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Lattice model of microemulsions
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A simple model of oil, water, and amphiphile, in which the third is favored energetically to sit be-
tween the other two, is studied in three dimensions via mean-field theory. Oil-rich, water-rich,
disordered fluid, and lamellar phases exist. Phase diagrams show the progression from two-phase to
three-phase to two-phase coexistence commonly observed in such systems. Three independent
structure functions characterizing the disordered fluid are calculated to determine whether it can be
identified with a microemulsion. It is found that the region in which this fluid phase exists can be
divided into a part in which correlation functions decay monotonically at large distances, and
another in which their decay is nonmonotonic. We identify the latter with the microemulsion.
There is no phase transition between the two regions. In the microemulsion, the water-water struc-
ture function at low waue number has the form proposed by Teubner and Strey, with coefficients
that we determine. The behavior of the structure functions along different thermodynamic paths,
and for systems both balanced and not, is presented. Agreement with experiment is qualitatively
good.

I. INTRODUCTION

Systems of oil, water, and amphiphile exhibit many in-
teresting properties which have made them the object of
a great deal of study. ' In the absence of the amphiphile,
it is commonplace that oil and water do not mix. What is
remarkable is that the addition of only a small amount of
amphiphile, typically a few percent by weight, causes oil
and water to form one isotropic phase. The smaller the
amount needed to solublize the oil and water, the better
the amphiphile is said to be.

Although isotropic, the disordered mixture of oil, wa-

ter, and amphiphile does not appear to be homogeneous.
Rather, the Quid is thought to be structured, consisting of
coherent regions of oil and of water which are separated
by the amphiphile. This picture is reasonable because the
construction of the amphiphile is such that its polar head
prefers to be surrounded by water, whereas its aliphatic
tail prefers the oil. Thus, the molecule tends to create an
oil-water interface. The conception is bolstered by
scattering experiments which often show the Quid to
be characterized by a structure function peaked at a
nonzero value of a wave vector. The inverse of this wave
vector provides a characteristic length in the system
which is identified with the size of the coherent oil or wa-
ter regions. This length is typically of the order of 150 A
or greater, larger than the size of the amphiphile which
may be about 25 A. The idea that the amphiphiles are
found predominantly at internal oil-water interfaces com-
bined with the large characteristic distance between in-
terfaces then explains the relatively small amount of am-
phiphile in the system. What brings about the charac-
teristic length, or to what it can be naturally related, is
not clear.

The phase behavior of these systems is also interest-
ing. ' In general, the disordered Quid can coexist simul-
taneously with oil-rich and water-rich phases. By vary-

ing an external parameter, typically the temperature
when the amphiphile is nonionic and the concentration of
a fourth component, salt, when the amphiphiles are ionic,
one can vary the relative proportions of the three phases
in coexistence along a triple line until a critical endpoint
is reached. There the disordered Quid and water-rich
phase become identical at a continuous transition in the
presence of the oil-rich phase; the triple line terminates at
its other end at another critical endpoint where the roles
of oil and water are interchanged. Upon variation of a
second external parameter, perhaps the length of the oil
molecule or of the. amphiphile, the two critical endpoints
can be made to coalesce at a tricritical point. ' An in-
crease in the concentration of amphiphile often results in
the creation of more ordered arrangements of the amphi-
phile such as in sheets in the lamellar phase, or rods in
the hexagonal phase. When either the oil or water com-
ponent is predominant, the others are usually found in
the form of micelles; small, usually spherical, aggregates
of amphiphile surrounding the minority component and
thereby separating it from the majority component
without.

We shall be most concerned in this paper with the
disordered Quid phase. When it can coexist with both oil-
and water-rich phases, and when it is characterized by
nonmonotonically decaying correlation functions, we
shall refer to this phase as a microemulsion. If we have
been careful to define a microemulsion by measurable
properties, it is because there is not a generally agreed
upon definition of the phase. We shall have a few words
to say later as to why this should be so.

A third very interesting property of the three-
component system is that, at the triple line, the interfa-
cial tension between oil and water can, at times, be de-
creased by several orders of magnitude below the corre-
sponding value without amphiphile. " Just what condi-
tions are required to bring this unusual, and commercial-
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ly important, property about are not completely clear. '

Whether this property is characteristic of a microemul-
sion, or is independent of the defining properties of a mi-
croemulstion is an interesting question, one which we
shall only touch upon briefly here. It is precisely the rela-
tionship between the various interesting properties of
three-component systems which poses the most intrigu-
ing questions about these systems.

