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A finite-temperature theory of magnetism that takes into account the fluctuations of local mag-
netic moments due to structural disorder is presented on the basis of the functional-integral method
and the method of the distribution function. The theory describes qualitatively or semiquantitative-
ly the finite-temperature magnetism of liquid and amorphous metals and alloys as well as the substi-
tutional alloys in a wide range of electron-electron interaction strength from metal to insulator. The
results of numerical calculations are presented for amorphous iron. The local environment effects
on the density of states, local magnetic moment, susceptibility, and amplitude of local moment are
examined. It is found that amorphous iron forms an itinerant-electron spin glass at low tempera-
tures because of the nonlinear magnetic coupling between Fe local moments and the local environ-
ment effect on the amplitude of the Fe local moment due to the structural disorder. The calculated
spin-glass temperature (100 K) is in good agreement with the value extrapolated from experimental
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data on Fe-rich amorphous alloys.

I. INTRODUCTION

Theoretical investigations of magnetic alloys with
structural disorder are indispensable for understanding a
variety of magnetic properties of amorphous and liquid
alloys. In the past twenty years most of the effort has
been concentrated on the description of the ground-state
electronic structures and related magnetism.!”® We have
now the best single-site approximation, which is called
the effective-medium approximation (EMA).?2 In this
theory a k-dependent effective medium describes the
structural disorder on the electronic structure via the
pair-distribution function. Realistic calculations® have
also been performed by combining the EMA with the
KKR (Korringa-Kohn-Rostker) method in energy-band
theory.

When we want to describe the ground-state electronic
structure going beyond the single-site approximation, we
can adopt the recursion method* combined with the
linear-muffin-tin-orbital method.> This approach®’ al-
lows for a direct and first-principles calculation for any
type of lattice structure. An alternative approach,®® in
which we directly diagonalize the one-electron Hamil-
tonian with a considerable number of atoms in a box with
periodic boundary conditions has also been developed,
and has become useful with the development of super-
computers.

The next step is to develop a finite-temperature theory
of magnetism for amorphous and liquid alloys. This is
especially important for transition metals and alloys in
which the thermal spin fluctuations govern the local mo-
ment as well as itinerant-electron behavior at finite tem-
peratures.!°

We have recently proposed the first single-site theory
at finite temperatures'! on the basis of the functional in-
tegral method developed by Cyrot,!> Hubbard,'®> and
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Hasegawa.'* The theory interpolates between the weak
and strong Coulomb interaction limits, and bridges the
ground-state electronic structure and the magnetism at
finite temperatures.

Although the single-site theory explains the change of
the Curie constants at the melting point in transition
metals and alloys, it completely neglects the fluctuations
of the local magnetic moment (LM) due to structural dis-
order. Thus, it does not describe the spin glass (SG) as
recently found in amorphous Fe-Zr and Fe-La al-
loys.!5~ 18

In this paper we propose a finite-temperature theory of
local environment effects (LEE) in liquid and amorphous
alloys, which describes the fluctuations of the LM’s due
to structural disorder, therefore, the SG in amorphous al-
loys. Several years ago we developed the theory of LEE
for substitutional alloys.!*?® It explained qualitatively or
semiquantitatively the SG state, the Slater-Pauling
curves, and the Curie temperature Slater-Pauling curves
in 3d transition-metal alloys.!°~2¢ The present theory is
an extension of the previous theory, but treats a new type
of disorder, i.e., the structural disorder as well as the
configurational disorder.

In the following section we present our theory. We
first review the two-field functional-integral method?’ to
describe the thermal spin fluctuations. We then derive an
expression of the LM in an effective medium according to
our physical picture. The treatment of the structural dis-
order on the electronic structure will be given in Sec.
IIIC. In Sec. III D the LM distribution produced by the
structural and configurational disorders will be treated by
means of the method of distribution function initiated by
Matsubara?® and Katsura et al.?® Simplified self-
consistent equations which allow for the numerical calcu-
lations will be presented in Sec. IITE.

This work was motivated by the recent discovery of the
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FIG. 1. Experimental magnetic phase diagram (Ref. 30)

showing the Curie temperatures (solid curves) and the spin-glass
temperatures (dotted curves) in amorphous Fe M,_. alloys
(M =La, Zr, Ce, Lu,and Y).

SG state in Fe-rich amorphous alloys'*~!%3 as shown in

Fig. 1. The alloys show the SG with a high transition
temperature. Though the SG states are found also in the
fec (Fe.Ni;_.)9,Cs and (Fe,Ni,_,)gCry alloys,’"3? an
important characteristic in Fe-rich amorphous alloys is
that they have the same transition temperature at more
than 90 at. % Fe irrespective of the second elements.
This suggests that the Fe-rich amorphous alloys provide
us with the first example of the SG produced by the
structural disorder instead of the configurational disor-
der. Moreover, it suggests a new possibility of the SG
phase in amorphous pure iron. In Sec. III we investigate
the finite-temperature magnetism of amorphous iron by
using the present theory of LEE. We will examine the
role of the LEE on the magnetism of amorphous iron,
and theoretically show that the SG is realized at low tem-
peratures in amorphous iron. A part of this section has
been published as a letter.>> In the last section we will
summarize our results and discuss the magnetism of
amorphous iron in comparison with the recent ground-
state calculations.**

II. THEORY OF LEE

A. Functional-integral method

The finite-temperature magnetism in the intermediate
regime between weak and strong interaction limits is well
known to be described qualitatively or semiquantitatively
by the functional-integral method.!®!2~* We briefly re-
view in this subsection the functional-integral technique
to the degenerate-band Hubbard model,?’ and present
some results which will be used in the following sections.

