q, d is the spatial dimensionality, and the
shape function F, is anisotropic in q space and has been
computed numerically. The anisotropy results from the
existence of two difFerent types of domain walls in this
system. For the (100) superlattice peak, where
Q=2a(1, 0,0), the width of longitudinal (parallel to Q)
profile is narrower than that of transverse (perpendicular
to Q) profile, but both profiles have the same line shape.
(iv) The tail of the late stage line shape is shown, both
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analytically and numerically, to obey Porod's law [short
distance scattering from a sharp interface, C(q, t)
—q

'd+" for large q in d dimensions].

II. CONSTRUCTION OF MODEL

The full phase diagram' ' for Cu~Au& „with any
composition of Cu and Au is very rich and complicated.
For our purpose of study here, we focus on the fixed con-
centration with Cu3Au structure. The Cu3Au system is
the classic example of order-disorder transitions' ' and
is the most studied experimental ' ' ' system. The
disordered phase forms a face-centered-cubic (fcc) crystal
with four equivalent sites at (0,0,0), (—,', —,', 0}, ( —,', 0, —,'), and

(0, —,', —,
'

) as shown in Fig. 1, where the lattice constant has
been set to one. Each site can be randomly occupied by a
Cu atom with a probability —,

' and by a Au atom with a
probability —,'. Below the transition temperature T,
(-390'C), the system orders in the Cu3Au crystal struc-
ture with one kind of occupation (Au atom) for the site
arbitrarily chosen at (0,0,0) and another occupation (Cu
atom) at the three equivalent sites ( —,', —,', 0), ( —,', 0, —,'), and

(0, —,', —,'). In a perfectly ordered phase, the fcc lattice is
filled with alternating all Cu planes and 50% Cu planes.
Each Au atom has 12 Cu atoms and no Au atoms as
nearest neighbors, and each Cu atom has eight Cu atoms
and four Au atoms as nearest neighbors. Since any of the
four equivalent sites on the fcc lattice could be the origin
for the Cu3Au structure, there are four types of distin-
guishable domains.

In the processes of ordering after a temperature
quench from a high-temperature disordered state, these
four types of domains can coexist with two types of
walls, ' ' as shown in Fig. 2. The two types of walls may
be characterized by (1) half-diagonal slip in planes per-
pendicular to the cubic axis [in Fig. 2 the domain on the
top is displaced from the one in the center by x/2+y/2
in the (001) plane]; and (2) half-diagonal slip across planes
perpendicular to the cubic axis [in Fig. 2 the domains on
the left and right are displaced from the one in the center

by x/2+y/2 out of the (100) and (010) planes, respec-
tively]. Type-1 walls preserve unlike nearest neighbors,
while type-2 walls change the number of unlike nearest-
neighbor bonds, for sites along the walls. Hence type-1
walls cost less extra energy and are easier to form than
type-2 walls.

In discussing the static or dynamic behavior of a sys-
tem undergoing a phase transition, our first step is to
identify the order parameters and to construct a coarse-
grained phenomenological Ginzburg-Landau effective
Hamiltonian, which is consistent with the symmetry of
the system. The fcc lattice can be viewed as four inter-
penetrating simple cubic sublattices with minimum dis-
placements from the origin: a, =(0,0,0}, a2=( —,', —,', 0),
a&=( —,', 0, —,'), and a4=(0, —,', —,'). We denote the occupation
on the ith sublattice by s;(R) (i =1, 2, 3, and 4), where R
is a point on sublattice 1, and assign Isinglike occupation
numbers

+1, if occupied by a Cu atom
—1, if occupied by a Au atom . (2 1)

P&(R)= [s,(R)—s2(R) —s3(R)+s~(R)],
2

1it(R)= [s,(R)—sz(R)+s3(R) —s4(R)],4o

2

$3(R)= [s,(R)+s2(R) —s3(R)—s4(R }],4o
2

(2.2a)

(2.2b}

(2.2c)

The occupation number of Cu atoms is (1+s)/2, and
that of Au atoms is (1—s)/2. The order parameter and
the associated Ginzburg-Landau effective Hamiltonian
can then be constructed by using the group-theoretical
method of Landau and Lifshitz' ' for structural phase
transitions on the basis of symmetry considerations. Ac-
cording to the Landau-Lifshitz rules, the order parameter
has three components, which can be identified as

FIG. 1. The unit cell of the face-centered-cubic lattice. The
lattice constant is taken to be unity. I, II, III, and IV are the
four equivalent simple cubic sublattices.

FIG. 2. The domain at the origin is specified by the state
(
—1, —1, —1,0)$0, and the other three on the three axes are

specified by the state (1,1, —1,0)$0. Assume these domains are
separated by an all Cu layer in between. This layer can be
viewed as part of the domain on the top or part of the domain at
the center, but not part of the domains on the left and right.
The dashed lines mean the elongated lattice spacing to show
clearly the intermediate all-Cu layer.
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where go) 0 is the magnitude of the equilibrium average
value of the order parameter and s; means the average'
over four equivalent sites of a; with respect to the lattice
point R. For the vector a;, its four equivalent vectors are
denoted by a; (j= 1, 2, 3, and 4) and are listed in Table I
as the ith row. For example, the sites with the displace-
ments ( —,', —,',0), ( —

—,', —,',0), ( —,', —
—,',0), and ( ——,', —

—,', 0)
from the lattice point R are equivalent. Since the total
number of Cu and Au atoms is conserved there is a con-
served "concentration, *'

I
II
III
IV

( —1,1, 1, 1)
(1,—1, 1, 1)
(1,1, —1, 1)
(1,1, 1, —1)

( —1, —1, —1,0)go
( 1, 1, —1,0)t(0
(1,—1, 1,0)t(0
( —1,1, 1,0)$0

TABLE II. Depending on the position of Au atoms on the
fcc lattice, there are four equilibrium ordered states. The num-

bers in the first column indicate the position of the Au atom in

Fig. l.

($1$2$3$4)

2
[s&(R)+s2(R)+s3(R)+s4(R)—2) . (2.2d)

Note that g (a = 1, 2, and 3) and 4 are defined on a sim-
ple cubic lattice and are linearly independent. In the
disordered phase, s; = —,', and (2.2a) —(2.2d) give

P =4=0. In the ordered phase, depending on the posi-
tions of the Au atoms, there are four ordered states that
are specified by the f and 4 and listed in Table II. If
the symmetry of states is unbroken as in the ordering
processes, the four states are equally likely to coexist.
From Table II, we immediately obtain (3u +U)$0 —w go+ r =0 . (2.6)

field theory analysis of (2.5). By minimizing U with
respect to f and 4, we can easily determine the signs of
the parameters for (2.5) to be appropriate for a descrip-
tion of Cu3Au. As usual we take r=ro(T —T, ) for T
near T„where rp & 0, and w, v, u, and r' must all be posi-
tive. With these choices the potential produces the same
equilibrium disordered and ordered states as those listed
in Table II with $0 satisfying the following equation of
state:

(2.3a)

(2.3b)

or,

$0=
{w + [w 4r ( 3u + v )] '—~2

) .
1

2 3u+U
(2.7)

(2.3c)

(2.3d)

where the average is over the four ordered states. We
also have the relation, for any ordered state,

f11203 40(0 . (2.4)

The coarse-grained Ginzburg-Landau potential, which
can be constructed from the three components of the or-
der parameter and the conserved concentration with cor-
responding symmetry, is given by

U=
2 g4P+w0iAA

P
I

U ~~4+ u .
~~p

~ p+ f'

p . P

(2.5)

where the order parameter P& and concentration 4 are
treated as continuous fields in the sense of coarse graining
and p runs from 1 to 3. Let us now consider the mean-

(0,0,0) {0,0,0)

(0 1 1)

(0,0,0)
(

1 1 0)
1 0 1

)2 7

(0, ——,', —
—,')

{0,0,0)

1 1)

TABLE I. The fcc lattice can be viewed as four simple cubic
sublattices with minimum displacements a„(i=1, 2, 3, and 4),
given by the first column, from the origin. For each given i,
there are four equivalent vectors a;, (j = 1, 2, 3, and 4), given by
the ith row.

