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Dyson-Maleev boson formalism is used to calculate magnon damping I i, in the two-dimensional
quantum Heisenberg antiferromagnet at low temperatures T and for wavelengths short compared to
the thermal de Broglie wavelength. From the evaluation of the second-order self-energy it is found
that I 1,

~ T Z {~v„~) as T~O, where v„ is the gradient of dispersion relation of free magnons. For k
close to the boundary of the Brillouin zone, where ~vl, ~

is small, the function Z has the expansion
Z(~vz~)=1+0(~v„~'). For general ~v„~, we have calculated Z numerically. Although there is no
long-range order at any TAO, the staggered correlation length g('P is exponentially large as T~O.
It is shown explicitly in the present work that, at low temperatures, magnons with momentum k in
the regime ~k~a )&(TiE )' ' (where a is the lattice spacing and E is the energy of zone-boundary
magnons) are well-de6ned quasiparticles. We present evidence to support the argument that this
remains true as long as ~k~g&) 1.

I. INTRODUCTION

It is now widely believed that the magnetic properties
of undoped La2Cu04 can be modeled by a spin S =

—,
'

nearest-neighbor quantum Heisenberg antiferromagnet
(QAFM) on a square lattice with an exchange coupling J
of the order of 1500 K. ' The Hamiltonian of the
QAFM is given by

%=J gS;S

where the S; are dimensionless spin S operators at lattice
site i. A hypercubic lattice of X sites has DN nearest-
neighbor bonds in D dimensions; the sum in Eq. (1.1) is
over all distinct bonds. In the present paper we are in-
terested in the case D =2.

Recently, the low-temperature behavior of the QAFM
has been discussed by Chakravarty and co-workers. '

The results appear to be in quantitative agreement with
the neutron-scattering experiments ' in La2Cu04. In
Ref. 6 it was argued that there are well-defined magnon
excitations for large wave vectors k, i.e., for kg))1,
where g is the two-dimensional staggered correlation
length. In this paper we give a partial microscopic
justification of this physically plausible argument. More-
over, the short-wavelength spin dynamics of QAFM has
been probed in two-magnon Raman-scattering experi-
ments. Because the two-magnon Raman cross section is
dominated by magnetic excitations with mornenta close
to the boundary of the Brillouin zone (BZ), it is impor-
tant to understand magnon damping at short wave-
lengths.

Chakravarty, Halperin, and Nelson used the mapping
of the QAFM onto the quantum nonlinear o model to
study the long tvavelength p-roperties of QAFM. From
their renormalization-group analysis, and a similar
theory recently developed by Chakravarty and the

~th Ac

2' T ' (1.2)

where we have set the Boltzmann constant equal to unity.
Since at low temperatures a «A, ,„&(g, the thermal de
Broglie wavelength separates a short-wavelength quan-
tum regime, k ))A,th', from the long-wavelength regime
k (&A,,h', where g is the only relevant length scale. Note
that for T~O the region k ))k,h' comprises almost the
entire BZ and is certainly of experimental interest.

Magnon damping in the regime g '(&k «A, ,h' has
been studied by a combination of spin-wave hydrodynam-
ics, renormalization-group methods, and the dynamic
scaling hypothesis. ' Here we consider short-maUelength
magnons. For momenta' in the range k ))A,,h' we
present a controlled microscopic calculation of the mag-
non damping I (k, A'co) on resonance, i.e., at frequency
Aco=Ek, where Ez is the quasiparticle energy. We find
that in this regime I (k, Ek) is given by

AT(k, El, ) 4~ S ' Z([v„/)

X 1+0,(2S)E (1.3)

where E„is the energy of the zone-boundary magnons, v&

is the gradient of the free magnon dispersion relation,
and the function Z is unity for magnons with momentum
precisely at the zone boundary, where vk=0. For general
~vl, ~

a numerical evaluation of Z is given (see Fig. 1). In

present author for the quantum Heisenberg ferromagnet,
it is evident that in addition to the lattice spacing a and
the exponentially large order parameter correlation
length g, the thermal de Broglie wavelength t(,,h is a third
characteristic length scale of the system. For a QAFM,
A,,h can be written in terms of the spin-wave velocity c as
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FIG. 1. Graph of the function Z(U) defined in Eq. (2.27), ob-

tained by numerical integration.

fil &=%I (k, E&)=2 Im lim X' '(k, E& iq)—
g~0

(1.4)

X' ' is calculated within second-order perturbation theory
and hence contains two powers of the interaction part of
the Hamiltonian. However, the justification of the per-
turbative treatment of the damping of short-wavelength
magnons is subtle because it relies on the cancellation of
unphysical singularities in the Dyson-Maleev (DM) ver-
tices. They become singular if the momentum of one of
the outgoing magnons approaches zero (see Appendix A).
Nevertheless, due to an exact cancellation of these singu-
lar terms in Eq. (1.4), we obtain in the two-dimensional
QAFM a finite result for I z. In order to make this can-
cellation of the singular terms manifest, the various terms
appearing in the expressions of the interaction vertices

Sec. III we shall discuss Eq. (1.3) and carefully examine
the range in parameter space for which it is valid.

