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The total energy of two-dimensional electrons in a uniform magnetic field is systematically calcu-
lated for the square lattice, the triangular lattice, and the honeycomb lattice for various ratios of
transfer integrals. It has many cusps as a function of the magnetic field at which the Fermi energy
jumps across a gap. For a fixed electron density, the lowest energy with respect to the magnetic
field (including the zero-field case) is realized when the magnetic field gives one flux unit per elec-
tron in agreement with the proposal of Hasegawa, Lederer, Rice, and Wiegmann [Phys. Rev. Lett.
63, 907 (1989)]. The density of states is calculated analytically for the square lattice. The anyon lat-
tice gas, which obeys fractional statistics, is discussed. In the mean-field treatment of the flux, the
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boson gas has the lowest energy.

I. INTRODUCTION

The spectrum of tight-binding electrons on the square
lattice in a magnetic field' has an extremely rich structure
as shown by Hofstadter’ and Wannier.> When the mag-
netic flux ¢ (in units of ch /e) through a plaquette is a ra-
tional number p/q (p and g being mutually prime in-
tegers), the spectrum has g subbands. The rth gap from
the bottom can be labeled by two integers s, and ¢, which
are related to p, g, and r by a Diophantine equation’

r =gqs,+pt, , (1.1)

with |t,| <q/2. The Hall conductance where the Fermi
energy is in the gap is given by o,, =(e?/h)t,, thus it is
quantized.** The integer has a topological origin.%” It is
the Chern number of a fiber bundle which is defined by
the wave functions on a two-torus, the reciprocal space of
this problem.

Recently, there has been a renewal of interest on this
subject because this spectrum has been shown to be relat-
ed to the ground-state energy of a mean-field theory of
the t-J model.* ! This connection is also studied numer-
ically.'"!2 Hasegawa, Lederer, Rice, and Wiegmann'’
studied the stability of the state with respect to the mag-
netic field. From the results on a few rational values of
¢=p/q(q=2,3, 4,6, and 8), they argue that, if the num-
ber of electrons per site v is fixed, the total kinetic energy
of the electrons has an absolute minimum when ¢=v,
i.e., one flux per electron. This is an important and in-
teresting result especially in relation to the flux state
model for high-temperature superconductivity.!4 1%

A preliminary work!® has shown that this minimum is
cusplike and that other cusplike local minima exist when-
ever the Fermi energy is in a gap, that is,
v=r/q =s,+¢t,. In the low-density limit, the local
minimum at v=t,¢ (s,=0, t,>0) correspond to filled
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Landau levels of a continuum system. The other gaps are
due to the commensurability between the lattice periodi-
city and the magnetic field.

The isotropic case (isotropy of the transfer integrals) is
known to be a special case.”"?* For irrational flux, the
total bandwidth of the spectrum is zero which implies a
singular continuous spectrum.

In this paper we study the spectrum both in the isotro-
pic case and in the anisotropic case which has not been
analyzed in detail.?*?® This study may be relevant to
various physical interesting problems: quasi-one-
dimensional conductors in a magnetic field or anisotropic
high-T, superconductors to which an anisotropic -J
model would apply. We calculate analytically the density
of states (DOS).

We also calculate the total energies on the triangular
and honeycomb lattices. The lattices which are topologi-
cally equivalent to these lattices are obtained from the
square lattice by adding bonds (triangular lattice) or re-
moving bonds (honeycomb lattice).

II. SPECTRUM OF THE SQUARE LATTICE

The two-dimensional tight-binding Hamiltonian on the
square lattice in a magnetic field

==y t,-jc;c,elzm” , (2.1)
ij

where i and j are nearest-neighbor sites and c; (c}) isa
fermion annihilation (creation) operator at site i (j). The
phase factor is given by the line integral of the vector po-
tential as

e J
= dl .
b= J, A
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FIG. 1. Energy spectra for two-dimensional tight-binding electrons in uniform magnetic flux ¢=p /307. The dashed lines are Fer-
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307
are labeled by sets of integers (s,,¢,) [see (1.1)]. (a) t,=t,=1. (b)t,=2and t,=1. (c)t,=10and t,=1.
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Thus, the magnetic flux through a plaquette is given by
=3 plaquette $i; in units of ch /e. The transfer integral is
denoted by t;; =1, along the x direction and ¢;; =1, along
the y direction. The anisotropy is characterized by the
ratio t,, /t,.