Note that the cubic term in (2.5), wg, f2/3, distinguishes
Cu3Au from CuAu3. If w &0, the ordered states of the
potential would correspond to CuAu3 instead of the
Cu3Au system. If w =0, then Cu3Au and CuAu3 states
are indistinguishable and the ordered-state degeneracy
becomes eight. Thus the choice w &0 picks four ordered
states out of a possible eight states. It can be easily
shown that, due to the existence of the cubic term in
(2.5), the ordering transition of this model is first order,
which agrees with the experimental' observation of
Cu3Au system.

We now consider the extra energy cost due to the pres-
ence of domain walls. The obvious contributions of extra
energy cost from the walls are the isotropic gradient'
terms

c( C)g (Vfp) + (V'I')
P

(2.8)

where p runs from 1 to 3. Let us now calculate the ener-

gy cost for the domain walls in Fig. 2 using (2.28). The
domain located at the origin corresponds to the state
( —1, —1, —1,0)ttto, while those on the three axes corre-
spond to the state (1, 1 —1,0)go. From (2.28) and Table
II and using lattice versions of the gradient terms, we can
easily find that the extra energy cost due to the walls is
4c, Po per unit wall area, which is the same for both types
of domain walls. Thus we need another anisotropic gra-
dient term to distinguish type-2 walls from type-1 walls.
Looking at Fig. 2 and the two states more carefully, we
see that the type of wall separating the two states
(domains) depends on the relative orientations of the two
states (domains). For the two states ( —1, —1, —1,0)$0
and (1,1, —1,0)$0 the third component of the order pa-
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rameter has the same sign for both states while the first
and second components flip signs. Hence, if we introduce
the anisotropic gradient term

(2.9)

i.e.,

„5a
05~ 9a ~ (3.1)

we immediately see that this term vanishes for type-1
walls (separating the top domain from the center domain
in Fig. 2), but costs extra energy, 2c2$0, for type-2 walls

[separating the left (right) doinain from the center
domain in Fig. 2]. Thus for cz )0 the total extra energy
cost for type-2 walls is (4c, +2c2)go per unit wall area,
while that for type-1 walls is 4c, go. For later conveni-
ence, we define the anisotropy parameter a =c2/c&. The
ratio of extra energy cost of type-2 walls to type-1 walls is
then 1+a/2. The above arguments hold for the walls be-
tween any two ordered states.

Putting all the terms together, the total coarse-grained
Ginzburg-Landau effective Hamiltonian can be written,
in the continuum' ' limit, as

H= f d R g (Vfp)2+a g (Vip)i
2

p p

+ —g gp+wgig22 p

'p . p

Ci I

+ (V4) +—4
2 2 (2.10)

III. DYNAMICS AND METHODS

The dynamics of the order parameter g associated
with the Ginzburg-Landau Hamiltonian (2.10) are as-
sumed to be governed by the Langevin equation,

Thus the problem of Cu3Au on the fcc lattice is now de-
scribed by the Ginzburg-Landau effective Hamiltonian
(2.10) with a three-component order parameter and a
concentration field defined on the simple cubic lattice.
The Hamiltonian (2.10) differs from the usual O(3) sym-
metric inodel ' in several aspects: (i) the u term adds the
cubic symmetry of the lattice; (ii) the w term distin-
guishes Cu3Au from CuAu3 and makes the equilibrium
transition first order rather than second order, as in the
scalar order parameter case; and (iii) the gradient term
with coefficient a introduces anisotropy and makes type-2
walls cost more extra energy than type-1 walls. The por-
tion of the Hamiltonian (2.10) dependent on g becomes
the Ginzburg-Landau theory of the four-state Potts mod-
el if the anisotropic gradient term is removed (a =0).
This term breaks the Potts symmetry (i.e., invariance un-
der permutations of the ordered states) by introducing a
coupling between the lattice coordinates and the order
parameter. Thus, this four-state model is particular to
three-dimensional systems with Cu3Au structure while
the four-state Potts model may of course be generalized
to any spatial dimension.

= —I 0
—c, (V +aV' )g +rg

Bt

+wg, g +, +up +u gPp f +g
. P

(3.2)

( P (R, to)gp(R', to ) ) =si5~p5(R —R'), (3.4)

where c.~ is a measure of the initial temperature. The
theoretical treatment of the quench problem associated
with Eq. (3.2) follows the parallel development in MVZ
and Mazenko with g now a three-component vector. We
leave out the detailed formal development and just briefly
mention the major steps.

The equation of motion (3.2) can be reformulated into
a functional integral representation. ' The dynamics of
the 1( fields can be fully described in terms of a probabili-
ty distribution P[g]. The key point in the development is
the introduction of auxiliary fields m (x, t), which govern
the ordering components of the fields f . This is done by
first expanding the functional space

P[P ]=P[4]P[m],
where P [m] is a properly normalized probability distri-
bution governing the m fields. Next, decompose the orig-
inal fields into the sum of the ordering and fluctuating
parts via

(3.5)

where [ o ) are functionals of the fields [m j and will be
specified later. As discussed in MVZ, we would expect

where a and P run from 1 to 3. In (3.2), I'0) 0 is just a
constant relaxation rate in the case of nonconserved or-
der parameter. i) appearing in (3.2) is the Gaussian
noise and satisfies the fluctuation-dissipation relation

(g (R, t)gp(R', t')) =2TI' 5 p5(R —R')5lt t'), (3—.3)

where T is the final temperature and Boltzmann's con-
stant kp is taken to be unity. The concentration field 4' is
conserved and nonordering, and satisfies a diffusion equa-
tion. It can be shown that the 4 field relaxes exponen-
tially with time for the wave numbers near the superlat-
tice peak and does not p]ay any role in the ordering pro-
cesses. Hence it is omitted in the remainder of this pa-
per.

We are here interested in the ordering dynamics of Eq.
(3.2), which characterizes the growth of domains of the
new ordered phases. Specifically, we consider the case
where the system is initially in a disordered equilibrium
state at some high temperature Tz and at time t =to is
quenched to some low temperature T well below its or-
dering temperature T, . The initial probability distribu-
tion governing f at time to is assumed to be Gaussian
and the initial correlation is given by
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the peak or ordering variables a (R, t) to become associ-
ated with the growth of domains and (I) (R, t) with the
fluctuations within a domain.

