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Series study of percolation moments in general dimension
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Series expansions for general moments of the bond-percolation cluster-size distribution on hyper-
cubic lattices to 15th order in the concentration have been obtained. This is one more than the pre-
viously published series for the mean cluster size in three dimensions and four terms more for
higher moments and higher dimensions. Critical exponents, amplitude ratios, and thresholds have
been calculated from these and other series by a variety of independent analysis techniques. A
comprehensive summary of extant estimates for exponents, some universal amplitude ratios, and
thresholds for percolation in all dimensions is given, and our results are shown to be in excellent
agreement with the e expansion and some of the most accurate simulation estimates. We obtain
threshold values of 0.2488+0.0002 and 0. 18025+0.00015 for the three-dimensional bond problem
on the simple-cubic and body-centered-cubic lattices, respectively, and 0.16005+0.00015 and
0. 118 1920.00004, for the hypercubic bond problem in four and five dimensions, respectively. Our
direct exponent estimates are y = 1.805%0.02, 1.435+0.015, and 1.185+0.005, and
P=0.405+0.025, 0.639+0.020, and 0.835&0.005 in three, four, and five dimensions, respectively.

I. INTRODUCTION S(p)=A (p, —p) r[1+a (p, —p) '+. . . ] (1.2)

Percolation models have been used to describe
geometric phase transitions in a large variety of sys-
tems. ' In these systems objects such as sites, bonds, and
plaquettes (disks, etc.) on some underlying lattice (contin-
uum} are occupied with probability p. If a sufficient num-
ber of these are occupied then there will be an (infinite}
connected cluster spanning the system. In the presence
of a connected cluster passage of Quid, magnetic order or
electric current can be made across the system. The tran-
sition from the disordered or insulating phase to the mag-
netic or conducting one occurs at some threshold concen-
tration, p, . The transitions are characterized by a singu-
larity in the order parameter, i.e., in the percolation prob-
ability (the probability that if a bond is occupied it be-
longs to the infinite cluster), P(p), which behaves as
(d A6)

P(p)= A (p —p, )~[1+a~(p —p, ) '+. . .],
and by a divergence in the percolation susceptibility, i.e.,
in the mean finite cluster size, S(p). The divergence of
S(p), when p approaches p, from below, is believed to
take the form

for d%6, and

S(p) = A2(p, p) ilog(p, ——p) i (1.3)

for d =6, with y =1 and 8=—', . The exponent values and
certain ratios of critical amplitudes (such as A and Az),
are believed to be universal for a given spatial dimen-
sion, whereas the threshold estimates are known to be
non universal, i.e., lattice and object dependent. For
d ) 6, y=P=l.

In this paper we review previous results for percolation
critical data and present new low-density 15-term series
in general dimension for bond percolation on hypercubic
lattices. This is one term more than previously published
for three dimensions and four terms more for higher di-
mensions. We calculate the jth moments of the percola-
tion cluster-size distribution, which are believed to
behave as

I,.(p}=A, (p, —p) '[1+a,(p, —p) '+. . .], (1.4)

where y, =y+(j —2)b, and S(p}=Iz. The gap ex-
ponent, 6, is equal to y+P=Dv, where D is the fractal
dimensionality of clusters on a length scale that is large
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compared to the lattice constant but small compared to
the correlation length g-(p —p, ) ". Moment series to
11th order have previously been calculated and a full

discussion of the scaling of these moments has been

presented in Ref. S. We assumed there that all the mo-

ments in a given dimension will have the same 6&, al-

though the a could be very di8'erent.
A very large number of numerical and analytic calcula-

tions have been made for di6'erent percolation systems in
two ' and three' dimensions; rather less atten-
tion ' ' has been paid to higher-dimensional
systems. We give a comprehensive summary of extant re-

suits for different dimensions in Tables I (critical ex-
ponents) and II (thresholds for hypercubic bond percola-
tion). We have not given all the older results and refer
the interested reader to Ref. 12 (two dimensions), Ref. 21
(three dimensions), and Ref. 33 (d )4).

For two dimensions the exact values of the exponents
proposed for the q ~1 Potts model together with the ex-
act p, estimates ' have meant that the transition is ex-
tremely well characterized. Some previous doubts con-
cerning the reliability of various assumptions and calcula-
tions in two dimensions have now been laid to rest. In
particular, doubts concerning the exponent estimates ob-

Method

TABLE I. Percolation critical exponents.

g=(2 —y/v)

Exact' 0.1388 2.3888

D=2
1.3333 2.5277 0.2083

Series
Series'
Bond'
Site'
Series
Series'
Monte Carlo'
Monte Carlo~
T matrix"
Scaling field'

e expansion'
Three-loop vertex"
Five-loop vertex"
Monte Carlo"
This work

Series'
Series'
MCRG
Monte Carlo~
Monte Carlo"
Scaling field'

e expansion'
This work

0.463
0.454+0.008
0.474+0.014
0.40+0.035
0.435+0.035
0.44+0. 1

0.43+0.04

0.34+0.04
0.34

0.412+0.010
0.405+0.025

0.665+0. 15
0.64
0.56
0.65+0.04
0.5

0.64+0.02
0.639+0.020

1.73+0.03

1.79

1.71+0.06

1.82+0.04
1.75
1.74+0.015
1.795+0.005
1.805+0.02

1.44+0.05

1.6+0. 1

1.44
1.435+0.015

0.88+0.02

0.89+0.01
0.88+0.05
0.9020.02
0.71
0.83+0.01
0.81

0.875+0.008
0.872+0.070

D=4

0.64
0.68+0.03

0.58
0.68
0.67820.050

2.18+0.04

2.23+0.05

2.16+0.04
2.09

2.20750.005
2.21+0.04

2.10+0.04

2.08+0.02
2.074+0.006

1.05+0. 15

0.65+0. 1

0.81
1.59—1.94'

1.1+0.2

0.65+0.2

0.78
0.88—1.0'
0.65+0. 10

0.03+0.03

—0.01+0.09

—0.04+0.04
—0.02+0.04

0.17
—0.18+0.02
—0.16
—0.13120.001
—0.05+0.025
—0.07+0.05

—0.10+0.09

0.034
—0.12+0.04
—0.12+0.04

Series'
Series'
MCRG
Monte Carlo"
Scaling field'

expansion"
This work

0.83+0. 1

0.84
0.67
0.7

0.835+0.005
0.835+0.005

1.20+0.03

1.3+0. 1

1.18
1.185+0.005

0.51

0.53
0.57
0.571+0.003

2.025+0.055

2.02+0.005
2.02+0.01

0.65
0.42 —0.45'
0.55+0.15

—0.005
—0.070
—0.075+0.020

'Reference 6.
Reference 20; the error is +0.013 12bp, .

'Reference 21.
Reference 22.

'References 5 and 33.
'Reference 18.
Reference 26.

"Reference 29.

'Reference 19.
'Reference 30 (third order).
"Reference 16.
'Reference 34.

Reference 32.
"Reference 31.
'Private communication from J. Green, third order.
~Reference 37.
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TABLE II. Bond-percolation thresholds for cubic lattices.