If the Landau gauge A =(0,Bx,0), is used, the wave
function is written

1//,,m(kx,ky )='(IJ,,(kx,ky )elkxn +ik,m ’

where n and m are integers representing x and y coordi-
nates of the square lattice, respectively. The Schrodinger
equation

HIY)=EY) ([9)=3 Yumlke,k,)c),10)

M, —t,e ” 0
—1,e" M, —te "
F,,,(E,k,,k,)=det :
0 0 0
—te ™0 0
where
M, = —2t,cos(k,+2mn¢)—E . 2.4)

Since (2.3) is of gth order, the spectrum of the original
two-dimensional (2D) problem has g bands. Each band is
g-fold degenerate since

E(ky,k,+2mj/q)=E(k,,k,)

(j=12,...,9—1) as seen from (2.2).
straightforward to see the structure

F,, (E,k,,k,)=F,,(E,0,k,)—2tJ[cos(gk,)—1] .

Here it is

By duality k, <k, t,«>t, we obtain,

F,,(E,ky,k,)=F,,(E,0,0)+2(td+tf)—a, ,

where
a, =2tjcosqk, +2tjcosgk, . 2.5)
The eigenvalue equation now takes a simple form
G(E)=F,,(E0,0)+2(t]+tj)=q, . (2.6)

The spectra for several values of anisotropy ratio
(ty/t;,=1, 0.5, and 0.1) are shown in Fig. 1. The spec-
trum is unchanged when ¢ is shifted by an integer since
2m¢ appears as a phase factor in (2.1). This symmetry is
more easily seen from (2.2). The spectrum is also invari-
ant under a reversal of the magnetic field, i.e., ¢ — —¢.
Therefore, it is enough to show the spectra for 0<¢ =< 1.
The spectrum for  <¢ =<1 is obtained by the symmetry
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yields the Harper equation
E (ky,k, W, = —2t,cos(k, +2mn )y,

ik —ik
—t e Y, te Y,y 2.2)

For a rational flux ¢=p /g, we have ¢, , , =, and

(K|0<k, <27/q,0<k, <27}

is the magnetic Brillouin zone which is reduced due to
the effect of the magnetic field (see, for example, Ref. 26).
This equation can be regarded as a one-dimensional
tight-binding model with on-diagonal modulation.?’” The
secular equation for this linear system is

0 —-taeik"
0 0
=0, (2.3)
—te" M, —te
—t,,eik" M,

¢—1—¢. Also, it is shown from (2.3) that the spectrum
is symmetric with respect E =0.

III. DENSITY OF STATES OF THE SQUARE LATTICE

From (2.6), one can write the DOS p(E) as

plE)=pg aE | (3.1)

where the associated density of states p is defined by

d*k
dG= . (3.2)
Pe (2m)?
For the isotropic case, it is given analytically as
1 G
= K'|—1, (3.3)
Pe 2mqt® 4

where K'(k)=K [(1—k?)!/?] and K is the complete ellip-
tic integral of the first kind.® The DOS for ¢=p /q thus
has g bands with a pagoda shape which is characteristic
of the 2D electron gas on the square lattice. There is a
Van Hove singularity (logarithmic divergence) at each
half-filled subband. See Fig. 2. The linear variation
p(E)x<E near E =0 when g is even corresponds to the
zero mode described by Kohmoto®® and Wen and Zee.?®
When anisotropy is introduced, each Van Hove singu-
larity is split into two singularities [for ¢ =0 the separa-
tion is 4(¢,—1t,) in energy]. The associated density of
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states pg is still known analytically?® so that one can
deduce the DOS as

1 dG
(E)=————— | &L
p 271y 27 | dE B(G) , (3.4)
with
( +])2—x2 172
B(G)=K l—‘w——— for |G| <2(1—y)t, ,
& y+] B x2 172
2y (y+1)%2
for 2(1—y)t, <|G|<2(1+y), , (3.5

where x =G /(2t,). The DOS is plotted in Fig. 3 for
¢=1+ and t,/t,=0.7 and 0.1. When t,/t, is small, the
DOS evolves toward the 1D DOS, although the logarith-
mic Van Hove singularities always remain unless ¢, =0.