For our purpose here, we focus on the dynamics of the
I

ordering peak contribution. Following Mazenko, this
can be specified primarily by two requirements: (i) P [m]
is a Gaussian distribution and (ii) the variance of P [m] is
determined by requiring

aa.(1}
o,(2) +1'c —c,(Vr+oV, )o,(()+ro(1)+, wo, , t))o,+,())+co,'(()+o acro(1) o,(1)

)ai, . P

=(o (2)o (1)5(t,—t )), (3.6)

where the average is over P[m], o~(1)=o (Ri, t, ), and
a and P run from 1 to 3 and cyclic permutations. The
right-hand side of (3.6) is just the initial condition. The
cross-correlation functions (cr (1)a&(2}) (aAP) can be
shown to vanish. The first requirement is motivated by
simplicity. The second requirement demands that the
correlation function of o. satisfies the noiseless equation
of motion (3.2) on average and ensures that the coupling
between o and (I) variables vanishes as taboo. As dis-
cussed in MVZ, the coupling between cr and (I)~ can be
treated using perturbation theory which is valid for low
temperatures. The analysis follows that in MVZ rather
closely, and the upshot is that the coupling between 0.

and (I) contributes some early time transient, but does
not change the qualitative behavior of the o. field. We
must also specify the initial conditions satisfied by the o.

and m fields. As pointed out in MVZ, the behavior of
the full correlation function is very insensitive to the
choice of initial conditions for o . It is therefore reason-
able to choose o. to satisfy the same initial conditions as

given by (3.4).
Before proceeding to carry out the average over P [m]

implied in (3.6), we must specify the functional
0 =cr (m&). Since cr represents the growth of domains,
we would expect the functional to show some kind of
domain structure. In the recent approach by Mazenko
for a scalar order parameter model, ~ is related to m by a
nonlinear functional

o (R, t) =1(otanhm (R, t), (3.7)

where 1(0 is the equilibrium average value of the order pa-
rameter. The choice of Eq. (3.7) has a well-defined physi-
cal meaning: gotanh(z/g), where g is correlation length
(-interfacial width), is nothing but the one-dimensional
kink solution for the scalar g Hamiltonian. Thus, Eq.
(3.7) implies that cr represents randomly distributed
domain walls located at m =0 and gives the correct inter-
facial profile. The width of the interface is governed by
P [m].

For our model with a three-component order parame-
ter, if we could find the static kink solutions to the Ham-
iltonian (2.10), they might be used to construct the ap-
propriate functional a (m&). Unfortunately, we do not
know these kink solutions. We might hope to simply
choose (3.7) as the functional for our model. This is not

I

acceptable since it would lead to (tt, cr2o 3)—:0 for aver-
age over the Gaussian distribution P [m] and would not
reflect the domain structure of our model. However, we
can construct a functional that can approximately
represent or mimic very well the domain structure of our
model, especially at long times.

From the equilibrium ordered-state solutions in Table
II and the relation (2.4), we immediately see that for any
one of the four ordered states the product of the three
components of the order parameter is negative definite.
Furthermore, when one goes from one ordered state to
another, two of the three components change sign and
the other retains the same sign. It can be easily seen that
the following choice of cr satisfies the above constraints.

0, ( R)= —1(otanhm z(R)tanhm 3(R},
0 z(R) = —i}'jotanhm 3(R)tanhm, (R),
o 3(R)= —gotanhm, (R)tanhm 2(R ),

or, in short,

o (R)= —Potanhm, (R)tanhm +, (R) .

(3.8a)

(3.8b)

(3.8c)

(3.9)

where a= 1, 2, 3, and cyclic permutations. It is obvious
that (3.9) reproduces the correct equilibrium ordered
states, listed in Table II, as m ~+0(). Thus, Eq. (3.9)
implies that o. represents randomly distributed domain
walls and should mimic the interfacial profile of our mod-
el. For the moment let us choose Eq. (3.9) as the accept-
able functional, which relates [cr I to [m

We now can carry out the Gaussian average over P[m]
implied in Eq. (3.6). Since at any finite time of the order-
ing processes any of the four ordered states are equally
favored, we must have

( o ) = —go( tanhm, tanhm +, ) —=0 .

This requires that, for Gaussian average,

(m (1)m&(2)) =5 &(m (1)m (2)) .

(3.10)

(3.11)

This means the Gaussian probability distribution must be
diagonal,

P[m]=P[mi]P[mz)P[m3] . (3.12)

Using (3.9), Eq. (3.6) can now be expressed in terms of
Im I. For example,

(o (1)o (2)) =$0(tanhm &(1)tanhm &(2))(tanhm +i(1)tanhm +i(2)) . (3.13)
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The multipoint correlation functions can be expressed in
the same way. For later convenience, we define the fol-
lowing quantities:

dent of the index a due to permutation symmetry and
spatial translational invariance. Thus the normalized
correlation function can be expressed as

T (12)= ( ta nh m (1)tanhm (2)),
tanhm (1)

K,(12)= [a[[hm, (2)),
cosh m (1}

(3.14)

(3.15)

C (12)=$0 (0 (1)0 (2)}

=T, (12)T +, (12) .

Equation (3.19}can be inverted to give

(3.19)

S((i):S ([[)=T (11)=1
(

1

cosh2m (1)

C (12)=(m (1)m (2)),
So(t, )—=S (ti)=C~(11) .

(3.16)

(3.17)

(3.18)

In (3.16) and (3.18), the quantities for 1=2 are indepen-
I

T (12)= C, (12)C +, (12)
C (12)

(3.20)

Using (3.9) and assuming spatial translational invariance,
the equation of motion (3.6) can be rewritten as, at equal
times t

&

= t2 = t,

—+2IO[ —ci(V +aV )+(wgo —2ufo)[1 —S(t)]j T t(R, t)T +i(R, t)
dt

—2I P [U+u +uS(t)][T, ( Rt)IC, ( Rt) +T, ( Rt K},(R, t)]

+2I o( U + u )$0fC, ( R, t )E +, ( R, t ) =0, (3.21)

where we have dropped the term with 5 function at t =to and treat the quench problem as an initial value problem. In
Eq. (3.21), T (R, t), E (R, t), and S(t) are defined by (3.14), (3.15), and (3.16}and are related to C (R, t) and So(t) in a

rather complicated fashion as shown below.
Using the integral representation

+ ~ dz sin(mz)
tanhm =

o sinh(nz/2)

we can write

+ (x) dZ] + (x) dZ2
T~(12}=f . f . (sin[m (1)zi]sin[m (2)z2]) .

o sinh nz, /2 o . sinh irzz/2

Recall the identity

(3.22)

(3.23)

sin(mz) = I QNZ

2l

and for Gaussian average over the m variables

exp f d 1 h(1)m(1) = exp —,
' f d112C (12)h(1)h(2) (3.24)

where h (1) can be any function and C (12)= (m(1)m (2) ). Then T (R, t), given by (3 23), can be evaluated in terms of
C'(R, t),