In order to apply standard many-body techniques for
interacting Bosons, we shall use the Dyson-Maleev trans-
formation" to recast the spin operators in terms of Boson
operators. A detailed and careful discussion of the
method can be found in a paper by Harris, Kumar,
Halperin, and Hohenberg, ' henceforth referred to as
HKHH, who have obtained low-temperature expressions
for the damping of magnons in a QAFM in three dimen
sions and in the limit of long wavelengths. HKHH found
that in this case the quasiparticle picture is certainly val-
id, and that the simple "golden-rule" expression (see the
following) yields an accurate estimate for the magnon
lifetime, which is not drastically changed if vertex correc-
tions or damping of intermediate states are taken into ac-
count as well. However, in the present paper we treat the
two-dimensional problem in which there is no long-range
order at TAO. Thus, our problem is very different from
the one treated by HKHH.

The golden-rule expression for the magnon damping is
most conveniently obtained from the discontinuity of the
second-order self-energy (Ref. 13) X' '(k, z) across the
real frequency axis

II. EVALUATION OF THE GOLDEN-RULE
EXPRESSION FOR THE MAGNON DAMPING AT

SHORT WAVELENGTHS

The golden-rule expression for the magnon damping in
two dimensions, as defined in Eq. (1.4) is'

2
1

Sa(T,S) [1 +n( e& le )]
4m.

X f d p f d q5(E&+Ep Ez+q Ep q)
BZ BZ

XB(q,p, k, r}W(q, p, k), (2.1}

where a(T, S) is the Hartree-Fock renormalization factor
for the quasiparticle energies (see below), and

E„=2DJSa( T,S)— (2.2)

is the energy of zone-boundary magnons. ek is the dimen-
sionless dispersion relation for free magnons defined in
Eq. (AS). Although it must be remembered that we are
interested in the case D =2, we shall continue to write D
in equations that are valid for arbitrary D. The dimen-
sionless temperature ~ is defined to be

T=
7 (2.3)

have to be carefully grouped together. In Appendix A we
introduce a convenient parametrization of the DM ver-
tices, which will be extremely useful for the evaluation of
Eq. (1.4).

We shall also ignore kinematic interactions between
spin waves, "although it is clear that such an approxima-
tion in two dimensions is on much less firm grounds than
it is for D =3. Nonetheless, because the population of
short-wavelength magnons is not large for low tempera-
tures, the neglect of kinematic interactions cannot intro-
duce serious errors. Clearly, for TAO and D =2, our
perturbative treatment cannot be applied to long wave-
lengths, where elementary spin-wave excitations cannot
be defined in a naive sense. Note, however, that a non-
perturbative renormalization-group treatment seems to
hold. The reason is discussed in detail in Ref. 9, and is
quite complex. We would like to emphasize that the
justification of the neglect of the kinematic interaction in
this case is quite different from that given in the classic
paper by Dyson" for D =3, where the system has long-
range order below the Neel temperature Tz.

In Sec. II we shall show that the evaluation of Eq. (1.4)
does not lead to divergencies. Physically, it is clear that
at low temperatures short-wavelength magnons should be
well-defined quasiparticles, because the staggered correla-
tion length g is exponentially large, although there is no
true long-range order' at any TWO. As argued in Ref. 6,
magnons with momentum k ))g ' can propagate in a lo-
cally ordered region of a size much larger than their
wavelength. Thus it seems very plausible that at low
temperatures the value for I „obtained from Eq. (1.4)
gives a reliable estimate of the damping of short-
wavelength magnons.
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and n (x) is the Bose-Einstein occupation factor,

1n(x)=
exp(x) —1

(2.4)

(similarly for q). The function B is defined by

8 (q, p, k, r) =n(e~/r)[1+ n(ez+~/r)][1+ n (e /r)],
(2.5)

and the function IV(q, p, k) is given in terms of the DM
vertices, defined in Appendix A, by

IV(q, p, k)—:V"'(q, p —q, k+q) V"'( —q, p, k)

+ V' '( —q, k+q, —p) V' '(q, k, —p+q)

+ V'"'(k —p+q p —
q

—p)

X V' '( —k+p —q, k, —k —q) . (2.6)

In deriving Eq. (2.1), we have substituted for the quasi-
particle energies Ez in Eq. (1.4) the Hartree-Fock expres-
sion'

Eq=2DJSek+X "(k)=2DJSa(T,S)ek . (2.7)

Here X"~(k) is the first-order self-energy. The Hartree-
Fock renormalization factor a(T, S) does not depend on
k and has to satisfy a self-consistency equation, which for
finite S has a solution only if T ~ Tz =—2DJSR~. The nu-

merical value of Rz is of order unity for small S and ap-
proaches infinity as S~~, while a(T,S) is, even for
small S, of order unity for all temperatures where it is
defined. Although the temperature and spin dependence
of a( T,S) is irrelevant for the asymptotic behavior of I k,
we shall keep this factor in the evaluation of Eq. (1.4) in
order to show how the Hartree-Fock corrections to the
propagators modify our final result.