We start from the degenerate-band Hubbard model®>-3¢
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with Hund’s rule coupling, and adopt the two-field
functional-integral method to take into account the
thermal spin fluctuations. In this method the interacting
Hamiltonian is transformed into a one-electron system
with time-dependent fictitious fields acting on each
site.’”%® Within the static approximation in which the
time dependence of the fields is neglected, the free energy
F is written as follows:
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Here [ is the inverse temperature, .7,- is an effective-
exchange energy parameter defined by
1
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U; (J;) being a Coulomb (exchange) integral on site i. D
denotes the degeneracy of the bands (e.g., D =5 for 3d
transition metals).

The energy functional E (§) in Eq. (2.1) consists of the
free energy for the one-electron Hamiltonian H (£) with
the exchange fields {&;} and the Gaussian terms

E(&)=—B "Intr(e PHEO)— 3 1[T,£,(£2~T£] .

1

(2.3)
Here U, is an effective Coulomb integral defined by
U= 1-——1— U+—1—J< 2.4)
! 2D | ' 2D '

£;(€) in the Gaussian term denotes an average electron
number on site / with respect to H (§).
The one-electron Hamiltonian H (£) in Eq. (2.3) is ex-
pressed as
H()=3 (89_P+%Uié‘i—%jié‘ia_hio)n‘

ivo
ivo

t
+ 2 ti’jaivaajva .
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(2.5)

Here €? and h; are the atomic level and external magnetic
field on site i, respectively. u is the chemical potential.
t;; denotes the transfer integral between sites i and j. a;,,
(a;,,) is the creation (annihilation) operator for electrons
with spin o on site i and orbital v. Furthermore,
Nive = 8iveQivg-

The thermal average of LM and the amplitude of LM
on site i are obtained by differentiating the free energy F

with respect to h; and J; (Ref. 27)

(m;)=(&), (2.6)
(m?y =3y =)+ |1+ | [(er—-2|.
' 7o 2D | ' T g7
(2.7)
Here, { - - ) on the right-hand side (rhs) means a classi-

cal average with respect to E (£):
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FIG. 2. Pair-distribution function of computer-generated
amorphous iron (Ref. 40).
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In order to simplify the actual calculations we consider
a limit U,— o, introducing charge potentials {w;(£)}
(Ref. 13). These potentials are determined by the charge
neutrality condition on each site. Furthermore, we adopt
the transfer integrals described by a geometrical average:

t;=r*t;r;, where t; is the transfer integral for a pure

(--)= (2.8)

i
metal, and 7, is an off-diagonal factor*®® which depends on
a type of atom on site i. Then Eq. (2.3) is written as fol-
lows (see the Appendix in Ref. 23):

E(&)= f dwf(w)%lm tr[In(L ~'—1)]

+ 2[‘-n,w,(§)+%j,§,2] . (2.9)
Here f(w) is the Fermi distribution function. ¢ denotes
the matrix ;. n; is the electron number on site i. The lo-
cator L is defined by

(L™ Yiyjve=Li5'8;8,,

_o+id—ef—wi(E+ S Eo+p

- T 8,8,y -
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(2.10

Here 8 in v +i6 means an infinitesimal positive number.

B. Local moments in an effective medium

In order to proceed with the formulation one needs a
physical picture for the structure of amorphous and

|

D (E,E)= fdmf(w)—g Im 3 In[1—F,, Fo B0 (60T (6)] -
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FIG. 3. Physical picture for amorphous and liquid structure.
The central atom has a well-defined nearest-neighbor (NN) shell
(dotted circle). Further distant atoms (hatched circles) are re-
garded as an effective medium.

liquid alloys. We show in Fig. 2 the pair-distribution
function for amorphous iron obtained from a computer
simulation with use of realistic interatomic potentials.*’
The most important feature is that the first peak is very
sharp and is well separated from the second and third
peaks which are much broader than the first one. Recent
experimental data of pair-distribution functions for amor-
phous FegyLa,, alloys*' show a similar structure. This
implies that there exists a well-defined nearest-neighbor
(NN) shell even in amorphous and liquid alloys. There-
fore, we take into account the LEE due to the nearest-
neighbor atoms directly, and describe the structural dis-
order due to further distant atoms by using an effective
medium as shown in Fig. 3.

Let us derive the expression of a central LM consistent
with Fig. 3. The present system contains three kinds of
disorder: the spin disorder due to thermal spin fluctua-
tions, configurational disorder, and structural disorder.
The first and second ones appear as a diagonal disorder in
the locators (2.10), while the third one appears in both lo-
cators L and transfer integrals ¢.

We first introduce an inverse effective locator L ! into
the first term in Eq. (2.9) to describe the diagonal disor-
der as an average medium and expand the deviation with
respect to the sites. The zeroth order is described by the
effective medium only. The first-order correction consists
of the sum of single-site energy functionals E;(§;):

no

E/(&)= fdwf(a))% Im S In(L; ' =L +F;")

—nw(&)+1TE 2.11)
F,=[L'=07", (2.12)
In the next term the pair-interaction terms

X)) ®i(&;,6;) appear. ®;(§;,€;) denotes the pair ener-
gy functional between sites i and j:

(2.13)
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Here 7,,(&;) is the single-site ¢ matrix defined by

Li;l “’=£;1
1+H(L =LY,

Li,(&)= (2.14)

All higher-order terms are neglected in the present
theory by assuming small deviation from the effective
medium. The approximation has been justified for substi-
tutional transition-metal alloys?>~2® by comparing the lo-
cal densities of states (DOS) at low temperatures with
those in the cluster CPA (coherent-potential approxima-
tion).#2-*

The energy functional E (&) in Eq. (2.9) is then ex-
pressed as follows:

J

(£)= fdg(gf)exp[—ﬁEj(gj)]/fdgjexp[—ﬁEj(g,-)],

and

x, =2

Then we have®

<mo)_ s

W(Ep,S1X1,82%5, . .
i#0 i#0

Here 3= 3, 3, - -» and 3, ; implies a summation
with respect to all pairs which are not related to site O.
Pair interactions ®;(&y), ®'(&), K, and &;; are
defined, respectively, as follows:

P57 £o)
DEE) —%Vgi — v | ®oiléovxi) 2.21)
H.. |
ij
&;; ]=_%A=iv§rk v D (Ax;,vx;) . (2.22)

The coupling #;; means an exchange-coupling energy be-
tween the atoms on sites / and j as seen from the last term
on the rhs in Eq. (2.20).