Method Hype rcubic Hyper-bcc

Exact'

Previous series
Monte Carlo'
Monte Carlo
Monte Carlo'
Monte Carlo'
This calculation

Previous series~

Previous series"
Previous series'
Monte Carlo'
1/o expansion'
This calculation

Previous series~

Previous series"
Previous series'
1/o expansion'
This calculation

Previous series~

Previous series"
Previous series'
1/e expansion'
This calculation

D=2

D=3
0.2479+0.0004
0.248 65+0.000 13
0.2493+0.0002
0.2488 10+0.00005
0.2488+0.0001
0.2488+0.0002

D=4
0.1600+0.0002
0.161+0.0015
0.1603+0.0002
0.160 13+0.000 12
0.1533
0.16005+0.000 15

D=5
0.1181+0.0002
0.118+0.001
0.1182+0.0002
0.1157
0.118 19+0.000 04

D=6
0.0943%0.0002
0.0941%0.0005
0.094 075+0.0001
0.093 30
0.094 20+0.0001

0.1795+0.0003

0.18025+0.000 15

Previous series'
Previous series"
Previous series'
1/cr expansion'
This calculation

0.0788+0.0002
0.0786+0.0002
0.078 62+0.000 03
0.078 32
0.078 685+0.000 03

tained from series were resolved"' by using nonanalytic
confluent corrections to scaling [i.e., b, ,%1.0 in Eq. (1.1)].
Also, all the current series values in two dimensions are
in excellent agreement (both for exponents and for ampli-
tude ratios ' } with their e-expansion counterparts, even

y =v(2 —rt), (1.5)

at d =2, so there exists no evidence for a new fixed point
appearing somewhere below three dimensions. ' The
series results are also in agreement with hyperscaling. '

Despite the exact exponent and threshold values and
the resolution of the various discrepancies there is still a
problem with two-dimensional (2D) percolation. Recent-
ly, questions have been raised concerning the universality
of certain amplitude ratios between lattice and continu-
um percolation. ' If these ratios are indeed different then
there must be a basic questioning of our ideas concerning
universa1ity, since the measured critical exponents for lat-
tice and continuum percolation appear to agree. If the
ratios can be shown to agree with each other then we
must question the simulations (or rather the extrapola-
tions and error bounds on the result from the simula-
tions} that led to the difFerences. As a step towards the
resolution of this controversy, careful new estimates of all
critical amplitude ratios for 2D percolation are highly
desirable. We have evaluated several such ratios in gen-
eral dimension.

For three dimensions the critical behavior is less well
documented than at two dimensions. When we com-
menced this calculation there were serious discrepancies
between difFerent estimates for the percolation threshold
for the simple-cubic bond problem. ~ 2 These
discrepancies are large enough to cause substantial
differences in exponent estimates, and are several orders
of magnitude larger than the uncertainty in the 3D Ising
model. While writing up our results, we heard36 3 that
some very recent simulations improved this situation and
we shall discuss these results in depth in our conclusion.

It does seem to be rather important to obtain a good
understanding of the 3D critical behavior since many real
systems with interesting percolation phenomena are three
dimensional. One of the most interesting consequences of
the uncertainty surrounding 3D percolation critical data
is the possibility of a negative g estimate' in a physical
dimension. g is the exponent that describes the critical
behavior of the pair-correlation function Q(r)
—llr +" at distance r Direct c.alculations of g for
three dimensions have only been made from field
theories; several different ones have been made and these
disagree with each other. ' ' ' However, since g is re-
lated to two other exponents via scaling relations, for ex-
ample,

Previous series'
1/o expansion'
This calculation

Previous series'
1/o. expansion"
This calculation

'Reference 7.
Reference 21.

'Reference 26.
Reference 24.

'Reference 37.

0.067 70+0.000 05
0.067 56
0.067 70+0.000 05

0.059 50+0.000 05
0.059 42
0.059 50+0.000 05

Reference 36.
~Reference 27.
"Reference 28.
'Reference 33.
"Reference 42.

estimates of g can be made from series expansion and
Monte Carlo studies of y and v as well. One way to ob-
tain v from the series is via the hyperscaling relation
d v =2—a =2p+ y, and thus a reliable estimate of p in
three dimensions is highly desirable. Most extant series
expansion analyses of p have attempted to obtain p
directly from a high-density P(p) series. The excep-
tion is Ref. 5 where p is calculated from the moment
series but the systematic error here was large owing to
the shortness of the series. In general, better convergence
is to be expected from a low-density series but for 3D per-
colation the extant high-density series are considerably
longer. There is considerable spread of p estimates in
the literature ranging froin p=0. 34 from the field
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theory. ' ' to above =0.45 from some of the series cal-
culations. Considerable spreading has also been observed
between bond- and site-series estimates. ' Thus, one of
the motivations for the generation and analysis of the
longer low-density moment series presented in this paper
is reliable P (and hence g} estimate for three dimensions.
Towards this end we have also carried out a comprehen-
sive analysis of the Sykes-Wilkinson high-density series.

For d =4 and 5 there have been some disagreements in
the past between e-expansion and Monte Carlo ' ex-
ponent values but these were mostly settled by the series
results of Ref. 5 and the final version of the calculations
of Grassberger. (Slight discrepancies remained between
the series and simulation threshold estimates at four di-
mensions and between the series and e-expansion ex-
ponents at five dimensions. ' ' Our new results recon-
cile both these inconsistencies. } These dimensions are
close enough to the upper critical dimension to lead us to
believe that the e expansion exponent results are quite re-
liable, and our previous calculation in Ref. 5 confirmed
this. It is, however, if considerable interest in the light of
certain questions about other models to obtain critical ex-
ponents and thresholds in d =4 and 5 to as high an accu-
racy as possible. One example of such a question con-
cerns the relation between the zero-temperature transi-
tion in the dilute spin glass and the transition in other
models. The identity or otherwise between the location
of this transition and p, was in some dispute until very
recently. In order to demonstrate the separation of the
transitions, accurate knowledge of both is required. Simi-
lar accurate knowledge of exponents for all the potential
candidates (which includes percolation) for the universal-
ity class of the zero-temperature spin glass is also essen-
tial. To facilitate the making of such fine but important
distinctions we further refine the exponent and threshold
values that were given in Ref. 5.

The plan of our paper is as follows. A comprehensive
summary of extant exponent and threshold values is
given in Tables I and II, together with the conclusions
from our analyses. In Sec. II we discuss the derivation of
the expansions for all the moments of the percolation
cluster-size distribution. The series are given in Table
III. In Sec. III we present analyses of critical thresholds
and exponents for d )2; comprehensive summaries of our
results for 3&d ~5 are presented in Tables IV and V.
Section IV is devoted to the analysis of the amplitude ra-
tios, with the results being displayed in Table VI. Con-
clusions and comparisons with other calculations are
given in Sec. VI. Appendices are devoted to the mean-
field free energy (as obtained on a Cayley tree) as a func-
tion of the field (including corrections to scaling) and to
the site-bond generating function.

diagrams. Although we use the Potts model ' to derive
the transformation, the final results of (2.21) and (2.24b)
are expressed in terms of cluster variables. The extension
of these results to treat the site-bond generating function
is described in Appendix B.