+ oo dZ] dzp
T (R, t) = f . f . exp[ —

—,'So(t)(z, +z~ )]sinh[z, z2C (R, t)]
'

o sinh(nz&/2) o sinh(irzz/2)

dx ) dx2

&
—

&
—exp[ —

—,'(x, +x 2 )) tanh(x2b +
—x, b )tanh(x2b~ +x, b + ),

277 277

(3.25)

(3.26)

where b + =
—,'[So(t)+C (R, t)] and use has been made

of spatial translational invariance and t, =t2=t. The
second form (3.26), follows from using the identity

f+" (dx/&2m. ) exp[ —
—,'x +ixy]= exp[ —

—,'y ] twice.
Likewise, using the integral representation

tanhm 1 d tanhm 1 f + ~ dz z sin(mz)

cosh m 2 dm 2 2 0 sinh(irz/2)

(3.27)

we immediately obtain,
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1 BT,(R, t)

2 BSO(t) C (R, f)
(3.28)

over which the order parameter is nonzero is L". There-
fore we can estimate

d

where T (R, t) is given by (3.25) or (3.26).
Before continuing with the complicated equation of

motion, (3.21), it is profitable to briefiy discuss the basic
nature of the expected solution in the long-time limit.
From (3.16) we have

S (t)= ( tanh~m, (t) }= 1 —
(

1

cosh m (t)
—( 1/2)x=1—

&2ir cosh'[x+So(t)]
' 1/2

2

nso(t}
+o(s ")

(3.29)

for large So(t). In the limit t~ao, the system ap-
proaches equilibrium and we expect S(t)~1, which im-

plies that So( ~ )~ ao. Thus So(t) grows with time
without bound and must be related to the domain size
L (t). Physically we expect the interfaces to become very
sharp at long times. Assuming that the domains with
size L are separated by interfaces with width g, then the
total volume is (L+)) in d dimensions. The volume

s'=1( L
L+g

= 1 — +0, (3.30)gd 1

L2

and

S=1— +0gd 1

L2
(3.31)

Comparing (3.31}with (3.29), we can identify So-L and
1 —S-O(1/L) For. the convenience of later discussion,
we define

(3.32)

where the second identity holds to leading order in So as
follows from (3.29).

We now want to see if the equation of motion, (3.21),
leads to the expected long-time results in the sharp inter-
face limit. In the long-time limit, where So is large [and
C (R)/So is held fixed], (3.21) can be simplified consider-
ably. For example (for RAO), in the sharp interface lim-
it, (3.26) can be replaced by

dX& dXp —(f/2)(~ +, )T (R, t)= — e ' ' sgn(x&b + xib )sgn—(xzb~ +xib + ) .
27r 217

Equation (3.33) can be integrated to obtain

(3.33)

4, So —C, (R, t)
T (R, t)=1——tan

So+C~(R, t)
(3.34)

which can be inverted to give

C'(R, t)

So

Using (3.28) and (3.35) in this limit, we can write

(3.35)

K (R, t)= tan —T (R, t)
1

@So 2
(3.36}

Inserting (3.36) into (3.21) and using (3.32), for S—1, we obtain the equation of motion

——2I o{c,(V +a V )+(2ugo —wgo}[1—S(t)]] T, (R, t }T,(R, t) —I ohio[(u+2u}[1 —S(t)]

+u[1—S(t}] I T, (R, t}tan —T +i(R, t} +T +i(R, t)tan —T i(R, t)

+ Po(U+u)[1 —S(t)] tan T,(R, t) tan ——T +, (R, t) =0.

(3.37)
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It is one of the most fascinating features associated with

the growth-kinetic phenomena that the long-time theory
satisfies scaling. Let us analyze (3.37) assuming that all
the lengths are scaled by a factor of L. V, for example,
contributes a factor of 1/L . At long times, the term
proportional to [1—S(t)] dominates and those propor-
tional to [1—S(t)]" (n =2, 3,4) can be neglected. Equa-
tion (3.37) is then linear. Thus for scaling to hold, we
must have 1 —S(t)-O(1/L ), which contradicts the pre-
vious sharp interface argument that 1 S—(t)- O(1 /L).
Furthermore, the coefficient of the [1—S(t)] term,
2ugo io—go, does not have a definitive sign. Its sign de-
pends on the values of parameters u and w. Also, as dis-
cussed in Mazenko, this linear equation does not lead to
Porod's law.

Since the functional (3.9) does not lead to the required
scaling in the sharp interface limit, we need to look for a
better approximation than (3.9) near the interface
(m =0). Suppose we can find a functional 0 such that
the term proportional to [1—S(t)] in (3.37) vanishes and
the term proportional to [1—S(t)] in (3.37) dominates
at long times. Then a scaling analysis leads to

I

[1—S(t)] -O(1/L ), i.e., 1 —S(t)-O(l/L), which
agrees with the sharp interface arguments. Guided by
the above idea, we have found that we may choose cr to
be of the general form

cr (R, t)= —gotanhm, tanhm +, [1+B(m )],
(3.38)

where B(m ) must be an even function of m~ and van-

ishes as m, ~k ~ for (3.38) to reproduce the correct or-
dered states. In particular, we will choose

A2tanh m A3tanh m
B(rn )= + +

cosh m cosh m cosh m

(3.39)

where 3, , A2, and A3 are constants to be determined.
As discussed in detail in Appendix A, the term propor-
tional to [1—S ( t ) ] is cancelled by the correction term
with the proper choice of the A s. The equation of
motion, (3.6), can then be rewritten, to order O(1/L )

and at equal times t& =t2=t, as

2I oc, (—V +aV ) T,(R,t)T, (R, t) —2I Q[T, (R, t)K, (R, t)+T, (R,t)K, (R, t)]=0, (3.40)
at

where B )0 and is given by (A7) in Appendix A. Since 0 (1/L ) and higher-order terins are neglected in (3.40), only
the dominant nonlinear contributions are taken into account. It becomes quantitatively exact in the interesting long-
time scaling regime.

For the convenience of later discussion, we rescale Eq. (3.40) into dimensionless form. Let

and

2I (P

R~Q(ci/8)R .

(3.41a)

(3.41b)

The dimensionless form of (3.40) is then given by

a — +——(V +aV ) T, (R, t)T +, (R, t) —[T,(R, t)K +, (R, t)+T +, (R, t)K, , (R, t)]=0.
at

(3.42)

Note that (3.42) depends only on the anisotropy parameter a.
Inserting (3.36) into (3.42) and using (3.32), we obtain the dimensionless equation of motion in the sharp interface lim-

——(V +a V' ) T i(R, t)T &(+R, t)at

—
—,'[1—S(t)] T &(R, t)tan —T +i(R, t) +T &+(R, t)t an—T i(R, t) =0 . (3.43)

Recalling (3.20), Eq. (3.43) can also be rewritten in terms
of C (R, t). It is obvious that the scaling analysis now
gives 1 —S(t)-O(1/L), which is in agreement with the
sharp interface arguments. As will be shown in Sec. IV,
the nonlinear scaling equation, (3.43), leads to Porod's
law.