In the following we make a molecular-field approxima-
tion for the thermal average; the variables s; in Eq. (2.20)
are replaced by their thermal averages (s;)=(m;) /x;.
Equations (2.19) and (2.20) reduce to

Jagge
<m0)—w R (2.23)
— e dle) (m;)
V(E)=E &)+ 3 (&) — I d>0‘;(§)—x— . (2.24)

i=1 =1 i

Here z is the number of atoms on the NN shell. We took
into account the pair interactions in the NN shell and
neglected the direct interactions with the atoms outside

I=Eg(Eo)+ 3 O5(E)— 3 | P
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E(§)=3F E/(§)+ 3 &,(5,8;) . (2.15)
i (i, )

Here we have dropped the zeroth term since it does not

make any contribution to the thermal averages (2.6) and

(2.7).

In the next step we treat the thermal average in Eq.
(2.6). Since the direct integration of the type (2.8) is im-
possible, we replace the surrounding exchange-field vari-
ables {£;} by the Ising spins {s; =11} making use of the
following decoupling approximation which is correct up
to the second moment:

(T h)yo=x(k)y (k=0,1), (2.16)
where
(2.17)
(2.18)
(2.19)
-1 —1 <§l >0
Y(£y)+B ™ 'tanh —— 3 Hy|si— 3 Fyss . 220

i Jj#+0,i (i, j)

f
the shell because of the damping effect in the disordered
systems.*® Furthermore, we replace, in the calculation of
pair interactions (2.21), the inverse locators Lj;‘ on the
NN shell by the configurational and structural average
under a given type of atom a:

0+id—E,tp—y(€)+ 1T ko

L N o+i8,&)= B

(2.25)

Here €, and @,(&) denote the average atomic level and
potential for atom « on site j.

The effective medium £ ! is determined so that the
averaged single-site r matrix vanishes:

([T, (£))1,1.=0 .

Here ( - - - ) means the thermal average with respect to
W(&). [ 1. ([1,) denotes the configurational (structural)
average. Equation (2.26) is called the CPA equation.*’

(2.26)

C. Treatment of structural disorder

The central LM (2.23) contains the structural disorder
due to the atoms outside the cluster via the coherent
Green functions Fy,, Fy;,, Fj;, in Eq. (2.24).

We first replace the diagonal Green functions Fj;, on
the NN shell by their structural and configurational aver-
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ages under the condition that the type of atom a on site j
is fixed:

{0, 1.d
Fop=11Fy,) ), [ el dde

) T 2.27)

Here the average DOS [[p,(€)]]. for {¢;;} might depend
on the type of atom a on site j because of the difference
in the size of atom.

For the central Green functions Fy, and F;o,(=F;, ),
we adopt the Bethe approximation. By using the locator
expansion we have the relations (see Fig. 4)

Fo=L+L 3 to;Fj, (2.28)
j#0
Fio=Lt,iFoo+LS;Fjo+L 3 T;Fy . (2.29)

i#),0

Here we have omitted the spin suffix o for brevity and
neglected the transfer integrals to the atoms outside the
NN shell. The self-energy S; (T;) means the sum of all
the paths which start from site j and end at site j (i)
without returning to the cluster on the way. Note that all
the information outside the cluster is contained in S; and
T;.
!We neglect the last term on the rhs of Eq. (2.29), and
replace S; by é’yj, an effective medium for the structural

disorder. Here y; denotes the type of atom on site j. We
then obtain
-1

i Lo
Foo= L)'= 3 — , (2.30)
j=1 “Lal S'ylo
Fop=—2 _F . (2.31)
LTS, ,
J

An improvement of this part might be possible by using a
method proposed by Miwa.*?

The effective medium §,, (a= A4 or B) is determined
from the condition that the structural and configurational
averages of the central coherent Green function Fy,
should be identical with the

neighboring ones
([[Fjjzr]s ]c):
[lpate)]s].de
[[Faaa]:]cz f —;—C—_—T:—Ew (2.32)

ag

Here F,,, denotes F,,, when the site O is occupied by

FIG. 4. Schematic representation of the irreducible paths S,
and 7.
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the atom of type a. The DOS [[p,(€)];]. on the rhs of
Eq. (2.32) can be accurately calculated by using the recur-
sion method.®’

D. Method of distribution function

After introducing the effective medium (£ ! and &,,),
Eq. (2.23) realizes the central LM with a NN shell as
shown in Fig. 3. The central LM is then determined by
the surrounding LM’s {{m; )}, the atomic configuration
on the NN shell {y;], and the transfer integrals
{y; =t(2)j} between the central atom and the atoms on the
NN shell. (See Fig. 5).

We introduce here the probability p®" of finding ¥
atom at the neighboring site when the central site is occu-
pied by atom a, and the probability p*"(y)dy that the
square of the transfer integral between atoms a and y
takes a value in the regime (y, y +dy). The former is
given by Cowley’s atomic short-range order parameter®
T as

plr=c,+ (8, —c, )7,

c, being the concentration of atom a. The latter is ob-
tained from the experimental pair-distribution function
and the dependence of 7, on the interatomic distance R.