We shall now evaluate Eq. (2.1) at low temperatures.
Note that our dimensionless temperature ~ can be written
in terms of the thermal de Broglie wavelength as

The integrations in Eq. (2.1) are over the magnetic BZ
(Ref. 10)

[Ip'+p'I -~J & f Ip' —p'I -~&

equivalent to v «1, but for small k it is more restrictive.
These assumptions imply that ei, /~ && 1, and consequent-
ly n (ei, /r) in Eq. (2.1) is exponentially small and can be
dropped. However, the factor n(e&lr) in Eq. (2.5) cuts
off' the p integration in Eq. (2.1) at c =~&&1. Hence, to
a very good approximation, we can use the small-
momentum expansion for e, which is given by

e = —+O(p ).
P

(2.10)

Let us now consider the scattering surface, i.e., the set
of points in the q plane satisfying

~k+ ~p ~k+q ~p —q
=O . (2.11)

j.
Eg+q=eg+ —vi; q+O(q ),v~D

(2.12)

For each given p and k, this equation defines a set of
curves q(t)—:q(t;p, k) in the q plane. We use a real vari-
able t to parametrize these curves. Note that if q(t;p, k)
solves Eq. (2.11), then so does q'( t;p, k ) =
p —k —q(t;p, k). We have argued that in this problem

p & r ((1, while k is assumed to satisfy Eq. (2.9). In this
case, as pointed out by HKHH, the scattering surface
consists of two disjoint pieces: a curve q(t) with q (&k,
and a curve q'(t) with q'=O(k). However, from the
symmetry of the integrand in Eq. (2.1) it follows that the
disjoint curves give equal contributions to the integral.
[The identity W(q, p, k) = IV(p —k —q, p, k) follows from
the symmetry relations listed in Appendix A, Eqs. (A31)
and (A32).] We therefore need to consider only the piece
of the scattering surface with q «k and multiply the
Anal result by a factor of 2. Because E'i, +q/7 &&1 for this
piece, we can set 1+n (ei, +z/r) = 1 in Eq. (2.5), neglecting
exponentially small corrections of order exp( e&+z/r). —
Note that for the other piece of the scattering surface the
factor n (e& z/r) is exponentially small, while n (ez+z/r)
has to be kept. We could have equally well chosen the
piece of the scattering surface with q =O(k).

We shall now derive an explicit expression for the piece
of the scattering surface with p, q «k. In this case we
use in Eq. (2.11) the small-momentum limit of e [Eq.
(2.10)]. Furthermore, because q « k, we expand

2'
~thv'D (2.8) where

where we have used the free magnon expression for the
spin-wave velocity c =2v'D JS/R We are inte. rested in
rnagnons with momentum k in the regime A.,h'«k.
However, for technical reasons discussed in detail in Sec.
III, we need the stronger condition

«&k', (2.9)

in order to be able to evaluate Eq. (1.4) in a controlled
way. Although at low temperatures the area of the BZ
defined by Eq. (2.9) includes magnons with wavelengths
much larger than the lattice spacing, we shall in the
present paper refer to it as the short-wavelength regime,
because the damping of all rnagnons with momentum in
this regime is given by same asymptotic form as ~~0,
namely, Eq. (1.3). Note that for k =O(1) Eq. (2.9) is

vg=v D Vek . (2.13)

p —
~p

—
q~

—q.v„=o . (2.14)

For D =2, this is an equation for an ellipse in the q plane
and it is straightforward to obtain the following paramet-
ric representation,

q(t) =p[p+r(t)], t E [0,2m. ],
with

(2.15)

As shown in Sec. III, this approximation can only be
justified if the p integration in Eq. (2.1) is cut off' at
p ~ k, a condition that is satisfied in the short-
wavelength region defined via Eq. (2.9). The equation for
the scattering surface then becomes
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r(t) = 1 —v(k) cos(p

1 —u (k)

X([cost —u(k)]v+ I[1—u (k)]' sint}vi),

(2.16)

u(k) = Iv„= 1 (sink" )
ek D„

1/2

(2.17)

and where v (k), the length of the vector vz defined in Eq.
(2.13), is given by

Here v—:vz/u, p—=p/p, vi is a unit vector perpendicular
to v, and cosy =v.p is the cosine of the angle between v&

and p. yk is given in Eq. (A9). We have normalized v&

such that v&~k for small k, and hence 0 u(k) l. It is
easy to see that u(k) is the eccentricity of the ellipse
given in Eqs. (2.15) and (2.16). Note also that for k pre-
cisely at the zone boundary v(k)=0, and the scattering
surface is a circle with radius p around the point p.

Having obtained a convenient parametric representa-
tion of the scattering surface q(t;p, k), we can elitninate
the 5 function and write the q integration as an integral
over the parameter t (we set D =2 from now on)

2

f d(p f dt f p dp B(t, (p,p, k, r) W(t, (p,p/v'2, k),
L

(2.18)

where

B(t, (p,p, k, r) =
I

n(e~/r)I
dq(t) /dt I

~+0+ p
—

q

and

X [1+n (e,(() /r) ],

W(t, (p,p/V2, k)—:W(q(t;p, k), p, k) .