Theoretical approaches to the study of microemulsions
have been either phenomenological or microscopic. In
the former, it is assumed that the free energy can be writ-
ten either in the form of a Landau expansion' or as a
sum of factors thought to be of importance such as an en-

tropy of mixing, a bending energy, etc. This second ap-
proach has been very well reviewed recently by Andel-
man et al. ' In more microscopic approaches, a Hamil-
tonian describing the system is the starting point, and the
free energy follows from standard statistical mechanics
manipulations. Several such Hamiltonians have been
proposed' all of which incorporate to some extent the
interactions between the amphiphile and the other com-
ponents. All produce oil-rich and water-rich phases, a
uniform fluid phase, and other phases with more struc-
ture. The order of the phase transitions between these
phases are not the same in all models nor is the
identification of the microemulsion the same. '

We discuss in this series of two papers a model, intro-
duced' ' earlier, which we show to have several satisfy-
ing features. It produces a phase diagram in which there
exists a triple line ending in critical endpoints. By raising
the temperature, the critical endpoints coalesce into a tri-
critical point. The disordered fluid phase which coexists
with oil- and water-rich phases can be brought about by
the addition of a few percent of amphiphile. As the am-

phiphile concentration is increased, a first-order transi-
tion to a lamellar phase occurs. This progression, which
is in agreement with experiment, also results from the
model of Stockfish and Wheeler. ' " We calculate the
three independent structure functions of the disordered
fluid phase and their dependence on the oil-water ratio
and the concentration of surfactant. We find that they
are all in qualitative agreement with experiment. On the
basis of these scattering functions, we identify the mi-
croemulsion with a disordered, isotropic fluid phase, an
identification also made by others, ' ' ' but we also show
that all such fluid phases in these systems are not mi-
croemulsions. ' We propose either of two possible boun-
daries to distinguish the microemulsion from the ordi-
nary disordered fluid; either the Lifshitz line at which
the peak of the' water-water structure function moves off
of zero wave vector, or the disorder line at which the
asymptotic decay of the water-water correlation function
becomes nonmonotonic. There are no singu1arities in the
bulk free energy of the fluid on crossing either of these
lines. Thus, the microemulsion is not truly a distinct
phase in the thermodynamic sense. It is presumably this
reason which accounts for the lack of a uniform
definition of a microemulsion. We investigate the proper-
ties of our model in three dimensions in this, the first of
two papers. In the second, its properties are calculated
in one and two dimensions. Many of the conclusions of

where

PPJ'Pk —P; PJ Pk —), (1.2)

L, i,j,k three adjacent sites in a line,
L" ='

0, otherwise .

Such an interaction can be thought of arising from a
more fundamental direction-dependent one by averaging
over all possible orientations between the amphiphile and
oil and water. Because it captures the essential physics of
the interactions of isolated amphiphiles, it should be ade-
quate for the discussion of the microemulsion in which
their density is very low.

It is convenient to reformulate the three-component
mixture in the language of a spin-one magnetic system.
To do so, we define the spin variable S, at the tth site via

P =S;(1+S;)/2,
P&= —S;(1—S;)/2,
P =1—S;

so that S; = 1, —1,0 corresponds to the presence at site i
of a molecule of type a, b, or c, respectively. In terms of
the spins, the Hamiltonian of Eq. (1.1) takes the form

%=—g [J,,S,S, +K, S;S,+C, (S;S +S;Si)]
(ij )

—g (HS; —bS; ) Lg S;(1—S )Sk—
I

(1.3)

to within a constant. The first sum is over all pairs, the
second over all sites, and the third over all groups of
three neighboring sites which are in a line. The interac-
tions in the magnetic model can be related to those of the
mixture. In particular, if the pair interactions of the mix-
ture are between nearest neighbors only, then the pair in-
teractions in the magnetic system, J,I(,C are given by

these papers were first presented in a short work. '

The Hamiltonian we employ describes a simple lattice
model of a three-component system. On each site of the
lattice is a statistical variable P; which is equal to 1 if the
ith site of the lattice is occupied by a molecule of species
a, and is zero otherwise. The index a takes the values a,
b, and c representing water, oil, and amphiphile, respec-
tively. There is always one molecule of some kind on
each site of the lattice. The Hamiltonian is

g g g &~pPFPj~ gP~XPP+~AMp . (1.1)
a p &ij ) a i

The first term is simply the sum of all distinct pair in-
teractions between particles, and the second contains the
usual chemical potentials. The third term distinguishes
molecule c as an amphiphile and mimics its effect in that
energy is gained if c sits between a and b all in a line, and
is lost if c sits between two a or two b. A simple form of
such a term which contains only one new parameter, the
strength of the amphiphilic interaction L & 0, is

~AMP Q ijk( i j k+ i j k
(,ij k)
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E„+Ebb 2E,b =4J,
E„+E„—2E„=J+EC +2C,
Ebb+E„—2Eb, =/+K —2C .