The distributions of {y;} and {y;} cause the LM distri-
bution g,({m,)) at the central site via Eq. (2.23). Since
the same distribution holds true for the surrounding
LM’s {{m J )}, we obtain an integral equation to deter-
mine the distribution g,(M) via Eq. (2.23) as follows (see
also Fig. 5).

Let us assume that the central site is occupied by atom
a and there are no correlations between the atoms on the
NN shell. Under this assumption the probability that a
set of surrounding LM’s {{(m;)} with the atomic
configuration {y;} is between {m;} and {m;+dm;} and
aset of {t}] is between {y;} and {y;+dy,}, is given by

z a a

11 (o, "ip, yl(yj )dngyj(mj )dm;] .
j=1
Then the central LM takes a value (m,)({{m;)}, {v,},
{y;}) via Eq. (2.23). Therefore, the probability that the
central LM takes a value between M and M +AM is
given by

8. M)AM
:;E;f II pVip, y’(yj)dngyj(mj)dmj].
7,' =1

M=(m_ )<M+AM
(2.33)

Inserting [dM’8(M’'—(m,))=1 into the rhs of Eq.
(2.33) and classifying the atomic configuration according
to the number of atoms a on the NN shell, we obtain

Mg = <Mg>( <KMpP}, {75}, {y;=tH))

f f }
gglcm)  p27 P(y)

FIG. 5. Schematic representation for the method of distribu-
tion function in amorphous and liquid alloys. See the text for
8.({m)), p", and p&7(y).
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gu(M)= 3 Tin,z,p%) [ 8(M —(m)) [T (S, )dy,galm,)dm,] I [p=y,)dy,gz(m,dm,] . (2.34)

n=0 i=1 j=n+l1

Here I'(n,z,p) is the binomial distribution function defined by

[zl/nNz —nN]p™(1—p)* ™"

In the same way Egs. (2.26) and (2.32) are written, respectively, as follows:
z -
2 ¢, 2 [(n,z,p3%) f (T, Hl [p*(yi)dyigq(m;)dm;] H+1 [p%(y;)dy g 5(m;)dm;]=0, (2.35)
i= j=n
wa z 5 [[pale)];s].de
2 I'(n z’pc f aao Hps (yl )dyr H psaa(yj )dy_; = f %z_l—_e— . (2.36)
i=1 j=n+1

Here (7,, ) is the thermal average of the ¢ matrix for the
atom of type a at the central site, and F,,, is defined by
Eq. (2.30) in which the central site is occupied by atom a
and there are n atoms of type a on the NN shell.

Equations (2.34)-(2.36) determine self-consistently the
LM distribution g, (M), the effective medium L ! for the
diagonal disorder, and the effective medium §,, for the
structural disorder. The averaged LM for atom a and
the SG order parameter are given as follows:

(((m) L1,
timy |~

[[{mg)] ).

Self-consistent equations (2.34)-(2.36) include 2z-fold
integrations on the rhs. Thus, we have to make some ap-
proximations which allow for the numerical calculations.

We adopt the following decoupling approximation on
the rhs of Eqgs. (2.34)-(2.36), which is correct up to the
second moment:

M

12 |8aM) - (2.37)

E. Simplified self consistent equations

[
[ Mg (MaM =~[[(m YL L m ) L), (2.38)

J & —=ay 2" Hop2¥ (p)dy = [(8p )%, 170% .

Here k =0or 1. [y,, ], is an average transfer integral be-
tween atoms « and ¥, [(8y )2 ayls 18 the fluctuation around
[¥4y ]; which is defined by

[ Sy) 'y]s f (y_[yay]s)z $T(y)dy .

This is calculated from the fluctuation of the interatomic
distance R as follows:

(2.39)

(2.40)

[(8y)e ) _ [(8R)Z, )"

[yay ]s [Ray ]s
172

Here we assumed ¢,,(R)<R ™" [R,,]; and [(8R )2 18
denote the average interatomic distance between atoms a
and y and its fluctuation. They are estimated from the
pair-distribution function.

Adopting Egs. (2.38) and (2.39), on the rhs of Eq. (2.34)
we obtain

(2.41)

z z—n 1 n—i j z—n—j
gM=3 3 3 > 3 3 DinzpiC,n, 1),z —n,$)0(k,i,q,4 )T(ky,n —i,q44)
n=0i=0j=0k,=0k,=01,=0 1,=0
D(4,j,q, WUz —n —j,q, I8(M —{m ) (n,i,j, ki kyly,05)) . (2.42)
Here
1 Uy
== |1+ (2.43)
9a+ ) 1 v,
fdgé_ —BY (& nijk kol 15)
2.44
(m ) ni,j kg, kol 1) = [dee BY (& nijk kol 1) (2.44)
& nijk k1 1) =E (& nij)+i®8)_(&nij)+(n —)®), (&, nz])+]<1>ifa)+ &, nij)
+(z—n —j)¢£_(§,nij) 2k, — D@L (& nijlv,—(2k, —n + DD _ (&, nijv
— (2L, =P (& nijlv,— (2l —z +n + /DO _(&nijw, , (2.45)
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and

ugxoa=[[{mg) ], vaxa=[[{(m 2?1 . (2.46)

In the present approximation the structural disorder is
described via the NN transfer integrals by the contrac-
tion (—[(8R )i 172) of the NN interatomic distance R
from the average value [R,,]; and the stretch
([(6R )f,y 172) of the distance R. Then we can specify the
local structure and the atomic configuration in the cluster
with a central atom of type a by means of the number of
atoms (n) of type a on the NN shell, the number of con-
tracted pairs (i) between the central atom of type a and
the atoms of type a on the NN shell, and the number of
contracted pairs (j) between the central atom a and the
J

atoms & on the NN shell. We call this state the (nij)
configuration in the following. Note that there are n —i
stretched a-a pairs and z —n —j stretched a-& pairs be-
tween the central atom and the NN shell in this
configuration.