(2.19)

(2.20)

p [1—u (k)cos(p]
1 —u (k)

Here p=p[cos(p, sin(p] and the p' axis is in the direction
of vk. Because the Bose factor n (e /r) cuts off the p in-

tegration at p =~, we have extended the upper limit for
the p integration in Eq. (2.18) to infinity without chang-
ing the value of the integral. From Eqs. (2.15) and (2.16)
it is easy to show that, for p (& 1,

Idq(t)/dt
I~q('~+. +"-q) q=q«(

3/2
1

2

show in Appendix B that the function W(t, tp, p/v'2, k)
has a finite limit as p ~0 [see Eq. (2.25)], and hence no in
frared divergencies are encountered Note . also that the
use of the long-wavelength expansion for e~„((, Eq. (2.10),
is justified, because Ipr(t)I is a small quantity in the re-
gime r «k we are considering here. To prove this, we
calculate the length of the vector r. From Eq. (2.16) we
obtain

[1—u (k)cost][1 —v(k)cos(p]
1 —v (k)

(2.22)

Obviously for zone-boundary magnons, for which u (k) is
small, Ir(t)I is of order unity, and hence prI «1 (keep-
ing in mind that p &r«1). Also in the case k «1,
where we may use the small momentum limit for v(k)
[see Eq. (2.28)], we find that IprI =p/k & rlk is a small
quantity, because according to Eq. (2.9) we have
r/k'«k & l.

Writing p =&2' we obtain

2
(2.21) &I„8X[1—u(k)cost][1+O(p)] .

Clearly the function B(t,(p,p, k, r) diverges for p~0 as
p . In the integral, Eq. (2.18), this singularity is can-
celled by a factor p from the Jacobian. Moreover, we

l

r'Z(k, r)[1+O(r)],
Sct T,S

where the function Z is defined by

(2.23)

Z(k, r)=
'2

1 —v (k)

' 3/2

f dip f dt f dx[1 —u(k) cost][1— (ku) c s o](pW(t, (rpx, )k
0 0 0

exp(x) —1

X

1 —exp[ —r( t, (p; u (k ) )x ]
(2.24)

W(t, (p, rx, k)= —,'[1—u (k)] +O(rx) .1 —u (k)cos(p
[1—v(k)cost]

The final result for the damping of magnons in the regime 7'/ ((k, which also includes zone-boundary magnons, is

(2.25)

Note that the x integration is cut off at x =O(1). Because «r1, we may expand W(t, (p, rx, k) for small rx. As shown
in Appendix B, the lowest-order term in this expansion is independent of ~x and is given by
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4~
E 3

2

r Z(U(k))[1+O(~)],1

Sa TS (2.26)

Z(U}—= 1

1 —v

1/2

where Z (U) is defined by

2

f dq) f dt f dx[1 —
U cosy]

o o o exp(x) —1
(2.27)

1 —exp[ r—(t, y;v)x]

To the leading order in r and (2S) ', a(T, S) can be set
to unity. This is consistent, because a has an expression
of the form

a(T,S)=1+0(T/E„,(2S) ')

[see Eq. (A12) for a(O, S)], and the correction in Eq. (1.3)
depends also on the higher-order contributions to the
self-energy.

The integration in Eq. (2.27) becomes trivial for u =0
(corresponding to magnons with momenta precisely at
the boundary of the BZ}, because in this case
r(t, (p;0)=1, independent of t and y. We have normal-
ized Z such that Z ( v =0)= 1. Although we have not
succeeded in performing the integration in Eq. (2.27)
analytically for general U, it is easy to show that for small
U, i.e., for k close to the zone boundary, Z(U) increases
quadratically:

Z(u(k))=l+O(u (k)) .

For U~ 1 it diverges as (1—v) '~ . Note that for small k
the function U (k) has an expansion

U(k)=1 —gD(k)k2+O(k ),

ky

0

0
kx

FIG. 2. Curves of constant magnon damping in the Brillouin
zone of the two-dimensional QAFM. The curves are defined via
the equation

~
vz~—:U =const, where the vector vz is the gradient

of the magnon dispersion relation [see Eq. (2.13)]. Note that
0 ~

~ vz ~

~ 1. Neighboring contours correspond to an increase of
0.1 in U.

I

where gD(k) depends only on the direction of k and is
strictly positive. In D =2 it follows that for k ~0

Z(u(k)) =
z [g2(k)] ' k '[1+O(k)], (2.29)

where g(3)=1.202. A numerical evaluation of Z(U) is
shown in Fig. 1. According to Eq. (2.26) the momentum
dependence of I ~ enters only through ~vt, ~; i.e., surfaces
of constant damping are curves on which the gradient of
the magnon dispersion relation has constant length.
These curves, defined by ~vz~=—v=const, are shown in
Fig. 2. Because Z (v) deviates significantly from unity for
v ~0.8, it is clear that at low temperatures the damping
of magnons in a large region of the BZ is not very
di8'erent from the damping of magnons at the zone
boundary.

III. DISCUSSION

In this section we shall carefully examine the range of
validity of Eq. (2.26). In particular, we shall show that
the analysis presented in Sec. III is only consistent for
moinenta k in the short-wavelength region k))r' [cf.
Eq. (2.9)]. Furthermore, we shall use the golden-rule ex-
pression, Eq. (2.1), to estimate the damping of inagnons at
longer wavelengths.