IV. RESULTS AND DISCUSSIONS

In this section, we present the results obtained from
solving the equations of motion, in the sharp interface
limit, (3.43). Let us first look at the relationship among
the correlation functions defined by (3.19): C, (R, t),
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C2(R, t), and C3(R, t). From the equation of motion
(3.42), we see that the spatial anisotropy of C (R, t) is
controlled by the parameter a. If a =0, C (R) is sym-
metric among the spatial variables R„R2,and R3 and

C, (R)=C2(R)=C3(R). For aAO, using (3.19), (3.20),
(3.28), and (3.42), we can show that the correlation func-
tion C (R) is symmetric between the spatial variables
R

&
and R + &

and can be written as

C (R, t)—:C(R~;R i,R +i, t),
where C stands for the correlation function which is sym-
metric between the second and third spatial variables.
Equation (4.1} implies that the three correlation func-
tions, C&(R), Cz(R), and C3(R), are equivalent. Taking
the Fourier transform of (4.1), we obtain the structure
factor

C(R, t) =ft(R /L) .

From (3.20), (3.32), and (3.43), we can write

(4.4)

=V C(R, t)+ C' (R, t)tan —C' (R, t)
t

(4.5)

Inserting (4.4) into (4.5), we obtain, following Mazenko,
the scaling equation

width than C(0;q, O).
The equation of motion (3.43) is nonlinear and in gen-

eral can only be solved numerically. However, it can be
solved analytically in certain limits. We first study the
long-time scaling solution to (3.43) in the limit a =0. In
this case, C& =C2 =C3 =C and C is isotropic,

C (q, t)=C(q;q, , q +, , t), (4.2)
px V„f—t(x)=V f +2f' tan f'— (4.6)

From (B10),we have

C,„,(2m +q, 0,0)=4C|(q,0,0)=4C(q;0, 0), (4.3a)

where we have used Eq. (4.2) in the last equality. For
transverse scans,

Q+q=2n(1, 0,0)+(O, q, O) =(2m, q, O)

or

Q+q=2m(1, 0,0)+(0,0,q}=(2n., O, q)

From Eq. (B10),we have

where again C stands for the structure factor that is sym-
metric between the second and third wave-vector corn-
ponents.

Since our model is coarse grained on a simple cubic lat-
tice, we need to relate the structure factor defined
through this model to that measured in the real experi-
ment on a fcc lattice. The details are discussed in Appen-
dix B and the two structure factors are related by (B10).

In the experiment in Ref. 9, Nagler et al. investigated
the structure factor for the (100) superlattice peak, where

Q =2m(1, 0,0). They measured the profile of radial
(parallel to Q} and transverse (perpendicular to Q) scans
through the (100) peak. For radial scans,

Q+q=2m(1, 0,0)+(q, 0,0) =(2m+q, 0,0) .

ft(x)=1— 8

~(d —1)
6

m(3d —1)

(4.7)

As pointed out by Oono the linear term in (4.7) leads to
Porod's law in Fourier space, C(q, t)-q ' +" for large
q.

In the case aWO, we look for the solution to (3.43) of
the form

C (R, t) = 1 —W (R)/L (4.8)

for W &(L. We find that W, satisfies the time-
independent equation

V +aV W = 4
m(W, —W +i+W )

+ (4.9)
m(W +i —W, +W )

where x=R/L and we assume p=L(dL/dt) is a con-
stant. If (4.6) holds for long times, then L (t)- t 'i2, as ex-
pected from the Lifshitz-Cahn-Allen curvature-driven
arguments. For small x, expanding ft(x) in powers of x
and matching the coefficients of x" in (4.6), we obtain the
solution

' 1/2

and

C,„,(2', q, O) =4C, (O, q, O) =4C(0;q, O), (4.3b) For small a, (4.9) can be solved in power expansions of a.
Let

C,„,(2~,0,q) =4C, (0,0,q) =4C(0;q, O) . (4.3c) W = W+aW"'+a'W'"+. - . .a I a a (4.10)

As will be shown later, C(q;0, 0) has a smaller peak Equating both sides of (4.9) in powers of a, we obtain

VW= 8
(4.11a)

V2+ W'" = —V2W8
a a I (4.11b)
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m 8'i Wl
(4.11c)

1

8d (d +2) ao
W (R)= 8 R1 R

Qp 1+
„2d Qp

1 a 1R

2d ao 4d (d +2)

+ ~ ~ ~

R
2

R a

Qp Qp

' 1/2

w'" =
a Qp

For very small R, the solution to (4.11a)—(4.11c) is given by
1/2 2

(4.12a)

(4.12b)

and
1/2

8 R

2d Qp

2 R1

Sd (d +2) ao

4
1 R aR

4d (d +2) ao ao
(4.12c)

where from (3.19), (3.32), and (4.8), ao =m'~ . For large R (but R &&L), we obtain
1/2

8'i(R) =2 2 R, (4.13a)

W."'(R)=— 2

m(d —1)

1/2

R cos2g . (4.13b)

W'" R. = 1 2

16 m(d —1)

1/2

R (
—11+22 cos 8—5 cos 8+4 sin 8 sin P cos (t ), (4.13c)

where the polar axis of the spherical coordinates is chosen along R direction. Inserting (4.13a)-(4.13c) into (4.10), we
can write for large R (but R «L),

1/2

8' =2 2
7r(d —1)

R4 (8,$;a) (4.14)

1/2

R 1 ——cos 8+ (
—11+22cos 8—Scos 8+sin"8sin 2P)+

~(d —1) 2 32
(4.15)

7T
tan —T =—T

2 2
(4.16)

Equation (3.43) is then linearized and can be written, for
any value of a, as

C (R', t)=0a .2 n

at L2
(4.17)

where 4 (8,$;a =0)=1 and 4 depends on the angles 8
and P and the anisotropy parameter a. The general form
(4.14) holds for any value of a while (4.15) only holds for
small a ( «1). Equation (4.15) shows that (for small a)

is symmetric about 8=x/2 plane, P=. ~/4 plane, and
periodic in P with period b,P=m/2. This agrees with the
symmetry implied by (4.1). 4 increases from 8=0 to
m. /2 for fixed P and increases from /=0 to m. /4 for fixed
0. For larger values of a, the above qualitative behavior
remains valid, but the anisotropy will be stronger. Equa-
tion (4.15) agrees with (4.7) for a =0, leads to Porod's
law, and demonstrates the anisotropic scaling of this
model.

For very large R (x =R/L &&1) C becomes small

and we can replace

where we have de6ned the primed R coordinate

RR'=
(1+.)» '

and the primed Laplacian

a' a' a'
Qr2 —+2+Q Q2 — + +M, BR~, BR'~

The scaling solution to (4.17) is then given by

(4.18)

(4.19)

~ —(d —~I@)e—px' »
0 (4.20)

where x' =(R, +R +&+R' )/L and p is defined
below (4.6). Note that (4.20) implies that for large x the
anisotropy simply corresponds to a dilation of the R
component in space, which is not the case for intermedi-
ate x as shown in (4.15) for small a there is the P depen-
dence in addition to the 0 dependence.

These analytical results can be shown to follow from
the equation of motion (3.43) by a direct numerical solu-
tion. The computations were carried out on a simple cu-
bic lattice of linear size 64. %e take a=1 in the compu-
tation and C, is symmetric between the R 2 and R 3 vari-
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C (q=O, r)
' f d R C (R, t)

C (R=O, r) C (R=O, t)

In Fig. 4, we show L, and L versus t' . As can be seen,
L becomes a straight line after a short period of tran-

L = (4.21)

0.8—

ables. Periodic-boundary conditions were used and sym-
metry was taken into account to reduce the computation
time. We have tested the theory for several different ini-
tial conditions and have found that the long time results
are independent of the initial conditions. We therefore
study in detail the initial condition S (t =0)=el=0.01
and the anisotropy parameter a = 1.0.

