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Quantum Heisenberg spin glasses: Anisotropy effects and field dependence
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The infinite-range quantum Heisenberg spin glass with uniaxial anisotropy (D) and coaxial exter-
nal magnetic field (h} is studied by means of the thermo-field-dynamics as a substitute for the n-

replica trick. Within the mean-field theory a multiplicity of spin-glass phases has been found for the
spin values S =1 and S =

—,, respectively, including: longitudinal, transverse, and mixed phases.

The stability of the mean-field-type solution against the action of fluctuations has been investigated
and the existence of a crossover from the longitudinal-to-transverse freezing is demonstrated explic-
itly in the temperature-field (T-h) phase diagram for various values of the constant D.

I. INTRODUCTION

In recent years a strong anisotropy of the magnetic sus-
ceptibility has been found experimentally in a number of
hexagonal metallic spin-glass systems. ' The systems
studied behave either Ising-like or Heisenberg-like de-
pending on the sign and the size of the energy splitting of
the magnetic-moment ground state.

In physical terms the above-mentioned metallic sys-
tems are best described by a model in which in addition
to the random isotropic Heisenberg exchange interaction
a single-spin uniaxial anisotropy energy D(S, ) is —add-
ed, ' where S, denotes the z component of a spin opera-
tor.

From the theoretical side, anisotropic agencies bring
about several new features which have been investigated
for classical spin models both with the presence of the
magnetic field and local uniaxial anisotropy " and a
multiplicity of phases has been found. However, as has
been demonstrated, ' the corresponding problem in the
quantum limit can behave qualitatively distinct from its
classical counterpart. Specifically, for a large negative
anisotropy D one expects for integer-valued spins at low
temperatures a condensation in the S, =0 state resulting
in a nonmagnetic spin state accompanied by the destruc-
tion of the spin-glass state.

In this paper we investigate in detail the properties of a
Heisenberg model with exchange randomness and both
uniaxial anisotropy and applied external magnetic field.
We consider the quantum limit and we analyze two dis-
tinct cases corresponding to the spin dirnensionalities
S=1 and S =—', . For both cases the classical approxima-
tion (S~~ } is, of course, a rather poor one.

The quantum spin-glass problem in general is far from
being a trivial one due to the noncomrnutativity of the
operators involved and different methods have been
developed to handle it. ' ' Typically, quantum
mechanics introduces time-dependent self-interactions
and order parameters, which complicates the problem
considerably. The method we use to deal with both ran-
domness and quantum features has been presented by one

of us' and has successfully been applied to the quantum
Ising-spin glass in a transverse field. ' ' ' It is based on
the thermo-field-dynamics method' (TFD}, a real-time
finite-temperature quantum field theory.

Apart from intrinsic interest in dynamics this method
allows one to avoid the use of the n-replica trick, simul-
taneously dealing with the physical observables such as
response and correlation functions. In this respect the
TFD method can be regarded as a quantum counterpart
of the Martin-Rose-Siggia formalism, known as the dy-
namic approach to classical spin-glass problems (see e.g. ,
Ref. 21}.

In the following we will present calculations of the
phase diagrams for the above-mentioned model, includ-
ing local uniaxial anisotropy and/or external magnetic
field. Phase transition points and lines are found separat-
ing longitudinal, transverse and mixed spin-glass phases
accompanied by ergodicity breaking as indicated by the
corresponding stability conditions. Special attention will
be paid to the analysis of the crossover from the Ising-
like longitudinal freezing to the X-Y-like freezing of the
transverse components both as a function of field and an-

isotropy.

II. ANISOTROPIC SPIN GLASS WITH FIELD

The Hamiltonian of the model is given by

S 1V

H= —g J;S;S+ +HO;,

Ho; = D(S„)—hS„— (3)

where S=(S,S,S, ) is the quantum spin operator associ-
ated with the local moment S and the J, (i' ) are
quenched, independently distributed exchange interac-
tions with the probability distribution

P(J;, )=(X/2mJ )' exp( —XJ,, /2J '.
As usual the scaling of the variance J/X ensures a sensi-
ble thermodynamic limit N ~~. The second term in Eq.
(1}is given by
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To proceed within the TFD approach we recall the
correspondence between the conventional statistical aver-
age and the TFD expectation value' for a given operator
A

&O(P)~A~0(P&)=Tr(e ~ A)/Tr(e ~ ) . (4)