Three independent parameters in Eq. (2.26) are T, S,
and the momentum k. We have assumed that k &&T;
i.e., the magnons that we consider have energies much
larger than the thermal energy, or, equivalently, their
wavelength is much shorter than the thermal de Broglie
wavelength. Furthermore, we have implicitly assumed
that the perturbation expansion for the self-energy can be
truncated at the second order and have ignored the kine-
matic interactions between spin waves. As argued in Sec.
I, for kg))1 the perturbation expansion in powers of
(2S) ' should be well defined.

HKHH have shown that in three dimensions, and in
the limit of long wavelengths vertex corrections can be
safely ignored. For D =2, it is clearly not justified to
neglect vertex corrections at long wavelengths. This has
been explicitly demonstrated by Kosevich and Chu-
bukov, ' who have found that divergent vertex correc-
tions signa1 the breakdown of perturbation theory, if the
wavelength of the magnons becomes comparable to the
order-parameter correlation length, i.e., if k(=O(1). In
the present paper, however, we study short-wavelength
rnagnons. %'e have convinced ourselves by direct calcu-
lation of the lowest-order diagrams contributing to the
renormalization of the bare vertices, that in the regime
~((k the "dressed" vertices modify our final result, Eq.
(2.26), by nonsingular corrections order (2S) ' and
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xr 6+2)(3) S 2 3[ (k)]
—1/2k —1

Em
(3.1)

We emphasize that this expression is only valid for
~ «k, and hence the damping in this regime is certainly
small compared to the energy.

As mentioned in Sec. I, we expect that the magnons
with large momenta compared to the inverse correlation
length are well-defined quasiparticles. Because g

' is ex-
ponentially small at low temperatures, there is a large
range in the momentum space,

(3.2)

where our approximation for the scattering surface, Eq.
(2.14), is not valid. Nonetheless, perturbation theory may
be applicable, although in the regime k «A, ,h' vertex
corrections will become important, such that it may not
be justified to truncate the perturbation expansion at the
second order. Unfortunately, evaluation of Eq. (2.1) is

not so straightforward in the regime defined by Eq. (3.2),
as the scattering surface cannot be described by a single
analytic expression, valid for all p contributing to the in-

tegral. In three dimensions, discussed by HKHH, the sit-
uation is different. Because of the presence of an extra
factor of p in the Jacobian, the integration in Eq. (2.1) is
dominated by thermal rnomenta p =v.. Thus, it is
sufficient to estimate the integral using a form of the
scattering surface that is valid for p =v. By contrast, in

D =2 the integrand is not dominated by a single range of
mornenta p, and all momenta up to p=v. contribute to
the integral. The short-wavelength magnons are the sim-

plest to consider. Because of the inequality p ~~&&k,
Eq. (2.14) is an accurate description of the scattering sur-

(2S) 'r /k. These corrections do not contribute to the
asymptotic behavior we are considering here. It is clear
that these approximations amount to a possible multipli-
cative correction factor of the form

Y(S):—1+y, (2S) '+yz(2S) +
This will modify the coefficient of the T law for I &.

Let us now discuss the range of validity of Eq. (2.26) in
momentum space. In deriving this equation, we have
made the basic assumption that Eq. (2.14) is an accurate
approximation for the exact scattering surface, which is
defined via Eq. (2.11). At low temperatures this assump-
tion is certainly satisfied for zone-boundary magnons, for
which k is of order unity. We now show that the lower
limit for k, where Eq. (2.14) ceases to correctly describe
the true scattering surface, is given by p

' . This cri-
terion has been given by HKHH for D =3. That it is
also true for D =2 can be easily seen from Eqs. (2.15) and
(2.16): If we insert the long-wavelength limit for u (k) [cf.
Eq. (2.28)], we see that the characteristic value of ~q(t)

~

is

q =p/k . As our approximate equation for the scatter-2

ing surface was derived by expanding ez+q (assuming

q «k ), we need, for consistency, the condition p/k & k.
Remembering that the p integration in Eq. (2.1) is cut off
at p=r, we conclude that Eq. (2.26) is valid, euen for
small k, as long as ~' &&k. This is equivalent to Eq.
(2.9), and implies r &(1. Note that for r'~ &&k &&1 we
find, from Eqs. (2.26) and (2.29), that

face for all p where the integrand is nonvanishing.
Although the technical difficulties mentioned have

prevented us from evaluating Eq. (2.1) in the long-
wavelength regimes with the same accuracy as we have
done for k »~', we can give a rough estimate. If we

neglect all angular dependencies and count the powers of
p and k in the integrand, we find that in the range

'«k «~'
r„-Hk . (3.3)

In this paper we have shown that at low temperatures
conventional spin-wave techniques, when applied careful-

ly, can be used to calculate in the two-dimensional

QAFM the damping of magnons for all momenta that are
large compared to the inverse correlation length. Thus,
even in D =2 magnons are found to be well-defined

quasiparticles; i.e., their damping is small compared to
their energy. Let us summarize the various expressions
for the magnon damping in the low-temperature regimes
we have considered in the present paper:

r'k if g '«k «r'
I„.r [g (k)] '~ k ' if r'~ &&k &&1

r'Z([u, I) if r"3«k =1 .

(4.1}

Although we have no definite predictions for the behav-
ior in the regime v 5 k & ~', it is clear that it must be
an interpolation between the behavior in the neighboring
regimes. Thus the damping is expected to be small.