As is well-known, ' ' ' the cluster-size distribution
function can be obtained from the free energy of the
q ~1 Potts model, whose Hamiltonian we write as

[5s(i ( i 1] hX[q5(ii 1]
(x,x')

(2.1)
where x labels sites, (x,x') indicates that the sum is over
pairs of nearest neighbors, s(x) is a discrete (Potts) vari-
able which can assume the values 1,2, . . . , q, and 5 is the
Kronecker 5. In the limit q ~1 the free energy F is

F= lim ln Tr exp( H)—1

q-i N(q —1)

=h+ g W(n, p)exp( —nh),
n

where W(n, p) is the average number of clusters per site
having n sites. For p &p„when all the sites are in finite
clusters, we have (h —+0)

ar
Bh

=1—g n W(n, p) =0 (2.3)

and for h =Owe write

(2.2)

(PF
. =( —1)~g n J W(n, p) =( —1)~I (p), j) 1 . (2.4)

Successive derivatives of the free energy with respect to h
thus give the moments of the cluster-size distribution,
whose critical behavior was given in Eq. (1.4).

We give here a prescription for a diagrammatic evalua-
tion of F(p, h ) in powers of bond concentration p in terms
of only NFE diagrams. To eliminate diagrams with free
ends, we consider Z =Tr exp( H), which we wr—ite as39

Z=Tr g Iexp[h(q5, („~ i
—1)]p(s(x))'I

p p s(x),s(x')1 — + 5

p(s(x) )p(s (x') )
(2.5)

where p =1—exp( E), gb indica—tes a product over all

nearest-neighbor bonds (x,x'), z is the coordination num-
ber of the pure lattice, and p(s(x)) is to be determined.
We expand the product over bonds to get

Z = Tr P exp[h (q5, („i i
—1)]p(s (x))'

x

x 1+ QNw(r)z(r)
II. DERIVATION OF ARBITRARY MOMENTS

OF THE CLUSTER-SIZE DISTRIBUTION
FROM NO-FREE-END DIAGRAMS

Z =—Z", 1+ y NW(r)Z(r) ',
1

(2.6}

As discussed elsewhere ' it is useful to construct
series using the tabulation of weights of only diagrams
with no free ends (NFE). Here we obtain the transforina-
tion by which the free energy, I', for bond percolation as
a function of field h can be obtained in terms of only NFE

where W(I') is the number of times per site a diagram
(consisting of a nonempty set of bonds) topologically
equivalent to I can be formed on the lattice of X sites
(with N~ao), the sum is over all topologically ine-

quivalent diagrams I, and
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p +p 5s(x),s(x') }
Z(I )=Tr g Iexp[h(q5, („),—1)]P(s(x))'I g

xer bEr Ps x Psx (2.7)

where n, (I ) is the number of sites in the diagram I and Trr indicates a trace over all s(x) with x E I . We now deter-
mine p(s(x)) so that for diagrams y with free ends, Z(y)=0. For such a diagram some site x' appears in only one
bond and we require that the trace over such an s(x') should vanish. From this requirement we find that p(s(x)}
satisfies

Tr exp[h (q5, („) i
—1)]p(s (x') ) (1—p +p5, („),(„))

p(s(x))=
Tr exp [h ( q 5, („.) i

—1 ) ]p(s (x '
))'

s(x')

(2.8)

where o =z —1. We assume a solution to (2.8) in the form

p(s(x))=A exp[8(q5, („),—1)] . (2.9)

Physically, one can identify 8 as an effective field which takes account of free ends. Substituting the ansatz (2.9) into
(2.8) we get the conditions

A 2 I exp[(h +OB)(q —'1)]+(q —1)(1—p)exp[ —(h +o 8)]I

Iexp[(h +zB)(q —I )]+(q —1)exp[ —(h +zB)]I

[ (1—p)exp[(h + a 8 }(q—1 }]+exp[—(h +crB)][1+(1—p)(q —2)] I

Iexp[(h +zB)(q —1)]+(q —1)exp[ —(h +zB)]I

(2.10)

from the cases s (x}=1and s (x)%1, respectively. In the
limit q ~1 we 6nd that B is the solution to

q~1. Thus, we have

Z =Z, 1+ g' NW(I )Z(I )
I":NFE

exp[ 8]= 1 —p +—p exp[ —(h +crB)], (2.11)
—= 1+N(q —1)F+O(q —1) (2.14)

B=XkBkh

To order h we have

(2.12a)

so that B can be obtained exactly up to any desired order
in

For a lattice with no loops, there are no terms in the sum-
mation in (2.14). Thus, the first term represents the exact
solution for a Cayley tree of coordination number z. Ex-
plicitly the single-site partition function Z, is

Z, = Tr A'exp[(h +zB)(q5, („),—1)]
s(x)

ph 1 p(1 —p)h
1 crp 2—(1—(Tp )3

(2.12b) = A'(exp[(q —1)(h +zB)]

+(q —l)exp[ —(h +zB)]I . (2.15)
and, in general, Bk will diverge for p~p, =cr ' as
(1—(Tp )

" ' corresponding to the mean-field value of the
gap exponent P+ y =2. Solving Eq. (2.10) to order
(q —1) for A we get A =1+(q —1)a with

Using (2.13) we have, for q-+1

Z) =1+(q—1) h — exp[ —(h +zB)]

& = —
—,
' (28+exp[ —(h +zB)]

—(1—p)exp[ —(h +a 8)]I, (2.13)

+—(1—p)exp[ —(h +oB )]
2

=—1+(q —1)E~, (2.16)

so that a can likewise be expanded as a power series in h

up to any desired order.
Now we substitute the solution for p(s(x)) into (2.7).

In so doing, note that p(s (x))= 1 for q = 1 so that Z (I )

is of order (q —1). In fact, if I consists of k disjoint clus-
ters, Z(I ) is of order (q —1)". Thus, the sum in (2.6) can
be confined to topologically inequivalent connected NFE
clusters, which we indicate by I: NFE. Also, Z~1 as

F=FcT+ lim g W(I )Z(I )/(q —1) .
' r:NFE

(2.17)

In Appendix A we use a recursive method to obtain
the free energy for the Cayley tree with the leading ana-
lytic corrections to scaling,

where I'cT is the free energy for the Cayley tree, in terms
of which
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(a+1}(P—P, ) cr"
(p —p, )+ 1+ y —( I+y)'i'

2 '
3(o —1) 2

(&+1}(p—p, ) o'
I

—2o+'1 —(4o+'lip/2+(1+y)' [2cr —1+y(o'+1}]——'y 2(o 2+5cr +1) /( o+1)J
3(o —1)' (2.18)

where y=2(0. —1)h/[o (p —p, ) ]. The leading terms [up to order (p —p, ) ] in (2.18) were previously given within
mean-field theory. ' The correction terms of order (P —P, ) are given here for the first time. Note that although we
cannot give the general solution for the percolation free energy in a jield, we can give it correct to any arbitrary order in
corrections to scaling. Here, for instance, we give the full field dependence of the leading and first correction terms.