Here the temperature-dependent vacuum is introduced
where P= 1/keT with k~ being the Boltzmann constant
and T the temperature, while H represents the Hamil-
tonian of the system. In order to have a consistent opera-
tor formalism, one needs to double the operator degrees
of freedom. Corresponding to any operator A a tilde
operator 3 is introduced. There is a mapping between 3
and A called the tilde conjugation rules, ' being
equivalent to the Kubo-Martin-Schwinger condition. '

By using two equivalent operator sets [ A j and [ A j the
thermal vacuum is expressed as

~O(P) &
= g e "

~nn &Z '"(P-), (&)

where ~n & and ~tn & are the eigenstates (with the eigenen-
ergies E„)of the Hamiltonians H and H, respectively,

and describes an easy (hard) uniaxial energy splitting for
D )0 (D (0) along the z direction and the action of the
magnetic field, respectively. We shall consider here only
the collinear case where the external magnetic field h is
pointing in the z direction.

III. TFD HAMILTONIAN
AND STATISTICAL AVERAGE

and Z(P) =Tr[exp( —PH)]. Correspondingly, many
properties of the usual quantum field theory can be ex-
tended to finite temperatures provided that one works
with the total thermal Hamiltonian

rather than with H alone. The best merit of the TFD
method when applied to the quantum disordered systems
lies in the fact that due to the vacuum normalization con-
dition &O(P)~O(P)&=1 one avoids the so-called
"denominator problem" obstructing the calculation of
the quenched average and forcing one to use the n-replica
trick.

IV. QUENCHED-AVERAGE
AND FUNCTIONAL-INTEGRAL FORMULATION

As usual in the dynamic approach we shall discuss the

thermodynamics of the system in terms of the disorder-
averaged generating functional for the TFD causal
Green's functions

&Z[ri]&, =f gdJ; P(J; )Z[rt, I J; j),
where Z[g, I J~ j ] is the unaveraged generating function-
al for a fixed realization of random bonds and & &J

represents the subsequent average with respect to the
probability distribution (2). Specifically, in the interac-
tion picture with respect to the single-body Hamiltonian
(3) one has for the unaveraged generating functional

Z[rt, I J; j]=&0,P~Texp i f dt g J, [S,(t) S (t) —S, (t) S (t)]+A[tl] O, P&,
17J

where ~O, )t3& refers to the thermal vacuum corresponding to the single-site Hamiltonian (3) while

A[g]= —f dt f dt'ggg(e, e, )'"rt„'b(t,t')S„',(t)S'„(t')
i ab pv

represents the source term to account for the nonlocal (in
time) expectation values of the composite spin operators.
Furthermore, e& =1, ez= —1 and the spin operators are
defined in the interaction picture in the standard way as

with

TrQ'= f dt f dt'ggQ„'~(t, t')Qb„'(t',r) .
ab pv

(13)

S„',(t) =exp(iHot)S„';exp( iHot), — (10)

where p =x,y, z and the thermo-doublet-notation has
been adopted S„'=S„,S„=S„.The disorder average (7)
amounts to a Gaussian integration over J, variables.
Parametrizing a la Sherrington and Kirkpatrick we find

&Z[~ [J;, jl&.=f II IIDQ„'". p( —&L[QI+II[el),
ab pv

e[Q]= & O, PIU~( —;+)lo, P&,

with

U&(
—oo;+ ~ )=Texp i f d—t f dt'H&(t, t')

(14)

(15)

Here, Q„' (t, t') =Q „'(t',t) represents a symmetric tensor
field which is nonlocal in time. Subsequently,
Q[g]=Tr(Qq)/J and

L [Q]=TrQ —1n4[Q] (12)

where the single-site dynamic effective Lagrangian reads is the time-ordered exponential resulting from the in-
teraction picture. Furthermore, the effective time-
dependent single-site thermal Harniltonian reads
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H&(t, t') = —g g (e,e, )'"JQ„",(t, t')S„'(t)S'„(t').
ab pv

(16)

From Eq. (15) it can be read off that the quantum gen-
eralization of the problem results in a time-dependent
self-interaction JQ„' (t, t') between spin operators at the
same site, which has to be determined self-consistently.