Note added in proof. After completion of this work I
received a copy of work prior to publication by S. Tyc
and B. I. Halperin where they use DM formalism to cal-
culate magnon damping for g

' (&k «1. In the regime
r'~ && k && 1, their result agrees with Eq. (3.1}. Further-
more, they show that for g '«k «r the correct
asymptotic behavior is given by I z

~ kr lni
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APPENDIX A: THE DYSON-MALEEV VERTICES

In this appendix we shall introduce a convenient pa-
rametrization of the two-magnon vertices on a bipartite
lattice in D dimensions. We shall also give explicit ex-
pressions of the vertices in the various long-wavelength
limits. Although such expressions can be found in Ap-
pendix A of HKHH, the underlying symmetries are not
transparent, and there seem to be some inconsistencies in
their long-wavelength limits. ' The DM transformation

This estimate agrees with the one given by Kosevich and
Chubukov, ' who claim that it is actually valid for

g '«k «r.
IV. CONCLUSIONS
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1S

g+ =v'2S [1—(2S) 'a, a, ]a, ,

1+=&2Sb [1J

4, =&2Sa, ,

1'=S—a; a;,

—(2S) 'b b ],
Z; =&2Sb, ,

4'= —(S b)
—b, },

(A 1)

where the Boson operators a, (b, ) refer to sublattice A

(8). Next we introduce Fourier transformed operators
ak and bk via

~DM EDM + '~DM'+ ~DM (A10)

Here EDM is the ground-state energy and is given by

EgM = ND—J[Sa(O,S)] (A11)

where

however, cancel if one calculates physical observables, as
it should be, and we shall choose all phase factors to be
unity from now on.

For convenience we normal order the Hamiltonian and
write the final result in the form

1a;—: g exp(i k r; )ak,
X/2

(A2) a(O, S)=1+ C
(A12)

1
b —= +exp( ik—r )b„,

N/2
(A3)

a1 =a i (ak X1 pi. ),
b 1,

—= u1, ( —x1,a1,+pi, ),
where

' 1/2

exp(i/1, ),
2Ek

(A4)

(A5)

(A6)

where the sums are over the N/2 points of the first Bz of
the QAFM, and r, is the location of lattice site i Note.
that HKHH have introduced the Fourier transformation
on sublattice 8 with an opposite sign in the exponential.
Finally, the part of the Hamiltonian that is quadratic in
the Boson operators is diagonalized via a canonical trans-
formation to the magnon quasiparticle operators ak and

p1,. The most general form of this transformation is given

by The free part of the Hamiltonian is then

:&DM.=E„(0)g ei, 1P1,+1, .
k

(A15)

where E„(0)=2DJSa(O, S) [see Eq. (2.2}].
The expression for:&DM. is a linear combination of ten

terms quartic in the quasiparticle operators. Each of
these terms can be characterized by an ordered pair of
two of the four matrices o +, rr, p+, and p, defined by

is the Hartree-Fock renormalization factor at T=0, in-
troduced in Eq. (2.7). The numerical constant C is
defined by

C=1— g ei,
1

k

and equals 0.158 in two dimensions. ' The Hamiltonian
can be written in a very compact form if we express it in
terms of the two-component operators

e'„—= (a1'„p„) . (A14)

1 —ek
Xk= exp( —2igk) (A7)

0 1 0 0+
0 0 ' 1 0

(A16)
with

( 1 y2 )1/2 (A8)

1+=~=o 0
o

0 0
0 1

and"
D

y1, =—g cosk" .
p=1

(A9)

If we use the abbreviation

tP a ] (q, 1,2) = '(+I+qP +1}(+2—qa +2 }'

+2 — 1 1+q (A17)

The phases p1, are arbitrary. From Eqs. (A4) and (A5) it
is obvious that a factor exp( i P„) is associat—ed with
each quasiparticle operator ai, or Pi,. These phases do,

I

(the expressions involving other matrices are defined
analogously) the normal ordered interaction part of the
DM Hamiltonian can be written as

:DM:= & [[Ip'p'I+lp;p I]V"'
q, 1,2

—2[lp'a j+lp a']]V"'+2[la',p+l+Ia p 1]V'"

]+lp p+]]V'"+l la+ a+ I+ la a I ]V"'] (A18)

where V'~'= V'"(q, 1,2), j =1, . . . , 5, are the DM ver-
tices. For notational simplicity we have written 1 for k,
and 2 for k2, and have omitted the arguments (q, 1,2) in
the sum. Note that our vertices V' ' correspond to the

expressions O'J' given by HKHH for J=1,2, 3,4, while
our V' 'corresponds to 4' 'of HKHH.

The symmetries of the DM vertices become very trans-
parent by writing them as follows:
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V'"(q, 1,2)=A[x, + F, +xz—qFz],
V' '(q, 1,2)=A[xi+qxi qF, +F~],
V' '(q, 1,2) = A [x2 qF3+x i+ F4],
V' '(q, 1,2) = A [x,+ x2 F&+F4],
V' '(q, 1,2)=A[x~ F, +x,+ F~],

(A19)

(A20)

(A21)

(A22)

(A23)

where F =F.(q, 1,2), (j=1,2, 3,4), and A =A(q, 1,2)
are functions of the momentum transfer q as well the in-
coming momenta k, and k2, which we shall define and
discuss now. The function A is given by

k k
xi, =1— + +O(k'),

D 2D
(A33)

k
y =1— +O(k ),k 2D

(A34)

sign in Eq. (A18) we may replace Ip;p+ j
V'4' by

Ip+;p j V' '. The vertices V' ' and V' ' do not have the
symmetry (A32) and hence the order of the matrices in
the curly braces cannot be interchanged.