The single-site energy functional at the central site
[E,(&,nij) in Eq. (2.45)] is then defined by Eq. (2.11) with
the (nij) configuration. The pair energy d>(a"1,)+(§,nij)
[®4%)_(&,nij)] denotes the atomic energy in Eq. (2.21) for
a contracted (stretched) pair with (nij) configuration.
The exchange pair energies <l>£f}i(§, nij) are defined in the
same way.

Substituting Eq. (2.42) into the rhs of Eq. (2.37), we ob-
tain the self-consistent equations for [[{m,)],]. and

[[{mg )]

[[<mg )], (m Mgk ko, l,05)

l[[<ma>2]s]c =n§.k,r("ijk‘k21‘lz) (m )i, kg ko ly,15)? (2.47)
Here 3, means the sum

33333335,

n=0i=0j=0k,=0k,=01,=0 1,=0
and ['(nijk k,1,1,) is defined by

C(nijk kyl,1,)=T(n,z,p2*)T(i,n, 1)T(j,z —n, )Tk ,i,q 44 )T(kyyn —i,q, )T, j,q5, WUz —n—j,q5,) .

(2.48)
Within the same approximation the CPA equation (2.35) reduces to the following equation:
d§e albmikikalil )y T, (&, mj)
S ¢, > Dinijk k,yl1,) = (2.49)

- (& nijk ko1 1,)
a nijkl fd§€ Prolemikiolily

Here 1,,,(&,nij) is the single-site ¢ matrix (2.14) in the (nij) configuration.
Since the effective medium is not expected to be sensitive to the details of the structure, we replace Fyy, and Lo, in
t,,(&,nij) by the averaged ones [i.e., Egs. (2.25) and (2.27)]. Furthermore, we adopt the following decoupling approxi-

mation in Eq. (2.49):
[CEY T L 1 = LICED L TELICER) 1 ]

Here the averages are defined by

(k=0,1) .

(<€)= > D(nijk ko1, €7 M

nijkl

nijklkzlllz) )

BY (& nijk k1, 1y)

Jdeeme
fdé_eAB\l’atg,nijklkzlllzJ

(ET M nijk kyl,1,)=

Note that
<§a>(nijk1k2i112)=<ma >(n,i,j,k1’k2)11)12) .
Finally, CPA equation (2.49) is simpliﬁed as follows:

({0 )1

(2.50)

(2.51)

(2.52)

o (@+id,v[[(&) ] 1)L,

1
225

&

Green function F,,, appears only via the variables 0,,=

{ Tt 2. TF
Next we simplify Eq. (2.36) for the effective medium &,

(2.53)

. Let us note that the structural disorder in the coherent
S'=1y;and 6 .= Fi_, ., p; as follows:
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Foae=(L;'=0,,K,—0,.Ks )" (2.54)
Here
Kopo=(L'"=8,)7". (2.55)

We again adopt the decoupling approximation for 66,,=6,, —[6,, ];:
[(86,, )" t*1,=[(86,, )17 [(804y) ], (k =0,1) . (2.56)
Then we have

[Faaa-]s:% 2 2 {‘Co—l_n[yaa]sKaa_(z _n)[yaE]sKaa_v‘/;[(ay )tzzza]:/zKao_V"/z —h [(8y ),215 sl/zKag}_l'
v=tv=1

(2.57)
Here we adopted the relations [6,,];=n[y. ], [0,;]=(z—n)y ;1 [(86,,)*),=n[(8y)%,];, and [(80aa)2]S

=(z —n)[(8y)2,],-
Taking the configurational average in Eq. (2.57) we obtain an equation for K, which is simpler than Eq. (2.36):

z F(n’z’pc“za)[Faao ]: =Faa' N (258)
n=0
The self-consistent equations (2.47), (2.53), and (2.58) determine the order parameters ([[{m,)];]. and [[{m,)?],].)
and the effective medium [£L ! and K, (or §,,)]. Once we determine the medium from these equations, we can calcu-
late other physical quantities. For example, the amplitude of LM [see Eq. (2.7)] is given by

[[{m2))].= 3 C(nijk,k,l,1,){m?2)(nijk k,1,1,), (2.59)
nijkl
(m2)(nijk kol 1) =30, — ——n2+ |1+ == | |<E)nijk kyl,1,)——2 | . (2.60)
a 1724182 a 2Da 2D a 1728182 Bja

In the substitutional alloys the present theory reduces to the previous theory of LEE for substitutional alloys.?>?} In
particular, the theory gives, in the local-moment limit, the well-known spin-glass temperature T, of the molecular-field

approximation'®%
Tg2=%Z{CAJzAA +epdys t(c gy —cpdpp ) Hac opdiyp]'?) (2.61)
In the case of amorphous and liquid metals the self-consistent equation (2.47) reduces to
[{m)]; : [{m), ]
= 1
[<m>2]S nzor(n)z)z) [(m)i]s ’ (262)
[(m),,]s . n z—nr(k i (§>(nkl)
Km)2) |~ k§0 [go ,n,q)(l,z —n,q) (EVnk? | (2.63)
fdé-ge*ﬁ‘l’(g,nkl)
(&) (nkD)= fdge e (2.64)
(@) (a) (e) ( [(m)?)”
V(& nkl)=E(&n)+n® (& n)+(z —n)®' (& n)—[(2k —n)D'(E,n)+ (2] —2 +n)®f)(§,n)]7 , (2.65)
1 [{m)];
=7 H-[(m>2 173 (2.66)
Here and in the following, the type of atom and other indicators are omitted.
The CPA equation (2.53) for the effective medium £ ! reduces to
1 (€8] -1 ; 2y791/2 -1 —1)-1
2; 1+VW (L, (0+idv[(E)), ) —L'+F )7 I=F, . (2.67)
v s