V. SADDLE-POINT APPROXIMATION
AND ORDER PARAMETERS

In the limit X~~ limit the steepest-descent method
can be used, which amounts to finding the stationary
point Qo „„determinedby the extremal conditions

5L [Q]j5Q„'„=0.
Thus, one obtains

Q'" (t t')= '(e e )'"J—G" (t t')
O, pv

is the thermal transformation matrix' while

6 „',(co)=

1 0

G„",(co)

6„„(co)
(24)

1 1

(G„„s)„'(co) = 2m—iq„„5„„5(co) (25)

where

0 —1

with G„'"(co) being the matrix of retarded (advanced)
Green's functions. Correspondingly, (C„,s )„„(co)refers to
the matrix of the thermodynamic correlation functions in
the spin component space being related to 6„(co)by
means of the usual fluctuation-dissipation theorem.
Furthermore, it turns out that the time-persistent part
(G„„s)'„„(co)has the form

' ab

where

G„"„(t,t')

(O,PiTS„'(t)S„(t')Ug( —;+)iO, P&

(O,PiTUg ( —;+)iO, P&

q„„—q Lp5„,+q Tp( 1 —5„,) (26)

is the Edwards-Anderson (EA) spin-glass order parame-
ter and qLp, qTp are the order parameters associated
with longitudinal and transverse spin-glass ordering, re-
spectively. In fact, by substituting Eq. (25) into (20) and
using (22) one obtains for the total correlation function

(19)
Below the freezing temperature in zero field the onset

of the glassy phase is marked by a nonzero value of the
spin-glass order parameter. Within the context of the dy-
namic theory the spin-glass order parameter has to be
determined via time-persistent quantities. To accomplish
it, we factorize the matrix of the causal TFD Green's
functions into regular finite-time (G„s)„'"„andsingular
time-persistent parts ( 6„„)„'„asfollows:

6„'„(t,t')=(G„s)„'„(t,t')+(G„„s)„',, (20}

where

C„„(co)=(C„,)„„(co)+2nq„„5(co) (27)

in accordance with the standard dynamic definition of the
EA spin-glass order parameter.

Because of the appearance of the dynamic self-
interaction JQ„„(co)in the effective thermal Hamiltonian
(16), the explicit solution of Eq. (18) is a rather formid-
able task. For this reason we will focus on the effects of
quantum fluctuations on a time scale such that the finite-
time part of the dynamic self-interaction can be presented
by an instantaneous term

(G„„s)„',= lim G'„„(t,t') .
I

—'l- (21) (Q„s)„'„(tt') = ,'(—e Eb )' Jy—„,5(t t')5,b, —(28)

For the finite-time part one has restored time-
translational in variance in thermal equilibrium
G„s(t, t ') =G„(t t ') and the corre—spondence with
measurable quantities is achieved by the following
decomposition of the Fourier-transformed causal Green's
function in the space of thermo-field-components

where

y„„=lim 6„",(co)= lim G„",(co)
Q) —+0 N~O

(29)

is the matrix of static susceptibilities which can be
decomposed into longitudinal and transverse parts ac-
cording to

where

2i (C„)„(co)
e "+1 e Pco/2

Us(co) = sinhP( co ) cosh/(co )

cosh/(co) sinhP(co)

1
sinh P(co)=

e~ —1

(G„,s)„'(co)=[Us(co)rG„„(co)Us(co)]'
= [rG„,(co)]'

Pco /2

(22)

(23)

Xp 5p [XLP5 +XTP( 1 —5„,) 1 (30)

where, with the use of the vacuum normalization condi-
tion

The time-persistent contribution to the effective
thermal Hamiltonian can be represented by using auxili-
ary Gaussian integrations having the form of a static
Gaussian noise component which acts as a random field
to generate time-persistent autocorrelations. According-
ly, the self-consistent equation (19) becomes

(31}
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G„"„(t—t'~z) = i—(O(p, z)
~

TS„'(t)S'„(t')U&(
—~;+ ~ ~z)~O(p, z) ) (32)

with

U& (
—~;+ ~ ~z)=Texp i—I dt H(t~z)

0 oo
(33)

(41)

and the Gaussian average over the static noise
z=(z„,z~, z, ) is given by

3(. . ) — dz —iz /2

(2m )

Here, ~O (p, z) ) is the thermal vacuum associated with
the single-site effective Hamiltonian

where he denotes an infinitesimal longitudinal (trans-

verse) applied magnetic field.

3.0

2.0-

Hp(z) =Hp JgT~p(z S +z&S& ) Jg Lp z S (35)

which contains the static noise, while the time-ordered
exponential contains only the finite-time part of the dy-
namic self-interaction. The corresponding total single-
site effective Hamiltonian can then be established via the
correspondence (6) with its thermal counterpart and
reads

1.0-

g ~ s ~

0.~-
~ ~ ~ ~ ~

~ ~ f

s

H(z)= —
—,'J [yLp(S, ) +pre[(S„)+(S ) ]]+Hp(z) .