The advantage of our pararnetrization becomes evident
if one considers the limiting behavior of these functions
as the momenta approach zero. For small k we have

A(q, 1,2)= Q1+qQ2 q

Q1Q2
(A24)

1/2

To define the functions F, we first introduce the two aux-
iliary functions

f (q I 2) =—u i [yq+i-z —xiyq-zl

g(q I 2)—=ui[xiyq+1 —2 yq —2] .

The F are then given by

F, (q, 1,2) =u z[f(q, 1,0)—x,f(q, 1,2)],
F,(q, 1,2)—:u z[x2g(q, 1,0) —g(q, 1,2)],
F,(q, 1,2) = u 2[f(q, 1,2)—xzf(q, 1,0)],
F4(q, 1,2)—:u', [x,g(q, 1,2)—g(q, 1,0)] .

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

0
0

F 1 0

F3 1 0 F3

Note that if we interchange the two incoming rnomenta
and reverse the sign of the momentum transfer, the F
transform into each other according to

F1
1 F1

—+O(&k ) .
k

(A35)

Hence, although the factor uk is singular as k ~0, the
difference in the square brackets in Eqs. (A25) —(A30) ex-
actly cancel these singularities and the long-wavelength
limits of the functions f, g, and F are finite. The singu-
lar behavior of the DM vertices is entirely contained in
the function A, which exhibits square-root singularities
as q approaches —k, or k2. Note, however, that A

satisfies

A (q, k, , kz) A (
—q, k, +q, k2 —q) =1 . (A36)

It turns out that in the expression for the second-order
self-energy the momentum dependence of the vertices is
such that always two factors of A appear in the above
combination; thus the singular terms in the DM vertices
precisely cancel.

The various long-wavelength limits of the DM vertices,
and hence the behavior of the function W(q, k„k2)
defined in Eq. (2.6), can be obtained from the correspond-
ing limits of the functions F . %'e now give a list of these
limits, which might be useful also for other calculations
done with the Dyson-Maleev formalism. We denote by k
the unit vector in the direction of k, and define a vector
Gk with components

F4
{q,1,2)

It follows that

1 F,
{—q, 2, 1)

Gg:——D 8"y i,
=sink"

and a matrix Ati, with elements

JISM(":—D 8"8'y„=—5""cosk" .

(A37)

(A38)

V'J'(q, 1,2)=V'i'( —q, 2, 1) for j=1,4, 5, (A32)

which implies, in particular, that under the summation

The normalization is such that Gi, ~k and JRi, becomes a
D-dimensional unit matrix for k~0. First, we give the
limits if one of the incoming momenta approaches zero:

k1~0 2
Q2 k 1F, (q, 1,2) — (y, —x,y, ,) — ~ (G —x,G, , ) +O(k, ) (A39)

k2~0 2 kQ 1 2
(y +i —xiyq) — —(Gq+, —x, Gq) +O(k2), (A40)
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kl ~0 2
Q2 k 1

Fz{q,1,2) — {yq z
—xzyq)+ —.(Gq z

—xzG } +O(k, ) (A41)

k1~0 2
Q2 i

F3(q, 1,2) — (yq-2 —xzyq) — —(Gq-2 —xzG } +O(k l ) (A43)

k2~0 2 kQ) 2

2 (yq+ i
—x i yq)+ —(Gq+ i

—x i Gq) +O(kz ), (A44)

k)~0 2 kQ2 1

F4{%1» — (yq
—xzyq z)+ (Gq —xzG, ) +O(k, )

2 q D
(A45)

k~~0 2 kQ( 2
{yq—xiyq+i) — (Gq —x, Gq~i) +O(kz) . (A46)

If both incoming momenta approach zero, we have

k, k 0

(q 1 2) yq kiAqkz Gq +O(ki kz) (A47)

k), k~ 0
1 lt +k

Fz{q,1,2) — —y —k,&qltz+ —.G +O(k, , kz ),
4 'q 'q gD q

(A48)

k(, k~~0
A.

F3(q, 1,2) — —yq+kiAt kz—
A.

k, —k2
Gq +O(ki, kz),q

(A49)

k), k~ 0

F4(q, 1,2) — —y +k,Alqkz+ Gq +O(k, , kz) . (A50)

Note that the symmetries, Eq. (A31), are now obvious, since y =yq, Jr=At ,and G q= —Gq.
Because F (j=1,2, 3,4}contains only terms that are nonsingular in q, one can simply set q=O to obtain the leading

behavior for small-momentum transfer. Obviously F, and hence also the DM vertices, are then independent of the
momentum transfer q. Using the fact that the vector Gq is related to the velocity vs defined in Eq. (2.13) via

2
vg — Q )p'g Gg

2

D

we obtain from Eqs. (A39}—(A46)

k, q-o
F, (q, 1,2) — —[2uz(l —xzyz) —k, vz]+O(k„q)

(A51)

(A52)

k, ,q-o
2u i(yi —xi) —tz. +O(kz, q),

X)
(A53)

Fz(q, 1,2) — —2uz(yz —xz) —lt . +O(k q) (A54)

k, ,q-O —[2u i(1—x,y, ) —kz.v, ]+O(kz, q ),
kl, q~O

F3(q, 1,2) — —2uz(yz —xz)+hi. +O(ki, q)
X2

(A56)

2uzi{y, —x, )+kz +O(kz, q),
X)

(A57)
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kl, q~O
1

F4(q, 1,2) — —[2uz(1 —x21'2)+k& vz]+o(k„q }
4

k2, q~O
—[2ui(1 —xiy&)+ki vi]+O(k2, q) .