IV. TOTAL ENERGY

In this section, we study the total energy of electrons
for a fixed density as a function of the magnetic flux ¢ for
the square, the triangular, and the honeycomb lattices.
The total energy per particle will be denoted by E(¢).
When varied continuously, ¢ is irrational almost every-
where and the spectrum consists of infinitely many sub-
bands with zero widths (Cantor set). In numerical calcu-
lation, however, we can handle only rational points
¢=p /q, so we take large values of ¢ to deduce the behav-
ior E-(¢). For a large value of g each subband is narrow
and we can approximate the DOS by & functions with a
weight 1/¢q’

.
pE)=- S 8(E—E,), .1)
q n=1

where ¢’ is the number of subbands (which is equal to g
for the square lattice) and E, is the center of nth band.
Since the total width of the subbands is of the order 1/¢q
for the isotropic square lattice,>! we get the total energy
very accurately when ¢ > 10. For an anisotropic transfer
integral case of the square lattice, however, the sum of
the bandwidths is nonzero as g goes to infinity although
each bandwidth approaches zero. Therefore, the -
function approximation for the DOS is less accurate. We
must take a much larger g to get an accurate result.

A. Square lattice

We set g to a large prime number 307 and vary p from
1 to (¢ —1)/2=153. The spectra are shown in Fig. 1 to-
gether with the Fermi energies for fixed electron densi-
ties. The corresponding total energy per particle Er is
shown in Fig. 4. From these data for the rational points,
one can expect that E; is a continuous function of ¢. We
also calculated the total energy for several values of ra-
tional ¢ whose ¢ is not 307 (note that if ¢ is continuously
changed, p and g vary wildly). The total energy is always
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FIG. 5. Total energy per electron at densities v (ﬁ, -3%,
255+ -+ 32 for the isotropic square lattice.

in between the two energies of the two nearby points of ¢
with ¢ =307. This supports that E(¢) is continuous.
Figure 4 clearly shows that the total energy has a cusp
(local minimum) at the position where the Fermi energy
jumps across a gap. Thus, a cusp is labeled by s, and
t,=h/e Zaxy which are given in Fig. 4. For an irrational
¢, the spectrum is a Cantor set, namely the gaps are
dense.? Since ¢ is almost always irrational, we expect
that E;(¢) has cusps everywhere and is nondifferentiable.
The cusps get less pronounced as the anisotropy is in-
creased.

In the cases shown above, the lowest energy state is
realized for ¢=v (s,=0, t,=h /ezaxy=1) and ¢=1—v

(s,=1,t,=h/e Zaxy = —1), which has the same spectrum
as for $=v. In Fig. 5, E;(¢) for other values of v (3},
o 33—7, e, %) for the isotropic case are shown. It can

be seen that the lowest energy is always realized when
¢=v. We believe that this result holds for all the values
of v including irrational fillings.

B. Triangular lattice

Let us add bonds with transfer integrals 7, between
next-nearest-neighbor sites of the square lattice in only
one direction as shown in Fig. 6(a). Since this lattice is
topologically equivalent (namely, it can be continuously
deformed) to the triangular lattice, the electronic proper-
ties are the same as those for the triangular lattice. We
consider this lattice and use the same Landau gauge as
for the square lattice. So the new bonds between (n,m)
and (n +1,m +1) gets a phase exp{i(2n +1)m¢}. Here,

(a)
*r—» .4

(n,m+1)
b A

(nm) t;  (nelm)

#
0 v"’
0“' a"'
0d 0d

o (n+1m+1) o o
- '0' a

'0“ 0

.

c

B

¢
°

(b)

(n,m) (n+1,m)

FIG. 6. (a) A lattice which is topologically equivalent to the
triangular lattice. (b) When the bonds which have a transfer in-
tegral ¢, is removed from this square lattice, it becomes topolog-
ically equivalent to the honeycomb lattice.