Equation (2.58) to determine the medium for the structural disorder reduces to
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S HL =z K, =Wz [(8y 1K, ) ' =F, . (2.68)
This equation can be solved analytically:
(5 )2 ) 172
2F, L' —1% 1+4%F0,L;1(F,,L;’— 1) ]
ZU 15
z[ylK,= 3 (2.69)
[(8y)7);
2|1=———— |F,
z[yl§

The sign on the rhs should be chosen to be ImK, <0.
Equations (2.62), (2.67), and (2.69) determine the magnet-
ic state for amorphous and liquid metals. The equations
contain the spin-glass solution due to the structural disor-
der ([{m)],=0 and [{m )?],550). The spin-glass tem-
perature is obtained analytically in the local-moment lim-
it as follows:

T}=1z2(F+d2), (2.70)

where &, (F_) is the exchange coupling (2.22) for con-
tracted (stretched) pair. It reduces to the well-known for-
mula>®>!

T,=Vz|d|,

for =&, =—J&_ (i.e,, £ model).

Equations (2.61) and (2.71) indicate that the present
theory automatically includes both types of SG: the site
and bond models in the insulator limit.

(2.71)

III. NUMERICAL RESULTS FOR AMORPHOUS IRON

We present the result of the calculation for amorphous
iron as a numerical example in this section. Our aim is to
clarify the possibility of the SG in amorphous iron.

We adopted the d-electron number n =7.0 per iron
atom, the exchange-energy parameter J=0.059045 Ry,
and the best result of the averaged d DOS [p(e)], by
Fujiwara.? The latter is shown in Fig. 6 together with

40 +

p(w) (states/Ry atom)

20

W (Ry)

FIG. 6. The densities of states (DOS) for iron used in the
present calculation. amorphous iron (Ref. 52).
— : bee iron (Ref. 52). « - . .: fcciron (Ref. 53).

I

the bec and fcc DOS.>® The exchange-energy parameter
J is chosen so as to reproduce the observed ground-state
magnetization 2.216uy for the bce Fe. (See Fig. 7.) The
averaged transfer integral [y], was calculated from the
relation

2[1?],= [ (e—ellple)],de .

The transfer integrals are assumed to be in proportion to
(1/R)*? (Ref. 54). The fluctuation of the interatomic dis-
tance was fixed to be [(8R)?]!"2/[R],=0.06. This value
is consistent with the value 0.067 which was estimated
from the width of the first peak in the theoretical®® and
experimental®! pair-distribution functions.

We solved the self-consistent equations in the following
way. First we assume [(m )], [{m)?],, [{£*)],, and
w(+[(£?)],). We can then obtain the effective medium
L ;! solving the CPA equation (2.67). We calculate the
effective medium K, for the structural disorder accord-
ing to Eq. (2.69), and calculate Fy, and F,,, [Eqgs. (2.30)
and (2.31)] for various configurations of local structure.
Next we obtain the charge potentials @W(£) and w(&,n)
from the charge neutrality conditions, respectively,

n= fda)f(w)D

m

Im[L; (0+i8,§)—L;'+F;']7",

(3.1

Fe '. :

2 2 F /. 1
= <
L / . _
5
[ g
. =]
0 L l 1 1 :
0 0.02 0.04 0.06 0.08
7 (Ry)
FIG. 7. Uniform ground-state magnetization (M) vs

exchange-energy parameter (J) curves in the Stoner model.
The DOS presented in Fig. 6 are used in the calculation. The
arrow indicates the exchange-energy parameter (J=0.059 045
Ry) which leads to the ground-state magnetization 2.216up in
the bee Fe.
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n= fdwf(m)—lﬂl_Im[L;](a)+i8,§)—,£;‘+F0_of,]_‘ .

(3.2)

Next we calculate x =(&?)}/?, E(&n), ®'@(&,n), and
®'(E,n) by using L), w(&n), Fy,, For,» and F,.
Then we can solve Eq. (2.62) by means of the iteration
method, and we have a new set of [(m )], [(m)?],,
[(£%)],, and w(+[{&*)]}/?). This procedure should be
repeated until the self-consistency is achieved.

Figure 8 shows the calculated local DOS for the nonin-
teracting electron system in various environments. The
DOS with 12 contracted atoms (n =12) on the NN shell
shows the double-peak structure with broad bandwidth,
while the DOS with 0 contracted atom (n =0) shows the
single peak with narrow band because the central atom is
isolated from the surrounding atoms. The existence of
the local DOS with single- and double-peak structures in
various environments is consistent with the nonmagnetic
results based on the recursion method by Fujiwara.

When the electron-electron interaction J is taken into
account, the line shapes of the DOS are somewhat
changed as shown in Fig. 9. The peaks around o =0.05
Ry in the DOS with n =6 and 12 are broadened because
of thermal spin fluctuations. The DOS for isolated atoms
(n =0) split into two peaks because of the LM formation
due to electron-electron interaction in the narrow band.
Thus, the local DOS is expected to show a double-peak
structure irrespective of the environment.

Various local magnetic states change the averaged
probability distribution p(£) defined by [(m)],
= f dép(£)E. In Fig. 10 the probability distribution with
LEE is compared with that in the single-site approxima-
tion.!! The latter shows a simple two-peak structure cor-
responding to the double minima in the single-site energy
functional. The former has a three-peak structure: a
central peak due to the local structures with n > 10 and
the peaks at £=31.7up due to the local structures with
n <6.