(36)

From Eq. (36) it is seen that various susceptibilities cou-
ple to the squares of the spin operators and thus g„pand

+Tp can be considered as kinds of quadrupolar order pa-
rameters which should be determined self-consistently to-
gether with qi and qT. The corresponding self-
consistency equations which follow from Eqs. (31) and
(32) are then

-1.Q-

-2.0
0.0

I

0.5

D
J 3.0-

4 g S
~ s++Ri Sx I ~ ~ I ~ INi ~ I ~ IC

1.0
kgT
J

qe=(me(z))„y =(y (z)), , (37)
2.0-

where e=LP, TP while me(z) and, ge(z) are the magne-
tization induced by the static random fields and the
unaveraged susceptibility, respectively. Furthermore,

me(z) = —g [Be~I(z)]pi(z) (38)
j=o

while

2S
ge(z) = —g [a~e~~(z)]pI(z)

1=0

1.0 "

~ g s
5 4 I ~

0 0 ~ ~ ~ ~ ~ ~

-1.0

-2.0-

2S

+p g [Bek(z)] pl(z) —me(z)
I=o

(39) -3.0-

and

exp( —pk, i(z)
p&(z) =

zs

g exp( —pk, k(z)]
I& =0

(40)

Here, A, ,(z) (1=0, . . . , 2S) represents one of the 2S+1
eigenvalues of the effective single-site quantum spin Ham-

iltonian (36), while

-4.0
0.0

I

0.5 1.0
I

1.5
I

2.0 2. 5
kgT
J

FIG. 1. (a) The anisotropy-temperature phase diagram for
S= 1; zero-field case (solid curve), h/J=0. 2 (~), 0.6 ( X ). The
temperature for the asymptotic behavior is k~T/J=1. (b) The
anisotropy-temperature phase diagram for S = —;zero-field case

(solid curve), h /J =
—, (~), 1.0 ( X ). The temperatures for the

asymptotic behavior are k& T/J= 1 and kz T/J=2. 25.
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VI. FHASE DIAGRAMS
AND STABILITY CONDITIONS

Uniaxial anisotropy leads to a strong modification of
the phase diagram of a vector spin glass. Specifically, in
the quantum case the results are qualitatively different
from the behavior found in the classical limit S~ ao. If
D )0, ordering is preferred in the longitudinal direction
whereas transverse ordering is favored for D & 0. The set
of complicated self-consistency equations (37)—(41) can
be solved only numerically and the resulting phase dia-
grams are shown in Figs. 1(a) and 1(b). In the zero-field
case h=0, besides the paramagnetic (PM) phase there are
a transverse phase (TP) with qLp =0 q Tp/0 a longitudi-
nal phase (LP) with qLpWO, qTP=0, and a mixed phase
(LTP) in which both orderings occur.

A richer behavior is expected when there is an applied
external magnetic field in the z direction in addition to
the uniaxial single-site anisotropy. One still expects a
transition to a state where the glassy features are mani-
fested in a nonergodic behavior and the occurrence of
remanence effects. However, in this case the longitudinal
spin-glass order parameter q„p is not appropriate to lo-
cate the longitudinal spin-glass phase boundary since
qLPAO everywhere due to the applied field. Therefore,
one is forced to look for the stability conditions determin-
ing the validity of the mean-field approach. Within the
present technique it amounts to studying the effect of
fluctuations 5Q around the saddle-point solution (18)

h
J 4.0- ~

1.6-

+ 1.0-

3.0-
X

4 o

2.0-

0.2 0.4

1 ~ 0-

0.0
0.0

~ X

~ X

+0 +
+
+
+
+
+

+
+
+
+
+
+

0
+
+
+
+
+
+ ~
+t + ~+
+ ~++0 ~Q

~ X

~ X
X~ X 0

0)0
)0)0

)0
W

)0
)0

)0
)0

I

0.5 1.0
T

T,(D)

working out the terms which are second order in 5Q and
calculating the eigenvalues of the matrix associated with
the corresponding quadratic form. Since the calculations
run along the lines already presented while analyzing the