In Fig. 3, we show S (t)=C, (R=O, t) versus t, where
C&(R=O, t) is also equal to the volume under the peak of
structure factor and is proportional to the total scattering
intensity in the experiment. As can be seen, the behavior
of S (t) shows different regimes of growth from early to
late times. Right after the quench, S (t) relaxes for a
very short period of time, the length of which is slightly
longer for larger initial value cl. Following this delay
S (t) increases rapidly with time, and after a rapid rise,
S (t) begins to saturate and approach its equilibrium
value S ( oo )=1. This behavior of S (t) is in qualitative
agreement with that of the integrated intensity for trans-
verse scans in the experiment (Fig. 2 in Ref. 9). As will
be discussed below, the growth regimes of fast rise and
later slow equilibration of S (t) can be distinguished by
the line shapes of the structure factor. Scaling begins to
hold during the later slow equilibration regime.

To characterize the domain growth, we use two
different definitions of the characteristic domain size.
One is defined by (3.32), denoted here as L„andthe other
is the cubic root of the peak height of the structure fac-
tor, denoted as L~,

60

40

E
C)

20

12 16 20 24

FIG. 4. The domain sizes L~(t) and L,(t) vs t' ' for a =1
and ci =0 01.

sient while L, is a straight line only for the intermediate
time window and then increases faster than the t'
power law. This fast increase of L, at long times is just
due to the finite-size effect of the system (64 lattice). We
have also tested this effect for smaller systems and the
finite-size effect occurs at much earlier times. We have
found that the finite size effect begins to appear when L,
is greater than one-half of the linear size of the system for
a =1 and to appear earlier for larger values of a. From
(3.32) and (4.21), we see that L, is related to C (R=O, t)
while L„is related to the sum of C (R, t). It is reason-
able that L, is more sensitive to the finite-size effect than
L .

We have studied the behavior of the correlation func-
tion and its Fourier transform —the structure factor.
The structure factor at early times can be evaluated
analytically. At early times, C is small and we can re-
place

0.6— 7T
tan —T =—T

2 2
(4.22)

s (t)

0 ~ 4—
Thus the nonlinear terms in Eq. (3.43) and all those non-
linear terms ignored in the late stage theory can be linear-
ized. The equation of motion can then be written as

0.2— ——(V' +a%' ) —8~ C (R, t)=0, (4.23)

0
0

I

50
I

100 150 200

where 82 is a positive constant. The solution, after
Fourier transform, is given by

(4.24)

FIG. 3. Time dependence of S (t}=c,(R=O, t) up to t =200
after a quench for a = 1 and vi=0. 01.

For q +aq —82 &0, the peak grows exponentially with
time. For a given time, the line shape is a Gaussian. In
Fig. 5, we plot C, (q, t) versus q2 and the Gaussian fit
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0.2 0.4 0. 6 0.8

a a ~l a

1 1.2 1.4

FIG. 5. The Gaussian fit of the early-time structure factor
C&(q, t) vs q in q2 direction for t =6. The solid curve is the fit.

(solid curve) for t =6 obtained from solving Eq. (3.43).
W'e have verified that the correlation function satisfies

the anisotropic scaling in the long-time regime, which
corresponds to the saturation regime of S (t) shown in

Fig. 3. In position space, the correlation function takes
the following scaling form,

C (q, t)=C (q=O, t)F (qL (t)}

=C (R=O, t)L (t)F,(qL (t)}, (4.26)

where the scaling function f (0)=1 and f (R/L~(t)) is
anisotropic in its argument. For a=1, f, is symmetric
between the R2 and R3 variables. In Fig. 6, we show the
anisotropic scaling function f, (x) versus the scaled dis-
tance x=R/Lz(t) in the R( (wide) and R2 (narrow)
directions. As can be seen, they have similar shapes, but
different widths. If the curve for the R, direction is re-
scaled by a factor of (1+a)' =&2, then these two
curves almost fall on the top of each other. In Fig. 7 we
show the scaling function f, versus the variables

xI =R(/Lz(1+a)'/ and x2=R2/Lz for a =4, respec
tively. We easily see that after this rescaling of a factor
of (1+a)'/ =&5 the curve in R& direction becomes
slightly narrower than that in R2 direction. This means
that as a increases the ratio of the widths in R

&
and Rz

directions becomes slightly smaller than the factor
(1+a)'/ . This also implies the more complicated depen-
dence on the anisotropy parameter a than a dilation of
(4.18). The behavior of the curves is consistent with the
solutions given by (4.12a)—(4.12c), (4.15), and (4.20). For
x -0, the scaling function decreases with x and after
this, it decreases linearly with x for a region 0(&x (&1,
which leads to Porod's law in Fourier space. For large x,
our numerical analysis shows that the scaling function
decays according to (4.20).

Again we have verified that the structure factor
satisfies the following anisotropic scaling at relatively
long times:

C (R, t)=C (R=O, t)f (R/L (t)), (4.25)

0 ' 8
0.8

0.6
0.6

0.4
0.4

0.2
0.2

0.5 1 ' 5
0.2 0.4 0.6

X

0.8 1.2

FIG. 6. In the position space the anisotropic scaling function
f, (x) vs the scaled distance x =R/L~ in R, (wide) and R2 (nar-
row) directions for a = 1 ~ The wiggling of the curves represents
the scaling of data at di6'erent times t = 100—300.

FIG. 7. In the position space the anisotropic scaling function

f, (x) vs x', =R, /L~(1+a)' (dashed curve), and x2=R2/L~
t,'solid curve) for a =4. Data are taken at t = 100 to avoid finite-
size e6'ect.
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where F (0)=1 and F is anisotropic in its argument.
For o.=1, F, is symmetric between qz and q3. In Fig. 8,
we show the shape function I', versus the scaled wave
number k=qL (t) in the q, (narrow) and q2 (wide) direc-
tions. Again, if the curve for q& direction is expanded by
a factor (1+a)' =&2, then these two curves almost fall
on top of each other. From (4.3a) and (4.3b), we can
identify the q& direction with the radial scan and q2
direction with the transverse scan through the (100) peak
in the experiment. Thus our theory indicates that the
width of the radial scan should be narrower than that of
transverse scan through the (100) peak, as is observed in
the experiment in Ref. 9. The ratio of the widths of
transverse to radial scans is slightly smaller than
(1+a)' . If we extend the above discussion to (010),
(001), and other superlattice peaks, using (B10) in Appen-
dix B, we can generate similar ellipsoidal profiles of
reAection in reciprocal space to that shown in Fig. 12.8 of
Ref. 13. The ratio of the long axes of the ellipsoids to the
short axes is slightly smaller than ( )+a)' . The experi-
mentally observed ratio of widths of transverse to radial
scans varies from about 2.5 (quenched to lower tempera-
ture) to about 3 (quenched to higher temperature), show-
ing some weak temperature dependence. If we use this
ratio to estimate the anisotropy parameter a, this would
correspond to a =5—8, which is very large anisotropy. If
we use a =5—8 in our numerical computation, we need a
system of ( I+a)' larger in its linear size than the a =0
case to avoid the finite-size effect at relatively long times,
which unfortunately is beyond our current computational
ability. Hence we restrict ourselves to smaller anisotropy

and a system of a linear size of 64 sites, but the qualita-
tive features of the anisotropy dependence should not
change for larger values of a.