Now we manipulate Z(I'} into a convenient form. For this purpose recall one of the definitions of the cumulant, in-
dicated by the subscript c:

Y,(r}=y (
—1) ' ' ' Y(y), (2.19)

qer

where the sum is over all sets of one or more bonds y (connected or not) which are subsets of I, including y = I . There
nb(r)

are 2 ' —1 such subsets. To use this relation we expand the product over bonds in (2.7) associating with the factor—1 a vacant bond and with the factor

[1—p +p5, ~„i,~„.i]/p(s(x))p(s(x'))
nb(I )

an occupied bond. The expansion of this product therefore yields 2 terms, which except for the term with no occu-
pied bonds, are in a one-to-one correspondence with the set of subdiagrams y of I' as in (2.19}. We write the result as

r

1 + 5
Z(I )=g ( —1) ' ' Zi ' Tr II exp[It(q5, ~„i i

—1)]p(s(x))' —1+ g ', (2.20a)
~ «r bE ps x psx

—:(q —1)g (
—

)
" ' Y(y)=(q —1)Y,(I'), q —+1 .

y

This equation defines Y(I ) to be the product of the factors in large parentheses in Eq. (2.20a). Thus,

F=F + g W(1 )Y,(I') .
I":NFE

(2.20b)

(2.21)

s bzn (r)—2n (I")

(q —1)Y(I') = —1+ Tr II expI(q5„„, ,
—1)[h+zB—z„(I )B]j II (1—p+p5, ~„i,(„~)

I beIn, (r)

=( 2 ' ' —1)+(1—Z i' )
—1+Tr II expI(q5, ~„~,

—1)[h+zB—z (I )8 ]]
r xer

We now write Y(I ) in terms of bond variables. In the limit q ~1,Zi ~1 and A ~1, so that in this limit we may write

x II (1—P+P5„„„„,),
b&I

(2.22)

where z„(I ) is the nuinber of bonds intersecting site x in the diagram I . The trace here is that of a Potts model for a

cluster I in an inhomogeneous field h(x), where

h (x)=h +zB —z„(I )8 . (2.23}

We now evaluate this trace in terms of a sum over all possible clusters C (I ) of bonds of I such that each site is directly

or indirectly connected by occupied bonds with all other sites in the cluster. In this context an isolated site is con-

sidered to be a cluster. This type of evaluation is discussed in detail in Ref. 44. Thus we find

zn, (I )
Y(I')=

2
nb(l ) —

I
—28 —exp[ —(h +zB)]+(1 p}exp[ ——(h+oB)]]

n(I ) h—— exp[ —(h +zB)]+—(1—p)exp[ —(h +crB)]
S 2

+ g P(C;I ) exp —g h(x} + g h(x) (2.24a}
c(r) xEC xEC

=[nb(I ) —n, (I )]exp[ —(h +zB)]—(1—p)n&(I )exp[ (ii +oB)]+ g—P(C;I )exp —g h(x)
Ce I- xEc

(2.24b)
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where h(x) is given in (2.23). Here P(C; I } is the probability that a cluster of sites C occur when the system is con-
sidered to be the set of bonds I and is given by

P(C; r) =p"""(1—p)""'",

where n, (I ) is the number of perimeter bonds which is in I . [For example, see Eq. (2.26) below. ] Note that a check on
(2.24} is to evaluate it for diagrams y with one or more free ends and obtain Y, (y ) =0.

To summarize the procedure, we evaluate F(h} to any desired order in h in terms of the sum over NFE diagrams in
(2.17), where Y,(r) is the cumulant value of Y(r ). For any I, Y(I'), is given by (2.24) and Y, (1 ) is obtained recursive-
ly from Y(I ) via

(2.25)

To illustrate (2.24b) we evaluate it for the case when I is the cluster shown in Fig. 1(a), where n, (I }=3 and

ni, (r ) =2. Of course, since this cluster has free ends, Y,(I ) will be zero. We get

Y( I ) = (2 —3)exp[ —(h +zB)] (1——p)(2)exp[ —(h +aB ) ]

+(1—p}exp[ (h +zB——B)]+(1—p) exp[ —(h +zB —2B)]

+(1—p}exp[ —(h +zB B))+p(—1 —p}exp[ —2(h +zB}+3B]

+p(1 —p)exp[ —2(h +zB)+3B]+p exp[ —3(h +zB)+4B] . (2.26)

(0)

0
(b)

The last six terms in Eq. (2.26) come from the clusters
shown in Figs. 1(b)—(g), respectively. Repeated use of
(2.11) shows that this is indeed zero. The simplest
nonzero contribution comes from a square, for which
W(I )=d(d —1)/2. Here we find

Z(I )= Y(I'}

=p exp[ —4(h+oB —B)]

X I 5 —4p —4(1—p)exp[ —(h +o B —B)]J .

(c)

(e)

(g)

FIG. 1. (a) shows the cluster for which Eq. (2.26) is con-
structed. This cluster has three sites and two bonds. (b) —(g)
show subclusters, C, of sites (indicated by open circles) which
can be formed on the cluster shown in (a). Note that a cluster is
defined by the presence of bonds needed to connect the sites of
the cluster and by the absence of perimeter bonds. Bonds not
intersecting a site of the cluster can be either occupied or not.

(2.27)
Note that this result contains only powers of p at least as
large as the number of bonds in the diagram. That is a
general property of the cumulants. Thus, to obtain a
series up to order, say p ', we need to sum the contribu-
tions of a11 NFE diagrams with up to, and including, 15
bonds. The tabulation of the relevant W(1 ) is described
elsewhere. Fortunately, the list of NFE diagrams is not
very large. The calculation of cumulants, requires sub-
tracting from a given NFE diagram the contributions
from all NFE subdiagrams according to Eq. (2.25). A
check on the procedure is that, whereas Y(I ) may con-
tain lower powers of p, when the cumulant subtraction is
performed, the resulting Z(I ) has no contribution with

powers ofp lower than p bnb(I )

The series are given in Table III. We give the first
three moments as rational fractions but were unable to
deduce the rational form for the highest moments. The
two-dimensional S(p) series agrees with previous calcula-
tions and the three-dimensional one agrees to 14th order
with the corresponding series of Sykes and Wilkinson.
The calculation of identical elements of the series by two
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algorithms as different as these, strongly indicates that
both must be correct. Since our method is highly compu-
terized, this suggests that our other elements must also be
reliable. Checks have been made on the elements up to
13th order by calculations from the complete graph lists
as weB as from the NFE ones.

III. ANALYSIS

A. Methods

We have analyzed the series presented above as well as
some of the series from Ref. 23. We have analyzed the
individual series presented above, with two different
methods, "' ' based on the assumption that there
are nonanalytic conQuent corrections to scaling and one
based on the assumption that there are logarithmic
conQuent corrections. Each calculation that was made
for the individual series was threshold biased, but since a
very large range of trial thresholds was selected all possi-
ble values were allowed for. In addition to the analyses
of the individual series, we have studied various combina-
tions of the series for the different moments and of the
series obtained by squaring individual moments. These
combinations' ' eliminate the need for prior knowledge
of the exact percolation threshold. They are therefore an
important tool for the percolation problem where thresh-
old uncertainty has really interfered with past analyses.