1.00 ~ta

QJxe
X
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X

X

X
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x ~

x
X ~

++
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+ x

X
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~ + ~

~ + ~
Xx ~ +t ~

X ~ p 0
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X ~ t ~
X ~ +

X ~ + ~x ~ + ~x ~ +~ ~
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h
J

6.0 ~t
I
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4 0 w x ~
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X
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X

X I
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X3.0- X
X

X X
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0 X
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X
0 X

X 0
4 X
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0.0

I

0.5
I
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I

1.5 2.0

0.0
0.0

I

0.5 1.0
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FIG. 2. The local static longitudinal (6=LP) and transverse
(6=TP) susceptibilities as functions of the temperature for
S=1 (the case of S =

—,
' is qualitatively similar). (i) Zero-field

case: 6=TP (0) and 6=LP (~). (ii) Non-zero-field ease:
h /J=0. 5, 6=TP ( X ), 6=LP (+). The anisotropy parameter
is fixed at D/J=0. 5.

FIG. 3. (a) The field-temperature instability curves for S=1
and various anisotropies including: D/J = —1.4 (0), —1.0
(+), 0.0 (0), 0.5 ( X ), and 2.0 (~). The inset shows the behav-

ior of the instability curve ( X ) in a region corresponding to the
LTP phase. (b) The field-temperature instability curves for
S =

2
and various anisotropies including: D/J = —2.0 (~ ), 0.0

(~ ), 0.2 ( X), and 2.0 (I). The behavior of ( X ) curve at low

fields corresponds to the crossover from the LP to the TP.
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transverse spin-glass model' we quote here only the final
results. The condition for stable solution of Eq. (18)
reads

1 —J (yo(z) ), )0, (42)

where O=LP,TP and the local susceptibility ye is given
by Eq. (39). The behavior of ye as a function of tempera-
ture for anisotropies corresponding to the region (LTP) at
various fields h is depicted in Fig. 2. In the case of trans-
verse freezing (e=T), the condition (42) reduces simply
to 1 —Jy~p &0, since qzp =0 along the transverse freez-
ing line. Because for h%0 one has qtp%0 everywhere,
Eq. (42) represents the generalization of the de
Almeida —Thouless (AT) line to the present problem.
To conclude, in order to single out the instability region
of the (ks T, A, D) parameter space one has to look for the
lines determined by the following condition:

max(J (yLp(z) )„J(yrp(z)), )=1 . (43)

If one deals with uniaxial anisotropy two qualitatively
distinct cases have to be distinguished according to the
sign of the energy splitting D, as emphasized earlier. For
large positive D the system is of the Ising-type while in
the opposite case the spins prefer to lie in the basal plane,
but no direction is then preferred because of the rotation-
al X-Y symmetry. The continuous crossover behavior is
best seen if one looks at the field-temperature phase dia-
gram of the system for different values of the constant D
[Figs. 3(a) and 3(b)]. For large positive D the system ex-
hibits a typical AT behavior characteristic for the freez-
ing of the longitudinal spin components. For negative D,
in turn, the system is of the X-Y-type and for small mag-
netic fields one observes the field-temperature dependence
corresponding to the Gabay-Toulouse (GT) line indicat-
ing the freezing of the transverse spin components. At
large fields, however, the transverse spin components or-
der and the system crosses over to the longitudinal be-
havior determined by the AT-like line. It is interesting to
note that, as emphasized earlier, the cases of S=1 and
S=—,

' behave quite distinctly. For example, for S=1
and anisotropies —1 )D ~ —1.5 one sees in the
temperature-field phase diagram a temperature region
with a reentrance behavior. In this case, as the field is
lowered, the system passes from paramagnetic-ergodic

phase to the spin-glass one and, by further lowering the
field, the system reenters an ergodic region. This oc-
currence of glass ordering and the nonergodic behavior
would deserve a special theoretical treatment. Since, e.g. ,
LP-LTP and TP-LTP boundaries lie in the spin-glass
phase, i.e., in an instability region, a precise calculation of
these lines presumably would require a quantum analog
of the replica-symmetry-breaking scheme, which has not
been done yet.