T T T T T
60 4
€
[*]
]
& 40t J
@
[
<]
)
3 20t 1
Q
0 . 1
-04 -0.2 0 0.2 0.4
W (Ry)

FIG. 8. Local DOS for noninteracting electrons in amor-
phous iron in various environments specified by the number of
contracted atoms (n) on the NN shell. Dotted curves denote
the averaged DOS (Ref. 52).
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60 R

pP(w) (state/Ry atom)

FIG. 9. Local DOS at T =35 K in various environments.

The uniform ferromagnetism is not expected in amor-
phous iron as seen from Fig. 7. We numerically checked
that the ferromagnetism is not stable in amorphous iron
even if we take into account the fluctuations of the LM’s
due to the structural disorder. Figure 11 presents the re-
sult for inverse susceptibility versus temperature curves.
The inverse susceptibility follows the Curie-Weiss law at
high temperatures, but becomes slightly convex upwards
at less than about 700 K. The present result clearly
shows the cusp at T, =92 K for

[(8R)*]}/2/[R],=0.06
and T,=129 K for
[(8R)*]}/2/[R],=0.07 ,

below which the order parameter [{m )2]!/? develops
with decreasing temperatures. The calculated SG tem-
perature is in good agreement with the value (=~ 100 K)
expected from the experimental data of Fe-rich amor-
phous alloys.!”!%3% Although the theory is based on a
molecular-field approximation, the present result for T,

T T T T T T T
1.0 1
@
3
Q» P P
a 05t 1
o 1

€ (up)

FIG. 10. Probability distribution p (£) for the present theory
(solid curve) and the single-site theory (dotted curve).
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FIG. 11. The spin-glass order parameter ([{m )?]!/?) and in-
verse susceptibilities as a function of temperature for
[(8R)*]}”2/[R],=0.06 and 0.07. The dashed curve denotes the
inverse susceptibility in the single-site approximation.

is expected to be reasonable because the frustration effect
as seen in the spins on the fcc lattice is not important for
the amorphous systems. Moreover, the existence of the
SG in amorphous iron is not sensitive to the magnitude of
[(8R)?*]1}/2/[R], as shown in Fig. 12.

The inverse susceptibility in the single-site theory is
overestimated by a factor of 1.5 as compared with the
present result. (See Fig. 11.) This is because the single-
site theory neglects the LM’s with large amplitudes
which remarkably enhance the susceptibility. It should
also be pointed out that these is no cusp in the single-site
theory because of no fluctuation ([{m )?],=0).

T T T
amor. Fe

200+ b
- |
x

o

S

100} g

0 1 1 1 It
0 0.02 0.04 0.06 0.08

1
(srYA2/[R]g

FIG. 12. The spin-glass temperature (T, ) as a function of the
fluctuation [(8R)?]!/?/[R],. The arrow indicates the experi-
mental (Ref. 41) and theoretical (Ref. 40) value. The curve was
extrapolated below 25 K.
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FIG. 13. Single-site energy [E(&,n): dotted curves] and ex-
change pair energy [ —®'¢(&,n): solid curves] of amorphous
iron in various environments (n) at T =35 K.

We examined the origin of the SG in amorphous iron
by analyzing the energy functional W(&,nkl). The atomic
pair energies ®'?'(£,n) in amorphous Fe are almost flat as
a function of £&. Thus, these terms are not essential for
the spin configuration. We therefore show in Fig. 13 the
energies E(&n) and —®'?(£,n). The former mainly
determines the amplitude of LM in each local structure.
The latter describes the exchange pair energy gain of the
central LM £ when the neighboring LM x points up. It is
seen that —®'¢(£,n) show a nonlinear behavior for the
environments 4 <n < 10; the LM’s with large amplitude
(|&]) ferromagnetically couple with the neighboring LM,
while the LM’s with small amplitude show the antiferro-
magnetic coupling. The same behavior has been found
first in the fcc Fe alloys.?%?® There the LEE on the am-
plitude of LM due to the atomic configuration caused the
ferromagnetic and antiferromagnetic couplings via the
nonlinear behavior of ®{)(£). In the present case the
structural LEE causes the various amplitudes of LM’s
mainly via E (§,n).

Let us draw a physical picture for Fe LM’s from Fig.
13. The Fe atoms do not have their LM’s in the environ-
ment n =12 since E(§,12) shows a single minimum at
£=0. In the environment n =6 the Fe atoms have a LM

FIG. 14. Schematic representation showing the local envi-
ronment effect on the central local moment (LM) in amorphous
iron. n denotes the number of contracted atoms on the NN
shell.
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FIG. 15. The LM distribution in amorphous iron at T =35
and 75 K.

with small amplitude (£2)!/2~1.2up at low tempera-
tures because E(&,6) show the double minima at
E==1.2ugz. These LM’s show the antiferromagnetic
coupling with neighboring LM since —®'¢(£=—1.2,6)
<—®'Y(£=1.2,6). On the other hand, the Fe atoms
with the environment n =0 have well-defined LM with
amplitude (£2)!2~2.5 as seen from E(£,0) curves.
These LM show the ferromagnetic couplings since
—®'(E=—2.5,0)> —®'?(£=2.5,0). The obtained

T T n=0
2
4
~ 3 :
2 8
Ly 12
s
€ 4
&,
Sw
=
£
N

0 50 100
T (K)
FIG. 16. The spin-glass order parameters ([{m )2]!’?) and

the amplitudes of the LM’s ([{m?),]}’?) in various environ-
ments. Dotted curves denote the average values.
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physical picture for couplings between Fe LM’s is shown
in Fig. 14. The coexistence of the ferromagnetic antifer-
romagnetic couplings due to the structural disorder give
rise to the SG in amorphous iron. The mechanism men-
tioned above is characteristic to the metals since neither
the LEE on the amplitude nor the nonlinearity of the
magnetic coupling is seen in the insulators.