¢ is the flux per square, and the flux per triangular pla-
quette is ¢ /2. The energy spectrum for a rational flux
¢=p /q is obtained by the secular equation of a ¢ X ¢ ma-
trix:

N, 4, 0 - 0 A

A} N, O --- 0 0
det | : ER : =0, 4.2)

0 0 O A, N, 4,

4, 0 0 --- A, N,
where

N,=—2t,cos(k, +2mn¢)—E (4.3)
and

A,,=—taeik"—tcei(k"Jrky)e‘"ﬂz"’L”"S . (4.4)

The total energy per particle for v= 2. (=1) is plotted in
Fig. 7 for t,=¢t,=1 and ¢./t,=0, 0.5, and 1. The flux
per a unit cell (triangle) is now ¢ /2, so the spectrum is in-
variant when ¢ is shifted by an even integer. Therefore,
the degeneracy between ¢ =v and 1 —v for the square lat-
tice is lifted by taking a finite ¢, and the absolute
minimum of the total energy is obtained at $=v. The tri-
angular lattice with uniform transfer integrals is realized
when t./t,=1.



9180

-5.0
0.0 0.5 q) 1.0

FIG. 7. Total energies per particle for fixed densities v= %.
Line a: honeycomb lattice, namely, t,=t,=t,=1¢,=0 in Fig.
6(b). Line b: t,=t,=t,=1t,/t,=0.5. Line c: square lattice
with t,=t,=1. Line d: the triangular lattice in Fig. 6(a) with
t,=t,=1and t./t,=0.5. Line e: the triangular lattice in Fig.
6(a) with 1, =t,=t, = 1.

C. Honeycomb lattice

Let us consider transfer integrals ¢,, t,, t,, and ¢, at the
bonds on the square lattice as shown in Fig. 6(b). Note
that a lattice which is topologically equivalent to the
honeycomb lattice is obtained from the square lattice by
removing the bonds which have a transfer integral ¢,.
When a gauge A=[0,¢4(x +y),0] is chosen, the wave
function may be written as

¢nm(k1’k2)=el(kln+k2m)$n+m(k1’k2) .

Then the secular equation for the energy spectrum is

—E, B, 0 --: 0 B
BY —E B} --: 0 0
0 B —E
et : ¢ S
0 0 o --- B, —E B,
B, 0 o - 0 By —E
(4.5)
where m =gq /2 for q even, m =gq for g odd,
B,= —taeik" ——tbeikye"""""’5 (4.6)
and
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By=—t,e" s —tje"veiman 1 @.7)
The energy per particle for ¢, =t,=t,=1, t, /t,=0, 0.5,
1, and v~ is plotted in Fig. 7. When ¢, =0, we have the
spectrum for the honeycomb lattice with uniform transfer
integrals. Note that the unit cell is doubled and the flux
per unit cell is 2¢. Thus, the spectrum is unchanged
when ¢ is shifted by an integer or a half integer. The ab-
solute minimum is obtained at ¢=%—v, v, 1—v, 1+v.
Note that all these minima are related to §=v by the
symmetries.

V. ANYON ON THE LATTICE

It is worthwhile to comment on the problem of anyons.
In two dimensions, statistics for quantum-mechanical
particles can be exotic and characterized by the braid
group.’®*! If two particles are interchanged, the wave
function gains a phase factor ¢‘®. Bosons have §=0 and
fermions have 0=. For other values of 0, the statistics
is called 6 fractional statistics. The system obeying this 6
fractional statistics has been recently studied by the
several authors'*!® in relation to high-temperature su-
perconductivity. In this paper, we follow the convention-
al notation®® and consider an anyon obeying 6 statistics
to be a fermion with a confined flux attached to it.