It should be noted that many of the analyses that were
not threshold biased were made by the following "blind"
procedure. First we assigned each series a difFerent iden-
tifying number and then analyzed them in random order,
without regard to identity. The results were then
identified and tabulated. This procedure ensured that no
prior bias from the "expected" results interfered with the
determination of the critical exponents. We believe that
this is an important precaution when analyzing series for
problems about which considerable information is avail-
able.

Our approach to the analyses of a set of series for a se-
quence of moments and for an arbitrary set of dimensions
has been discussed at length in many of our earlier pa-
pers. ' ' ' ' The series presented in the previous sec-
tion are similar to those in these references where both
the strengths and potential pitfalls of our analysis are
presented. Work with test series and exactly solved mod-
els has demonstrated that our combination of methods
gives at least a three-significant-figure reliability for dom-
inant exponent estimates in models for which 15-term
low-density series alone are available. Improved accura-
cy is found when high-density series are also available
as is the case for percolation in three dimensions. Fur-
ther work on test series will be presented in Ref. 38.

The analyses based on the assumption of nonanalytic
confluent corrections to scaling assume that the series be-
ing studied, denoted by H (p) in general, has the form

H(p)=A(p, —p) "[1+a(p,—p) '+b(p, —p)+. . .],
(3.1)

where h is the critical exponent that we wish to deter-
mine. In the first method of analysis, denoted below as

M 1, we study the logarithmic derivative of

& (p) =&H(p) —(p, —p)
dH(p}

dp
(3.2)

and then take Pade approximants to

6 (y) = b, , (y
—1) ln(H (p) ), (3.3)

which should converge to —h. Here we plot graphs of h

versus the input b
&

for different values of p, and choose
again the triplet p„h, h&, where all Fades converge to the
same point. When 6,=1.0 this method reduces' to the
usual biased d log Pade method. We carried out prelimi-
nary unbiased d log Pade analyses of the S(p} series to
obtain approximate initial estimates of y and p, . These
estimates are close to the values seen at 5,=1.0 in the
M2 method, making them reasonable only in those cases
where the true b I is near unity. Both of those methods
have proven very useful for many problems, but do re-
quire the simultaneous determination of three critical
quantities.

In addition to the above temperature-biased analyses of
individual series we have also used an old method50 (see
also Ref. 13},involving term-by-term dividing two series
with the same critical threshold and then studying the
"divided" series. If we begin with two series expansions
Y=g. O„y pi and Z=g. 0 „zpj then we shall denote

the term-by-term divided series, g. 0„(yj/z. )p~, by
7' —:Z.This divided series should have critical behavior
with a threshold at p =1 and a dominant critical ex-
ponent equal to the difference between the exponents of
the two original series plus 1. The division is expected to
introduce an analytic correction to scaling (i.e., b, , = 1).
If this correction has a large enough amplitude it could
provide a nice convergence region for the evaluation of
the dominant exponent. It is to be hoped that the ampli-
tude of the introduced analytic correction is suScient to
swamp the nonanalytic correction of the individual series
which is still present. This method avoids the problems
associated with uncertainties in p„but convergence is

poorer owing to competing effects of the two corrections.
One possible way to obtain exponents from a single

series H (p) when we are uncertain of the exact threshold
is to utilize the above approach with series Y being
(H(p)), and series Z being H(p) itself. We call the
resultant series, which has a critical exponent of 6+1, a
"self-divided*' series, and denote it by H

We note that for both the term-by-term divided series
and temperature-biased series, it is important to use both
M1 and M2 for each case. This is because for certain
tests * and well-behaved model series the M2 analysis

which has a pole at p, with residue —h +6,. For a given
value of p, we obtain graphs of b,

&
versus input h for all

Pade approximants, and we choose the triplet p„h, A,
where all Pades converge to the same point. In the
second method, denoted below as M2, ' ' we first trans-
form the series in p into a series in the variable y, where

y =1—(1—p/p, ) ',
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gives the correct dominant exponent estimate with inter-
section regions at the correct 6, and also at resonance
b, iln values. Thus, it would be difficult to identify the
correct 6, value if we did not also have the M1 method
which is resonance free. %e do not use M1 alone as
test series work suggests that it gives 6, estimates which
are less accurate than the M2 ones when 6I is far from an
integer. The use of two methods also eliminates the pos-
sibility that accidental spurious convergence regions will
be confused with the correct results. Attention should be
payed to the fact that in Ml we input h, whereas in M2
we input b &. This means that the M1 graphs may have
multiple values of h for a single 6i choice, whereas in M2
the opposite is true. %e have chosen to present both
analyses with the same axes for ease of comparison.

The assumption of logarithmic corrections entails
fitting to the form

H(p)=(p, —p) "l»(p, —p)l'. (3 4)

X I[H(p)'/H(p)] —[h/(p, —p)]I . (3.5)

We can show that the limit of g(p) as p~p, i». We
take Pade approximants to g at the exact or most reliable
estimate of p, to obtain graphs of 8 as a function of h.

%e fitted this form with the method of Adler and Priv-
man. The analysis of the logarithmic form involves
writing H=zh and then taking Pade approximants to the
series

g(p)=( —Ii) '(p, —p)ln(p, —p)

cluster size (j =2) alone since we did not reexamine d & 6
in Ref. 5. We saw corrections to scaling at 6]=0.5 and
1.0 in d =7 and 8, in agreement with 6,=(d —6)/2 that
came from the exact result near the Gaussian fixed
point. However, in d =8 we also saw a resonance at

In the analysis of the 15th-order series we found the
thresholds at d =8 and 9 to be unchanged from Ref. 33
when we studied the mean cluster size and some of the
higher moments. The best convergence in the longer
series was very close to that of the shorter series and we
see no reason to change the central values of the error
ranges. It would be quite reasonable to reduce the size of
the error bounds based on the quality of the convergence,
but we prefer not to in case we have neglected any sys-
tematic errors. For d =8 and 9 we again saw analytic
corrections.

At d =7 we could see a clear convergence to a value of
5]=0.35, slightly below the predicted result of AI=0. 5
for a threshold of p, =0.078685 slightly above that cit-
ed by us (p, =0.078 62+0.00003) and closer to the old-
er values. This was the best convergence seen for this di-
mension and was superior to that at p, =0.078 62. At the
old value exponents 5&=1.0 and y=1.0 are seen. For
p, =0.078 680 exponents of b, =0.5 and y =1.0 are seen,
but the convergence is a little weaker than at the higher
value.

C. Six dimensions

8. Above the upper critical dimension

In our previous study of the high-dimensional per-
colation series we gave estimates for the thresholds in
7(d (9 from the 11th-order series. These are quoted in

Table II, and we note that they are based on the mean

At six dimensions the correct behavior3' is given by
Eq. (1.3) for S(p) (which is equivalent to I z) and by Eq.
(3.4) with 8=—', and y~ =2j—1 for I' . From a study of
the S(p), S(p)', and I'3 series we found the best conver-
gence to these values for p, =0.0942. We found that op-

TABLE IV. Our estimates for h and 61 from the divided series.