The remarkable di6'erence between classical and quan-
tum spins takes place for S=1, while for large negative
anisotropy D a condensation in the S, =0 nonmagnetic
spin state results, accompanied by the destruction of the
spin-glass order as indicated by the finite critical value D,
as the temperature goes to zero. Moreover, the quantum
mechanics brings about new features which are ultimate-
ly connected with the dynamics of the system. For exam-
ple, the critical value D, (T=O)= —1.5J found here
differs from the one found by means of the so-called static
approximation ' within the imaginary-time Matsubara
technique D, ( T =0)= —4J. The reason for this
discrepancy lies in the fact that for the quantum spin-
glass problem an exact calculation of the transition lines
requires precise knowledge of the time dependence of the
dynamic spin self-interaction involved in the problem.
Even in the static limit the local susceptibilities gL~ and

yzz will depend on the detailed time dependence of
JQ', (t). The complexity of the problem prevents an
analytically tractable approach which goes beyond the
ansatz(28). However, a calculation of the exact critical
line T, (D) is presently under study using extensive Monte
Carlo simulations. As in the case of the transverse Is-
ing spin glass with field, ' one expects that the exact criti-
cal value D, (T=O) will lie between the values deter-
mined by the present method and imaginary-time ap-
proach within the static approximation.

To summarize, the calculated phase diagrams and
curves show a remarkable similarity to those found exper-
imentally. ' Especially the occurrence of the two suc-
cessive transitions LP-LTP in the Ising-like (D -+ oo ) also
found experimentally is worth mentioning. Concerning
the Ising and L- Y limits, the experiments seem to be in
accordance with the theoretical results found here.
Moreover the reentrant behavior found here seems to
correlate with the experimental data.

'Permanent address: Institute for Low Temperature and Struc-
ture Research, Polish Academy of Sciences, P.O. Box 937,
50-950 Wroclaw 2, Poland.

'H. Albrecht, E. F. Wassermann, F. T. Hedgock, and P.
Monod, Phys. Rev. Lett. 48, 819 (1982).

~A. Fert, P. Purenur, F. Hippert, K. Barbeschke, and F. Bruss,
Phys. Rev. B 26, 5300 (1982).

3S. Murayama, K. Yokosawa, Y. Miyako, and E. F. Wasser-
mann, Phys. Rev. Lett. 57, 1785 (1986).

4K. D. Usadel, K. Bien, and H.-J. Sommers, Phys. Rev. B 27,
6957 (1983).

~G. Brieskorn and K. D. Usadel, J. Phys. C 19, 3413 (1986).
M. Gabay and G. Toulouse, Phys. Rev. Lett. 47, 201 (1981).

7D. M. Cragg, D. Sherrington, and M. Gabay, Phys. Rev. Lett.
49, 158 (1982).

D. J. Elderfield and D. Sherrington, J. Phys. A 15, L513 (1982);
J. Phys. C 15, 783 (1982).

D. M. Cragg and D. Sherrington, Phys. Rev. Lett. 16, 1190
(1982).
S. A. Roberts and A. J. Bray, J. Phys. C 15, L527 (1982).
D. J. Elderfield and D. Sherrington, J. Phys. A 15, L437
(1982);J. Phys. C 16, 4865 (1983).
A. J. Bray and M. A. Moore, J. Phys. C 13, L149 (1980).

' H.-J. Sommers and K. D. Usadel, Z. Phys. B 47, 63 (1982).
H. Ishii and T. Yamamoto, J. Phys. C 18, 6225 (1985); 20,
6053 (1987).



41 QUANTUM HEISENBERG SPIN GLASSES: ANISOTROPY. . . 9227

K. D. Usadel, Solid State Commun. 58, 629 (1986); K. D.
Usadel and B. Schmitz, ibid. 64, 975 (1987); K. D. Usadel,
Nucl. Phys. B 5A, 91 (1988).

' V. Dobrosavljevic and R. Stratt, Phys. Rev. B 36, 8484 (1987).
' T. K. Kopec, J. Phys. C 21, 297 (1988);21, 6053 (1988).

T. K. Kopec, K. D. Usadel, and G. Biittner, Phys. Rev. B 39,
12418 (1989);G. Buttner and K. D. Usadel, Phys. Rev. B 41,
428 (1990).
H. Umezawa, Y. Takahashi, and H. Matsumoto, Thermo
Field Dynamics and Condensed States (North-Holland, An-
sterdam, 1982).
P. C. Martin, E. Siggia, and H. Rose, Phys. Rev. A 8, 423

(1973).
H. Sompolinsky and A. Zippelius, Phys. Rev. Lett. 47, 359
(1981).
H. Matsumoto, Y. Nakano, and H. Umezawa, J, Math. Phys.
25, 3076 (1984).
D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 32, 1972
(1975).
S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).
J. R. L. de Almeida and D. J. Thouless, J. Phys. A 11, 983
(1978).
G. Buttner and K. D. Usadel (unpublished).