(A58)

(A59)

The limits that all momenta are small are most easily obtained from Eqs. (A47) —(A50):

kl, k2, q~O

F, (q, 1,2)

F2(q, 1,2)

F3(q, 1,2)

F4(q, 1,2)

kl, k~, q~0

kl, k2, q~0

kl, k2, q~o

—,'(1—k, kz }+O(k, , ki, q },

—,'(1—k) k2)+O(k (, kz, q },

—,'(1+ k) kq)+ O(k ),kg, q),

—,'(1+ki k2}+O(k),ki, q} .

(A60}

(A61)

(A62}

(A63}

APPENDIX B: DERIVATION OF EQ. (2.25)

In this appendix we shall calculate the coefficient Wo(t, qr, k) in the expansion

W(t, qr, rx, k)= g W„(t,p, k)(rx)",
n=0

(B1)

where W(t, tp, rx, k) is defined via Eqs. (2.20) and (2.6). First, note that the momentum dependence of the DM vertices
in the expression for W(q, p, k) is such that all singular terms, which are exclusively contained in the function
A (q, 1,2) defined in Eq. (A24), cancel according to Eq. (A36). Because the remaining terms in the DM vertices do not
contain any singularities, W(t, y, z, k) is analytic in z, which implies the existence of a convergent expansion of the form
given previously. We now calculate that the leading term Wo is this expansion. Substituting to Eq. (2.15) into Eq. (2.6)
yields

W(t, y,pi&2, k) = W(p(p+r), pp, k)

= V"'(p(p+r), —pr, k+p(p+r)) V'"( —p(p+r), pp, k)

+ V'4'( —p(p+r), k, —pp) V' '(p(p+r), k,pr)

+ V' '(k+pr, —pr, —pp)V' '( —k —pr, k, —k —p(p+r)), (B2)

where we have de6ned

V"'(q, k, ,kz)

kk) '
Q~ i~ 2

(B3)

(A29) —(A30) imply that

F, ( —k, k, —k) =u t [yq(1+x q )
—2x„]=0

for j=3,4, (B5)

and made use of Eq. (A36). Note that the modified ver-
tices V'J' do not contain any singular terms. It is clearly
a consequence of our elliptic approximation to the
scattering surface that in the arguments of the V' ' the
momentum p appears only up to linear order. Obviously
the coeScients W„ for n ~ 2 have to be calculated using
more accurate descriptions of the scattering surface.
Here we are, however, only interested in 8'0, and since in
the short-wavelength regime the magnon momentum k is
large compared to p and ~pr~, we may set the terms pp
and pr in Eq. (B2) as zero when they appear in the sum
with k.

We proceed by showing that

by construction of the Bogoliubov transformation [cf.
Eqs. (A6) —(A8)]. Since V' ' and V' ' are linear com-
binations of the functions F3 and F4, Eq. (B4) follows
trivially. The analyticity of the V' ' implies then that the
last term in Eq. (B2) vanishes at least as fast as p as p ~0
and hence cannot contribute to Wo.

Next we observe that the momentum dependence in
the remaining two terms of Eq. {B2)is such that for each
vertex the momentum transfer and one of the incoming
momenta are small. The corresponding limiting forms of
the vertices are easily derived from Eqs. (A52) —(A59).
Using

V'~'( —k, k, —k)=0 for j=3,4, (B4)
uk(1 —xq)=1, (B6)

and that therefore the last term in Eq. (B2) does not con-
tribute to Wo. To proof this, we note that Eqs. we obtain
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k, ,q-o
V"'(q, 1,2) —

—,'(1 —v, k, )+O(k, , q)

k, ,q-o

(87)
W'o(t, y, k)= —,'[[1—v„(—r)][1—vk p]

+[1+v&.( —p)](1+v& r)j
=

—,'(1 —vz p)(1+v& r) . (811)
—,'(1 —v k~)+O(k~, q),

k]q~o
V'4'(q, 1,2) —

—,'(1+v2 k&)+O(k&, q)

(88)

(89)

Note that the contributions of the terms containing the
vertices V'" and V'"' are identical. We bring this equa-
tion into the form of Eq. (2.25) by substituting the
definition

I, , q-o
—,'(1+vt k~)+O(k~, q) .

1 —v p= 1 —u(k) cosy,

(810) and the identity

(812)

Substituting Eqs. (87) and (810) for V'" and V' ' in Eq.
(82) then yields

1 —u (k)
1+v& r=

1 —u(k)cost '

which is easily derived from Eq. (2.16).
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