Series

sc S(p)'d
sc (Ss&)
sc (Sbb)
bcc (S„)'d
bcc (S,b)
bcc (Sbb)'
sc I3
sc r4
sc r3 —-S(p)
sc r,—:r,
hc S(p)'
hc I"d
hc r
hc I 3

—'. S(p)
hc r,—:r,
11c S(p)
hc I ~3

hc rsd

hc r3 —.S(p)
hc r4 —I 3

r
r

r

2y+P
3y+2P

2y+P
3y+2P

r
2y+P
3y +2P

1.82
1.90

1.81
1.82

1.85
1.90

4.2
6.2
2.20
2.20
1.39
3.45

1.85
1.86
1.70
4.0
6.2
2.14
2.18
1.37
3.45

2.08
2.07
1.18
3.20

2.08
2.08
1.18
3.20

2.025
2.025

2.025
2.017

(b I
= 1.0)

h (M1) h (M2)

1.83
1.80

1.83
1.75

1.0
1.1

& 1.5
1.05
1.3

& 1.5
& 1.5
& 1.5

1.44
3.70
5.45
2.06
2.07
1.18
3.25
5.25
2.025

0.8
0.5
1.75
1.3
1.0
0.5
0.7
0.7
1.0

(Best convergence)
h (M1) hi(M1)

1.90
1.85
1.72
1.90
1.80
1.72
3.9

0.8
0.9
1.25
0.8
1.2
1.2
1.3

& 1.5

1.41
3.45
5.4
2.07
2.08
1.18
3.23
5.10
2.015
2.015

0.8
1.0
1.8
1.1
1.0
0.6
0.8
1.3
1.2
1.1

h (M2) AI(M2)
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timal convergence occurred near these values. This p, es-

timate is again a little above the value from the 11-term
series.

D. Below the upper critical dimension

In dimensions d =3-5 we are interested in obtaining
the critical exponents and thresholds to the highest pre-
cision possible. Our strategy has been as follows: For
each lattice we begin by studying the various possible
term-by-term divided series in order to remove any possi-
bility of threshold bias. Series studied included I, and
various combinations of I —:I'kwith k &j. Results for
d =3—5 are given in Table IV. Using these exponent es-
timates and the criteria of convergence of Pade plots, we
have then selected thresholds for each lattice from a
study of the S(p) series for difFerent trial thresholds. We
have revised the exponent estimates if the convergence

was outstanding relative to that of the divided series. We
have then studied the higher moments near the central
threshold in order to obtain improved P estimates. (In
the event that clear convergence would be seen here, we
would again revise thresholds self-consistently if needed,
but such a scenario did not eventuate with these series. )

The threshold biased exponent values are presented in
Table V, for those thresholds sufficiently near conver-
gence to merit consideration as serious contenders.
There is an error of +—,

' of the last quoted digit in each
table entry from the limit of reading error from the
graphs. The errors from poor convergence are taken into
account in the conclusions from the table. We have re-
ported results both for optimal correction exponent con-
vergence and at value of an analytic correction, b, 1

=1.0.
Results in the columns of b, 1=1.0 are absent in the cases
where no results corresponded to this correction. We
present both cases in order that the corresponding d log

TABLE V. Our estimates for h and 6& from the temperature-biased series.

Series Threshold
(61=1.0) (Best convergence)

h (M1) h (M2) h (M1) 5&(M1) h (M2) b, &(M2)

3 sc S(p) 0.2492 y
3 sc S(p) 0.2490 y
3 sc S(p) 02488 y
3 sc S(p) 02486 y
3 sc I 3 0.2492 2y+P
3 sc I, 0.2488 2y+P
3 sc I 3 0.2486 2y+P
3 sc I 4 0.2488 3y+2P
3 bcc S„0.18075 y
3 bcc S„0.18050 y
3 bcc S„0.18030 y
3 bcc S„0.18020 y
3 bcc S„0.179 50 y
3 sc P(p) 0.2494 P
3 sc P(p) 0.2489 P
3 sc P(p) 0.2488 P
3 sc P(p) 0.2487 P
3 sc P(p) 0.2486 P
3 bcc P(p) 0.1803 P
3 bcc P(p) 0.1802 P
4 hc S(p) 0.160200 y
4 hc S(p) 0.160100 y
4 hc S(p) 0.160075 y
4 hc S(p) 0.160050 y
4 hc S(p) 0.160025 y
4 hc S(p) 0.160000 y
4 hc S(p) 0.159900 y
4 hc I, 0.1602 2y+P
4 hc I 3 0.1601 2y+P
4 hc I 3 0.1600 2y+P
4 hc I, 0.1599 2y+P
4 hc I 4 0.1600 3y+2P
5 hc S(p) 0.11823 y
5 hc S(p) 0.11820 y
5 hc S(p) 0.118 19 y
5 hc S(p) 0.118 18 y
5 hc S(p) 0.118 17 y
5 hc I, 0.118 19 2y+P
5 hc I 0.118 19 3y+2P
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In four dimensions we have a small inconsistency be-
tween the diferent methods of analysis for the I 4 series,
but we are still able to make accurate exponent estim tima es.

e ~@~ serces gives y =1.42. This value corresponds
to a threshold of 0.160000 or 0.160025. For the
threshold-biased S(p) series we see superior convergence
near p, =0.1601 (which corresponds to y=1.44). Both
these values are below those of the 11-term series, where
optimal convergence was seen at our old p, choice of
0.1603. For both series we have roughly the same behav-
ior of y as a function of p, and h„but as the length in-
creases optimal convergence moves a little down in p„

anal ses iv
and therefore to slightly lower y values. The Ies. e 3 series
ana yses give an average exponent of 2y+P=3. 51 which
corresponds to p, =0.1601. Here convergence was better
at 0.1600. Thus, we choose as th e centra p, value1

0.16005, and give p, =0.16005+0.000 1

y= . 35 0.015. The measurements of 6 from the di-
vided series average out to 2.074+0.006, which
estimatee of 0.639+0.02. These results give 3y+ 2P

, w Ic gives aP

sured
=5.58320. 12 which is consistent with the dir 1e Irect y mea-
sure y4 value, but higher than that from the I"e 4 ser&es.

e convergence of the latter was poor, but that of the
threshold-biased series was quite reasonable for the range
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rounding the region of convergence we see that the range
0.385 to 0.415 must be included for P. Similar behavior is
seen for the 41-term bcc series, illustrated in Fig. 5(b).
These values suggest that we should revise our P estimate
slightly upwards and imply that the P estimate from the

temperature-biased I 3 and I 4 series may be more accu-
rate than those from the divided series. We suggest an
overall P=0.405+0.025. Together with the preferred
y=1.805+0.02 we have 6=2.21+0.04. This gives us
v=0. 872+0.070 and q= —0.07+0.05.