We have found that the line shape in Fig. 8 can be ap-
proximately fitted to a modified Lorentzian-squared
shape

Fi(k) = 1

(1+$ ki) +2b k
(4.27)

The fits for the curve in q2 direction are shown in Fig. 9,
where the solid curve represents the data and the dashed
curve is the fit. For a =1, we obtain b, =0.087 and
b2= —0.046. Equation (4.27) is consistent with that ob-
served in the experiment and Porod's law for large k. We
have tried to fit our data to Lorentzian-squared shapes as
was done in Refs. 9 and 10, but the fits are inferior to
(4.27). This could be due to the fact that the system has
not completely settled into the longest time asymptotic
regime for the size and time used in the computations.
We have also fitted our data for large k to the following
form:

Fi (k) = 1

1+bkP
(4.28)

For the size and time used in the computations before ob-
serving the finite-size effect, we obtain the exponent
P=4. 3, but still converging with time to the analytically
obtained value of 4. The log&o-log, o plot of fits are shown
in Fig. 10. To obtain better quality data for the asymp-
totic shape function and to see more extended regions
with Porod's tail numerically, we need larger systems and
go to longer times. In Ref. 6, Oono pointed out that to
demonstrate Porod's tail the linear dimension must be
about 1000 sites in Monte Carlo simulations and 200-300

0.8

0.6 0.8

0.4 0.6

0.2 0.4

10 12
0.2

FIG. 8. In the wave number space the anisotropic shape
function F, {k) vs the scaled wave number k =ql.~ in q, (nar-
row) and q2 (wide) directions. The wiggling of the curves
represents the scaling of data at different times t =100—300.
For a given time only a few data points with small k contribute
to the peak shown.

2.5 7.5

kg= C,Lp

10 12.5 15

FIG. 9. The line shape in q2 direction in Fig. 8 is fitted to the
form of (4.27). The dashed curve is the fit.
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kg= qpLp
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FIG. 10. The log&o-loglo plot of the fit of the line shape in qz
direction in Fig. 8 to the form of (4.28). The dashed curve is the
fit.

FIG. 12. In the wave number space the shape function F&(k)
vs the scaled wave number k=qL~ in q2 direction for the an-
isotropy parameter a =0, 1, and 2.

sites in his cell dynamical system.
We have tested the theory for several values of the an-

isotropy parameter a. We plot in Fig. 11 the scaling
function f~(x) versus x=R/Lz in the R2 direction for
a =0, 1, and 2. As can be seen, in the position space the
width decreases with a, but the shape remains the same.
This verifies the more complicated dependence on the pa-
rameter a than a dilation of (4.18). In Fig. 12, we plot the

shape function Ft(k) versus k=qL& in the q2 direction
for a =0, 1, and 2. In the wave number space, the width
increases with a, but the shape remains the same.

The model studied in this paper has a three-component
order parameter and describes the ordering dynamics of
Cu3Au. An immediate question to ask is how the results
of this model in the case a =0 (Ginzburg-Landau theory
of the four-state Potts model ) differ from those of the

0.8
0.8

0.6

f1 (Xq)

0.4

0.6

0 ' 4

0.2
0.2

0
0 0 ' 4 0.8

xp= R2/Lp

1.2 1.6
0.4 0 ' 8

x = R/Lp

1.6

FIG. 11. In the position space the scaling function f, (x} vs

the scaled distance x=R/L~ in R, direction for the anisotropy
parameter a =0, 1, and 2.

FIG. 13. In position space the scaling functions for Cu3Au
model for a =0 (solid curve) and for the scalar order parameter
model (dashed curve) given by (4.29).



41 THEORY OF ORDERING DYNAMICS FOR Cu3Au 9253

=V'2C(R, t)+ tan —C(R,t), (4.29)
Bt L2 2

where we have multiplied by a factor of 2 in the last term
to compare with the Cu3Au model in the case a =0.
Comparing (4.5) with (4.29), we see that the two equa-
tions have different nonlinear terms. Following the dis-
cussion from (4.5) through (4.20), we can solve (4.29) in
certain limits. The scaling solution for small x
(x =R /L) in d dimensions is given by

' 1/2

C(R, t)=f(x}=1— 4
m(d —1)

x(1—Px )+

(4.30)

where

1

4d+2 3+"
For large x,

—(d —n/p)e —
p,x /2'2

p (4.31}

where p is defined below (4.6). For very small R, we can
write C(R, t) =1—W(R)/L ( W((L). Inserting C(R, t}
into (4.29), we obtain, for very small R,

1/2

W(R)= 4 1 R
ap 1+

2d Qp

simpler scalar order parameter case (the two-state Potts
model) studied by Mazenko in Ref. 7. The equation of
motion for the nonconserved scalar order parameter, in
the sharp interface limit, is given in Ref. 7 by

functions to differ only for intermediate x. To check the
above arguments, we have solved (4.5) and (4.29} numeri-

cally. We found that, while the domain sizes L (t) have
different coefficients, the scaling functions only slightly
differ numerically for intermediate 0&x & 1, as shown in

Fig. 13.
V. CONCLUSIONS

In this paper we have constructed a coarse-grained
model describing the order-disorder transition of Cu3Au.
The model is characterized by a Ginzburg-Landau Ham-
iltonian with a three-component order parameter and the
symmetry of the Cu3Au structure. This model differs
from the usual 0 (3) symmetric model in several impor-
tant ways, and is a variant of the four-state Potts model.
It takes into account two types of domain walls with spa-
tial anisotropy, The equilibrium transition is first order
rather than second order as in scalar order parameter
case.

The ordering dynamics of this model subjected to a
temperature quench are studied with Langevin dynamics,
involving the generalization of the recently developed
first-principles theory of unstable thermodynamic sys-
tems. Our theory explains the observed features in recent
experiments on Cu3Au. It shows qualitatively different
physical regimes of growth from early to late times,
which can be distinguished by the line shapes of the
structure factor. The shape of the structure factor
evolves from a Gaussian at early times to an approxi-
mately Lorentzian-squared shape at late times in the scal-
ing regime. The model gives a growth exponent n =

—,',
implying that the curvature-driven growth mechanism
for a nonconserved scalar order parameter applies to the
case with more than one type of walls and spatial anisot-
ropy. However, these features lead to a structure factor
exhibiting anisotropic scaling. The tail of the shape func-
tion obeys Porod's law.