The detail of the LM distribution is shown in Fig. 15.
The LM’s show a broad distribution between —2.5up
and 2.5u5, and have a central peak which corresponds to
the paramagnetic atoms. The latter peak grows up with
increasing temperature, and becomes a d-function peak
above T,.

The temperature variations of the root mean square of
LM (m) for each environment n (i.e., [{m )2]}/?) are
shown in Fig. 16. The quantities [{m )2]!/? with con-
tracted atoms n > 6 rapidly decrease with increasing tem-
perature, while those for isolated atoms (n <2) show
Brillouin-like curves because of the strong ferromagnetic
couplings to the neighboring Fe LM’s. The amplitudes of
LM’s in various structural environments hardly change
with increasing temperature, but their distributions
spread from 2.5up to 3.7up as shown in Fig. 16. This
broad distribution results from the fact that the amor-
phous iron is close to the Stoner criterion.

IV. SUMMARY AND DISCUSSION

We have generalized the finite-temperature theory of
LEE to amorphous and liquid alloys, in which both the
thermal spin fluctuations and the fluctuations of the LM’s
due to the structural disorder play an important role in
their magnetic properties. The theory directly treats the
structural disorder inside the NN shell by using the Bethe
approximation to the electronic state and the method of
distribution function for the LM distribution, while the
structural disorder outside the cluster is treated by a self-
consistent effective medium.

The present theory has a wide range of application.
The theory covers the finite-temperature magnetism of
crystals, substitutional alloy systems, amorphous systems,
and liquid systems in both metallic and insulating states,
since it takes into account the structural as well as
configurational disorder on the basis of the functional-
integral method. More important is that the theory de-
scribes the LM distribution and the SG state since it
takes into account the LEE going beyond the single-site
approximation. In particular, we have shown that the
theory describes both types of the SG due to
configurational and structural disorders, which reduce to
the SG’s in bond and site models in the insulator limit.

We have investigated the magnetic properties of amor-
phous iron by using the new theory. We have demon-
strated that the local DOS, LM’s, susceptibilities, and the
amplitudes of LM’s are strongly influenced by the LEE
due to the structural disorder.

The amorphous iron does not show a stable fer-
romagnetism, but Fe LM’s with various amplitudes are
produced in amorphous iron because of the structural
disorder. The Fe LM’s with large amplitude show the
ferromagnetic coupling and the Fe LM’s with small am-
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plitude show the antiferromagnetic couplings in amor-
phous iron. The coexistence of ferromagnetic and anti-
ferromagnetic couplings between neighboring Fe LM’s
leads to the itinerant electron SG. The calculated transi-
tion temperature (T, = 100 K) is consistent with those ex-
pected from the experimental data of Fe-rich amorphous
alloys.

Quite recently, Krey, Krompiewski, and Krauss3* have
performed the ground-state Hartree-Fock calculations
for amorphous Fe and Fe-Zr alloys, allowing for arbi-
trary LM configuration with transverse components.
They obtained (1) the results for the z component approx-
imately the same as the previous calculations without
transverse components, (2) the existence of Fe LM’s anti-
parallel to the magnetization, and (3) the metastable spin
configurations suggesting the existence of the SG. These
results support our results.

However, they obtained finite magnetization (e.g.,
[{m)],=1.4uy for the density 8.0 g/cm?) in disagree-
ment with our results. A part of the finite magnetization
is attributed to the very large magnetic field A =0.05
eV/up in their calculations, which is comparable to the
Curie temperature of bcc Fe, but the discrepancy be-
tween the present results and their results seems to origi-
nate in the difference in the structural model and the
method of calculation for the ground-state electronic
structure between the theories.

Our calculations are based on Fujiwara’s DOS for non-
magnetic amorphous iron.”%? He adopted the
computer-generated structural model with 1500 atoms re-
laxed to metastable equilibrium, and calculated the
ground-state electronic structure within the local-spin-
density approximation to the density-functional theory
by using the first-principles linear-muffin-tin-orbital
method combined with the recursion method. The
highest peak located at 0.043 Ry above the Fermi level
has the value 46.5 (states/Ry atom). The DOS at the
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Fermi level is estimated to be p(ep)=28.2 (states/Ry
atom). Adopting the Stoner parameter J=0.068 Ry
(Ref. 55), we obtain the Stoner criterion
Jp(ep)/2=0.96 < 1.

On the other hand, Krey et al. adopted the computer-
generated model of amorphous Fe which consists of 54
atoms in a box with periodic boundary conditions, and
used the Slater-Koster tight-binding scheme with s, p,
and d orbitals for the calculation of the electronic struc-
ture. The transfer integrals were parametrized to repro-
duce Wood’s nonmagnetic bands®® in the bcc Fe. The
calculated DOS shows the highest peak just at the Fermi
level, and has the value p(er)=25.3 (state/Ry atom).
Using their Stoner parameter J =0.082 Ry, we obtain the
Stoner criterion Jp(er)/2=1.04>1 which might allow
for the wuniform polarization in contradiction to
Fujiwara’s result. The origin of the discrepancy has to be
clarified in more details in the future.

The present theory established a method to calculate
the magnetic properties of amorphous and liquid alloys at
finite temperatures from the ground-state electronic
structure. Application of our theory combined with the
ground-state theories allows for the theoretical under-
standing of magnetism in amorphous and liquid alloys.
In following works we plan to present the results of our
systematic investigations for amorphous 3d transition
metals and alloys.
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