The Hamiltonian of a free-anyon gas in continuous
space is written

> (5.1

1
H=_‘;§(pi—ai)2 )
where a; is a statistical vector potential of the ith particle
defined by

ZX(r;—r1;)
l.__ - 7
m

(5.2)

I lri_rjlz

The ground state of this anyon gas is speculated to be su-
perconductive.’ ™17

Let us define anyons on the square lattice.’>** If a flux
of /2 goes through an adjacent plaquette of a fermion,
the particle with the flux obeys @ statistics with 6=7—8.
Let us consider a string which starts from the plaquette
and extends to x = oo (see Fig. 8). For a bond which

y O electron
o flux tube

:

string

@t
@
]
@
)
Y
)
3
<}
@

/-

—0)

|
@
@)
@|
@
@

> x

FIG. 8. Definition of anyons on the lattice.
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crosses the string, we assign a phase. The Hamiltonian
for free anyons on the square lattice is thus written

-6,
H=—1t73 c;e Ve,
Cij)

(5.3)

where the summation is over the nearest-neighbor sites
and 6;; is 6 multiplied by the number of strings which
cross the bond (ij).

In the following we average these strings in the spirit of
the mean-field approximation.'*”!® We want to replace
the system of anyons by the fermion system with a uni-
form magnetic flux ¢. If an anyon moves around another
anyon anticlockwise, the wave function changes the
phase by 28. This is easily seen from the string
configuration in Fig. 8. Thus, if an anyon moves around
an area S, the wave function gets a phase 26vS on the
average, where v is the density of the anyons. In order to
get the same phase change by a fermion system with a
uniform flux, the flux is ¢=0v/7. If we write
0=m(1—1/n), we have 8=m/n and ¢=v/n. When n is
an integer, the Fermi energy is in a gap with s,=0 and
t,=h /ezcrxy=n. So the total energy has a local
minimum as a function of n (or equivalently 6) at an in-
teger value of n. As shown in Sec. II, the absolute
minimum energy state is realized when v=¢, namely,
n =1. This corresponds to a boson system. The local
minimum value increases as an integer n is increased. In
the low-density limit, the lattice system corresponds to a
continuum system, where n Landau levels are filled. The
fermion system is given by n = 0.

Until now we have considered spinless particles, i.e.,
only one species for anyon and electron. Here, we take
into account the internal degree of freedom for both elec-
trons and anyons. If we consider two species of anyons
and electrons, then the absolute minimum of the elec-
trons is obtained at v=2¢, because in this case v=v,+v,
and the absolute minimum is realized at v,=v,=¢,
where v, and v, are the densities of each species of parti-
cles. This absolute minimum corresponds to anyon sys-
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tem with n =2, i.e., semion, which was argued to be
relevant to the high-T, superconductivity by Laughlin.!!

VI. SUMMARY

We studied numerically noninteracting electrons on
two-dimensional lattices (square, triangular, and honey-
comb lattices) in a uniform magnetic field. The triangu-
lar lattice is obtained from the square lattice by introduc-
ing next-nearest bonds as shown in Fig. 6(a). The honey-
comb lattice is obtained by removing bonds from the
square lattice as shown in Fig. 6(b). Thus, these lattices
are transformed continuously by each other. We fixed
particle density v and calculated the total energy per par-
ticle E; as a function of flux per square cell ¢. The func-
tion Ep(¢) is continuous but has cusps everywhere.
These cusps correspond to a point where the Fermi ener-
gy jumps across a gap. For all cases we examined
(square, triangular, and honeycomb lattices with a vari-
ous ratio of the transfer integrals), the minimum of E;
occurs when ¢ =v, namely one flux per electron.

Anyons on the lattice are considered. In the mean-field
approximation in which statistical flux attached to parti-
cles is replaced by a uniform magnetic field, the boson
system has the lowest energy. Nori and Doucot** also
calculated the total energy on the square lattice. Yoshio-
ka and co-workers® studied the triangular charge-density
wave in two dimensions under a magnetic field and got a
cusplike minimum of the energy. Their results are con-
sistent with ours.
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