1 R
8d (d +2) ao

+ 0 ~ ~
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where ao=(m. /2)' . Comparing the analytical results
for both models, we immediately see that, while the x
term does not appear in (4.30) in the scalar order-
parameter case, it survives in (4.7) in the Cu3Au case. As
was pointed out by Porod ' for smooth interfaces, as in
the scalar order-parameter case, with no angularities
such as corners, edges, and vertices, the x term does not
appear. However, in the model for Cu3Au special sym-
metries, which constrain o. to take the functional form
of (3.38), may allow the existence of such angularities.
On the other hand, both models lead to Porod's law and
share similar results in very small R and very large R
(R/L »1) limits. Thus we would expect the scaling
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APPENDIX A: CORRECTIONS TO THE FUNCTIONALS

In Sec. III, we showed that the functional (3.9) does not lead to correct long-time scaling. In this appendix we discuss
the corrections to (3.9), which better mimic the interfaces near m =0 and restore the expected long-time scaling. The
important point is that we require the corrections to cancel the term proportional to [1—S(t)] in (3.37) to allow the
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terms proportional to [1—S(t)] in (3.37) to dominate at long times. This requirement can be satisfied if we choose the
functional for 0. in such a way that the multipoint correlation functions satisfy the following conditions at long times:

and

q, '& ~. , ( I)~. +,(1)~.(2) &
= q & ~.(1)~.(2) &

—O[(1—S)']

&o't((1)cr (l)o (2)&=1()o &o' (l)o' (2)& —0[(1—S) ] .

(Ala)

(A lb)

Using the equation of state, (2.6), we thus have

( rrr, (1)+rrrrr, r())rr, +r(()+rrrr', ())+rr err(r()) rr()) ,rr, (2))
, P

=[r—u)P +(3u +v)g ]& a (1)0,(2) &
—0[(1—S) ]

= —0[(1—S) ], (A2)

which is required by scaling. Guided by the above idea, we have found that we may choose the following functional:

o (R, t)= biota—nhm, tanhm +, [1+8(m )], (A3)

where 8(m ) must be an even function of m and vanishes as m, ~ ~ for (A3) to reproduce the correct ordered states.
In particular, we choose

A
&

Aztanh m A3tanh m
8(m~)=

2
+

2
+

cosh m cosh m cosh m
(A4)

where A &, Az, and A3 are constants to be determined. Inserting (A3) into (Ala) and (Alb), we obtain the equations
determining 8(m ), to order 0(1/L),

(A5a)

cosh m cosh m
(Asb)

and

& [8'(m)+38(m)+2]8(m) & =0 1

L3 (A5c)

Plugging (A4) into (A5a) —(A5c), after some algebra, we obtain A, = —2.4948, 22=6. 1981, and 33= —2.8562. This
gives

where

8 = l.3503u go+ U Po+ 0. 1775w 1/io & 0

= —8[T,(12)K +, (12)+T +(12) J,(12)] +0[(1—S) ], (A6)

(A7)

and E(12) is defined by'(3.15) and given by (3.36) in the sharp interface limit. The equation of motion (3.6) can then be
written, to order 0 (1/L ) and at equal times t, = t2 = t, as

——2I c, (V +aV ) T, (R,t)T, (R, t) —2I [ T, (R,t)K, (R, t) +T, (R, t)K, {R,t)]= 0.Bt

APPENDIX 8: RELATIONSHIP
BETWEEN THE EXPERIMENTAL

AND THEORETICAL STRUCTURE FACTORS

In this appendix we discuss the relationship between
the experimental measured structure factor and that

defined through this model.
The experimentally measured correlation function on

the fcc lattice is

C,„„(.) = &.(.).(0) &, (B1)
where r are fcc lattice sites, and spatial translational in-
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variance has been used. Since the fcc lattice can be
viewed as four interpenetrating simple cubic sublattices,
we define the correlation function between two points on
different simple cubic sublattices as

C, (R+a;, )=(s(R+a; )s(0}) . (82)

C~J(R) = ( y;(R)qJ(0) ) (83)

where f, =
I g„gz,$3,4I.

The experimentally measured structure factor, with
respect to a superlattice peak wave vector Q, is then
given by

where R denotes simple cubic sublattice points, a, is one
of the 16 possible basis vectors listed in Table I, and spa-
tial translational invariance has been used. We can also
define the correlation functions among the three com-
ponents of the order parameter and the concentration as

fcc

C,„,(Q+q) = g(s(r)s(0) )e'&+q" .

SC

C, (Q+q)=g(s(R+a; )s(0))e
R

(85)

which is independent of the index j since a, are
equivalent for fixed i and different j. The structure factor
associated with the order parameters is given by

C&(q)= g(P;(R)g, (0)) "".
R

(86)

Since the fcc lattice can be viewed as four interpenetrat-
ing simple cubic sublattices, C,„„(Q+q)can be ex-
pressed in terms of C';, (Q+q),

The structure factor on the simple cubic sublattices can
be defined by

sc 4

C,„,(Q+q)= g g (s(R+a; )s(0)) exp[i(Q+q) (R+a~)]= g C';&(Q+q),
R i=l

(87)

where C';, (Q+q) is defined by (85}. We next want to express C,„,(Q+q) in terms of C,J(q) by making use of
C ';&(Q+ q). Using the definition of P;, (2.2a) —(2.2d), and Table I, we can express C &(q) in terms of C ', &(Q+q). For q
near the superlattice ordering wave vector Q, it is straightforward to show that

C f,(q) =
—,'[C'»(Q+q) —( —1) ' 'C

2, (Q+q)+( —1) ' 'C»(Q+q) —( —1) ' 'C 4,(Q+q)], (BSa)

and

C f2(q)= —,'[C'»(Q+q) —( —1) ' 'C2, (Q+q) —
(
—1) ' 'C3, (Q+q)+( —1) ' 'C4, (Q+q}],

C f3(q)= —,'[C'»(Q+q)+( —1) ' 'Cz, (Q+q) —
(
—1) ' 'C»(Q+q) —

( —1) ' 'C4, (Q+q)],

C f~(q)= —,'[C»(Q+q)+( —1) ' 'C2, (Q+q)+( —1) ' 'C'„(Q+q)+(—1) ' 'C~, (Q+q)],

(BSb)

(BSc)

(BSd)

C &(q) =0, for i Aj,
where Q, , Q2, and Q3 are three components of Q. Equations (BSa)—(BSd) can be inverted to give

C'»(Q+q) =C f,(q)+C fz(q)+C f'3(q)+C g(q),

C 21(Q+q)=( —1) ' '[ —C fl(q) —C f2(q}+C f3(q)+C44(q)]

C»(Q+q) =(—1) ' '[C |,(q) —C fz(q) —C f,(q)+C Q(q)],

and

C4, (Q+q)=( —1) ' '[ —C f,(q)+C fz(q) —C f3(q)+C ~~(q)] .

Inserting (89a)—(89d) into (87), we obtain

C,„~,(Q+q)=C (&(q)[1—( —1) ' '+( —1) ' ' —( —1) ' ']

+C f~( )[1—
(
—1) ' ' —

( —1) ' '+( —1) ' ']

+C f3(q)[1+(—1) ' ' —( —1) ' —( —1) ]

+C~~(q)[1+( —1) ' '+( —1) ' '+( —1) ' '] .

Using (3.5) and ignoring the coupling between the ordering field o and fluctuating field P, we can decompose

C &(q)=C,, (q)+C ~(q),

in (810).

(BSe)

(89a)

(89b)

(89c)

(89d}

(810)

(811)
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