IV. AMPLITUDE RATIOS

extrapolation procedure. We list the new estimates ob-
tained for SQ4/33 and S25/34 and compare them with the
e-expansion values and the values obtained by Adler
et al. translated into our terms. Note that our estimates
are for amplitude ratios on the same side of the transi-
tion. Amplitude ratios from both sides of the transition
are harder to estimate, and this may be the cause of the
discrepancy between continuum and lattice percolation
values. We have learned ' that our results have stimulat-
ed some work on the determination of this kind of ratios
for the continuum percolation problem.

and I is the usual y function. The A; are defined in Eq.
(1.4). In this method we analyze the series g„c„"/"'p",
where,

ljlkl — (~) (j)/ (k)a(l)
~n =~n ~n ~ ~n ~n (4.1)

and a„'" is the coefficient of p" in the series for I &. As is
shown in detail in Ref. 13, the resulting series behaves, to
leading order, as S,"/k, /(1 —p), independent of the values
ofp, and the critical exponents. Thus,

S" = lim e"ij /kl n
n —+ oo

and estimates for S,J&kl are obtained by extrapolation of
the series coeScients. The resulting estimates are
displayed in Table VI. The errors quotes are those of the

In addition to the critical exponents, certain amplitude
ratios are also universal quantities. These may also serve
to characterize the universality class. This is especially
relevant to the percolation problem due to the recent
claim of differing amplitude ratios for lattice and continu-
um percolation. ' Thus, accurate estimates of the ampli-
tude ratios are desirable. We used a method introduced
in Ref. 13 to estimate the related universal quantities

SJ/kl
= ( ~ ~q /~k ~ i )& 1/kI

where

V. CONCLUSIONS AND COMPARISONS
WITH OTHER RESULTS

Our new exponent and threshold values have been en-
tered in Tables I and II. Overall we see a very pleasing

improvement in accuracy of evaluation. The increase in
accuracy with respect to our calculations from the short-
er series is at least tenfold for most exponents. We must
emphasize that our error estimates often tend to be sub-
stantially larger than those of series calculations based on
d log Pade analysis, since we quote a final range based on
all possible convergences in the h, 5& planes of the thresh-
old range where some convergence is seen. Thus, it is
very unlikely that the true result is outside our error bars.
In usual d log Pade analysis values for 6,=1.0 only are
included. The increase in accuracy is largest for P, since
the higher moments used in the P determination con-
verged much better than did the 11th-order ones.

An increase in the extent of agreement with results
from the e expansion can also be seen. For d =4 and 5
our results for y and P agree completely to the accuracy
of both calculations, and our results now have less spread
than that between some of the different extrapolations
from the third-order e expansions. In five dimensions the

y estimate has moved much closer to the e-expansion re-
sult, without a large shift in central threshold estimate.
In four dimensions, despite a relatively large movement
in optimal threshold, the value has remained close. The
P estimates are extremely close in both dimensions. The
values for v, which are obtained from our series results

Dimension

TABLE VI. Amplitude ratios.

S24/33

Exact, Ref. 5

Series, this work

2 (1—0.01195'—0.011322' )

—' /(1+0.01195e+0.011469m )

Series, Ref. 5

S25/34
Exact, Ref. 5

Series, this work
-'& 1 —0.019'—0.0149@ )

—,
' /(1+0.019@+0.0153m )

Series, Ref. 5

0.490+0.002

0.488

0.488

0.50

0.31+0.1

0.322

0.322

0.33

0.475+0.005

0.465

0.467

0.48

0.29+0. 1

0.301

0.303

0.30

0.436+0.005

0.431

0.439

0.43

0.25+0.2
0.270

0.279

0.26

0.37+0.01

0.386

0.406

0.35

0.15+0.5
0.229

0.252

0.18
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via hyperscaling, are in excellent agreement with the e
expansion in all dimensions. This lends credence to the
common belief that hyperscaling holds for percolation in

2 ~ d ~ 6. Our new threshold estimate in four dimensions
is much closer to that found by Grassberger than our
older estimate was. We do not have any comparison for
the five-dimensional threshold that is of comparable ac-
curacy and reliability.

At the conclusion of our original analysis, three dimen-
sions remained the only possible source of unhappiness.
In our past calculations for three-dimensional percolation
there has been a tendency to use Monte Carlo threshold
values. ' ' %'ith the extension of the moment series to
15 terms an independent threshold determination seemed
to be possible and was carried out. During the early
stages of this analysis we were rather concerned that the
thresholds at which convergence was seen failed to over-
lap with some of the Monte Carlo estimates. We were re-
lieved to receive information ' that more recent Monte
Carlo results indeed were close to the threshold values
that we were calculating. As can be seen in Table II, the
new results for the bond simple-cubic threshold are in ex-
cellent agreement with our value, and somewhat below
the old simulation values. For the body-centered-cubic
problem our threshold is above the old series value, and
we are not aware of any other recent calculations for this
system.

Unfortunately, as we write this there is not as complete
a consensus on exponent values. While there is excellent
agreement between our calculations and those of Ref. 37,
there remains a discrepancy with the field theoretic
values. The field theories give similar P estimates that are
only some 80% of the older series and Monte Carlo esti-
mates. It is not clear how reliable e-expansion results
should be at three dimensions, but the direct-loop vertex
calculations should be useful. ' Our results fall about
midway between the older series and the older Monte
Carlo results. Thus, our results and those of Ref. 37 are
still a little different from the field theoretic exponents. It
must be noted that we have two quite independent ways
to obtain P. Since one of these is from the high-density
series via direct measurement of P and the second from
the low density via evaluation of 6, the chances of there
being systematic errors in the measurements are greatly
reduced. The high-density series estimates are a little
higher than the low-density ones, although the error re-
gions overlap. For y percentagewise discrepancies are
much smaller. Our results are probably more reliable
than the older series results, since they are based on
longer series. The fact that both our results and those of
Ref. 37 fall midway between the old Monte Carlo and the
field theories for P would seem to suggest that they are
the most likely to be correct. (It should be noted that
while our central estimates are in excellent agreement
with those of Ref. 37 we claim a lower precision for
reasons of possible systematic corrections caused by
higher-order correction terms. We rather think such
corrections should also be present in the simulations. )
However, whatever the error range, it is now clear that g
is negative for three-dimensional percolation.

Our series amplitude ratios are in good agreement with

the e-expansion results; in the lower dimensions the im-
provement over the results of Ref. 5 is most pleasing.
This improvement further strengthens the claims made in
Ref. 5 concerning the reliability of the e expansion down
to d =2. At present we still cannot make a comparison
with simulation values and we hope that this will become
possible in the future.

The final results to discuss are those for the correction
to scaling exponent 5,. In addition to the estimates given
in Table I, we can compare our values with results ob-
tained for 0, the correction to scaling exponent in the
field direction. It has been proposed' that QP5=b, l, or
Qb, =5, from scaling arguments, and despite apparent
problems with this relation in 2D isotropic percola-
tion, ' it has been shown to be reliable for directed
percolation in higher dimensions. This relation gives
central b,

&
estimates of 0.33-1.01, 0.41, and 0.88 for five,

four, and three dimensions, respectively, using the b
values of our calculations. Comparison of these estimates
with those quoted in Table I, suggests that in five dimen-
sions the comparison is inconclusive because of the large
range of the 0 estimate. In four dimensions it appears
that we are not observing 0 and 6I values that corre-
spond via these scaling relations. In three dimensions it
is possible that the measured 5, and Q estimates do satis-

fy the scaling relation. Further e6ort towards checking
these relations via better calculations of 0 would be most
desirable.

We may observe from Table I that there is far less
agreement between the different correction exponent
values than is the case for dominant exponents, thresh-
olds or amplitude ratios. Nevertheless, in five dimen-
sions, our b, , estimate includes both the scaling field'

and e-expansion values within its error ranges. Since
our measurement falls between the other two it would
seem very likely that it is a reliable choice. There is
something of a discrepancy between some of the calcula-
tions in four dimensions, but the fact that the evaluation
of correction exponents is a higher-order problem, would
lead one to expect less precision than for dominant ex-
ponents. This could be an adequate explanation for these
discrepancies, were it not for the overall dimension
trends. Our value is close to that of Grassberger, and
both are a little below the field theoretic estimates. In
three dimensions, however, the discrepancy between our
value and that of the e-expansion is such that we can in
no way claim to be measuring the same exponent.
Grassberger's value is even lower than both. The e-
expansion correction comes from the most nearly
relevant correction term in 6-e dimensions. There is no a
priori reason to expect that this correction will remain
the most relevant down to three dimensions. The fact
that the scaling field estimate in three dimensions is also
below the e-expansion result lends credence to the possi-
bility than an operator that was more irrelevant near six
dimensions has crossed over somewhere near four dimen-
sions, and gives the most relevant correction in three di-
mensions. This is because in the scaling field picture (see
Fig. 5 of Ref. 19) there is exactly such a crossover just
above four dimensions and the second most relevant
correction has a value that is about the same as the e-
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expansion value. Furthermore, in Ref. 22 a second
correction was seen in one of the 3D series calculations at
approximately this location (b, , =1.8). This crossover
scenario is also consistent with the slightly higher values
that both the scaling field and e-expansion methods ob-
tain in four dimensions, since the approximation to the
actual dimensional location of the crossover could vary
slightly between the series and field theoretic results. Our
overall conclusion is that there is apparently a crossover
of irrelevant operators between three and six dimensions
and further elucidation of its nature could prove interest-
ing. We may add that while the series in four and five di-
mensions clearly exhibit nonanalytic corrections to scal-
ing it is possible that the 3D value of 6,=1.1+0.2 is an
analytic correction. The situation is somewhat reminis-
cent of 2D directed percolation, where it is also unclear
whether the measured correction is actually an analytic
term of not. In the directed percolation case M2 gave
resonances, suggesting a simple analytic form. Here this
is not the case. In both cases comparison with field
theoretic values suggests that there could be a close to,
but not exactly, analytic correction and unequivocal
determination is probably extremely difficult.

In conclusion, we have succeeded in proposing a con-
sistent set of dominant critical exponents, amplitude ra-
tios and thresholds for isotropic percolation above two
dimensions. We have also summarized existing informa-
tion for isotropic percolation, noting that where different
calculations have been made, agreement is excellent for
all but the correction exponents. It is to be hoped that
further work will be done via simulation on percolation
amplitude ratios. We have proposed a scenario for some
of the discrepancies in the correction behavior and hope
that further calculations will be undertaken in order to
test this hypothesis.

The most important implications of our work are two-
fold, and extend beyond the isotropic percolation prob-
lem. Firstly, the complete agreement with the alternately
derived 3D series of Ref. 23 (which is one term shorter)
shows that both algorithms for series development must
be correct. This is an extremely powerful check on our
NFE method, and on the computer programs that have
been and will be used for many different problems.
Secondly, the comparison with the newest ' 3D simula-
tions shows beyond all doubt that a series of sufficient
length, properly analyzed, yields results which are com-
petitive with the best alternative calculations. Since the
series require considerably less computer time than most
alternative methods, and our algorithm enables simul-
taneous determination of series for all dimensions, this is
most pleasing.
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APPENDIX A: MEAN-FIELD FRKK ENERGY
AS A FUNCTION OF FIELD INCLUDING

CORRECTIONS TO SCALING

)(
—zq —1)+B ( )

—zq (A2)

with Ao=(o +1)/o and Bo= —1/o, i.e.,

r, =—q'=(1+p)/(1 —op ) .

Then (A 1) yields

A = (2q —1)Aq0'
(A3a)

B = (2q —2)Bq

o+1 o —2
(2

O
2 +2

(A3b)

Solving (A3) we obtain

A = (q —2)' o+I 2(o —1)
'

( &)/ 2 3
2

(A4a)

&q C (4—2o )q+2o +5, ~ 2, (A4b)
3

and Po= —o'/(o+1). Thus,

The simplest way to obtain the corrections to the dom-
inant singular terms in the free energy is to calculate
these corrections to the moments of the cluster-size dis-
tribution for the Cayley tree. Results for the Cayley tree
of coordination number z should asymptotically agree
with those of the hypercubic lattice in d dimensions for
z =2d in the limit d ~~. To start with, we note that the
zero-field free energy has no corrections to the first two
terms in Eq. (2.18). This can be seen by using Eq. (2.16)
inasmuch as B =0 when h =0. Also BF/Bh =0 for

p &p, . Thus, we may limit our consideration to correc-
tions to I (p) for q & 2. These are most easily found us-

ing the recursion relation for q ~ 2,

I', =[p(1—p)Br /Bp+(1+p)r ]/(1 op) .— (Al)

For o &1 we set
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Having determined the corrections to all the derivatives
of F with respect to h, we can construct the corrections
to J' itself, the result being given in (2.18).

APPENDIX B: SITE-BOND GENERATING FUNCTION

To get the site-bond distribution function ' one con-
siders the Potts model with anisotropic interactions
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—h g (q&s(xi t
—1)

where

(B1)

K 1 g ~s(x), s(x') —1 K2 X s(x),s(x') —1 s(x), 1

&x,x') (x,x')
where W(n„nb, p ) is the average number of clusters per
site having n, sites and nb bonds at bond concentration p.
When K is nonzero, E2 is nonzero and the development
in the text must be revised as follows: Equation (2.11) be-
comes

and

K2 = —in[1 —p +p exp( —K )]

K, =in[1+ [p exp( —K)]/(1 —p)I .

exp[ —8]=1—p +p exp[ —(h +K +aB)],
and (2.13) remains valid but Eq. (2.24b) becomes

I'(I )=[nb(I ) —n, (I )]exp[ —(h +zB)]

(B3)

Now the free energy is the following generalization of
(2.2):

—(1—p)ns(I )exp[ —(h +tr&)]

+ g P ( C; I )exp —g h(x) —Knb(C), (B4)

F=h+ g W(n„nb, p)exp( n, h—n&K—),
n, ;nb

(B2)
ceI xEC

where nb(C) is the number of bonds in the cluster C.
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