(1.4a)

(1.4b)

(1.4c)

in Sec. II, the relevant structure factors in Sec. III, and
conclude with a brief summary in Sec. IV.

II. MEAN-FIELD THEORY
AND RESULTING PHASE DIAGRAMS

Furthermore, the magnetic field H is related to the chem-
ical potential difference between oil and water

H =
—,'(P, Pb—)+d(E„Eb,—),

where d is the dimension of the hypercubic lattice, and 6
is related to the chemical potential of surfactant

6=@,——,'(P,, +Pb )—d (E„+Eb, 2E„—) .

The parameter C will be of particular interest to us

later. We note here, that from Eqs. (1.4}

4C =2(Eb, E„) —(Ebb—E„).—

From this expression, we see that this parameter
expresses the difference between the interaction of the
amphiphile with water and with oil. When the surfactant
is ionic, adding salt to the water affects just this
difference. A positive value of C implies that the arnphi-
phile prefers oil to water.

Without the last term, the Hamiltonians of Eqs. (1.1)
and (1.3) are of the form of the Blume-Emery-Griffiths
model which describes a simple three-component mix-
ture. For the case of nearest-neighbor interactions, the
model has been well studied in two' and three dimen-
sions. The last term, representing the interaction of the
arnphiphile introduces into the system new phases and
new behaviors of old phases. We discuss the mean-field
theory of our model and the phase diagrams which result

by w„, a product of single-site density matrices,

Wss
= W]

where, in the basis S;= 1,0, —1,

Q;+M;
2

w = 1 —
Q;

—Mi I

so that

Trw =1,
T1W~S; =M;

Trw S;=Q, .

Thus, the exact free energy is approximated by

F~=Trw~&+ TTrw„ lnw~ .

Using the Hamiltonian of Eqs. (1.1) and (1.2), we obtain

In order to calculate the properties of our model sys-
tem in three dimensions, we employ the mean-field
theory. To do so, we approximate the density matrix w

in the exact expression

F =Trw&+ TTrw lnw

FM((M), [Q) )= —g JJMMJ —g K; Q;Q —g C; (MQJ+QM )

&V) &J& & J)
—g L;kM;(1 —Q )Mk

HgM;+kg�

—Q;
(ij k)

(Q;+Mi) (Q;+M;) (Q; —M, ) (Q; —M, )
+T g ln + ln +(1—Q )ln(1 —Q )

2 2 2 2
(2.1)

Q(lMl tQI)=Q
M ((M), [Q])=M;,

where

2 cosh(a; )
Q(AM) lQl)=

2 cosh(a, ) +exp( b,)—(2.2)

This free energy is then rninirnized with respect to the M;
and Q;. The values which minimize the free energy,
denoted M;, and Q;, satisfy the self-consistent equations

and

a, =T ' gJ~M +QC)Q
. J J

+ g L; „(1—Q. )Mk+H
jk

b, =T ' gK;.Q + g C; M —
—,
' +Lb, MbM —b, "

The mean-field free energy is

FMFr=F ([M) [Ql}. (2.4)

(2.3}
2 sinh(a; )

M, ((M), tQ))=
2 cosh(a; }+exp( b,)—.

In what follows, we confine ourselves to nearest-neighbor
interactions only,
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J, i,j nearest neighbors,J 0, otherwise,

and similarly for the other nonzero pair interactions
denoted E and C. Also, as noted earlier we take

L, i,j,k three adjacent sites in a line,
L-- ='

0, otherwise .

Phase diagrams follow from the mean-field free energy
via standard manipulations. At high temperatures, the
system exists in a uniform, disordered phase character-
ized by M, =MD( T, b.,H) and Q, =Qo( T, E,H) where
these values are obtained from the uniform self-consistent
solutions of Eqs. (2.2) and (2.3). At lower temperatures,
the system separates into uniform water-rich and oil-rich
phases. Depending upon the value of 6, the nature of
this transition is either continuous or first order. %'hen it
is the former, its temperature can be found by expanding
F„(fMJ, IQIMI] } in a power series in the set of M,.
which are assumed to be equa1. Note that the single-site
free energy has been minimized with respect to the Q;,
but not with respect to the M;. For the particularly sim-

ple case C =0, the transition takes place at H =0 and the
Landau expansion of the free energy has the form

N 'F»( I M ), t Q I M I f ) =3KQO+ T ln( 1 —Qo)

+ Aq(T, b, )M

+ A4(T, E)M + (2.5)

where N is the number of molecules in the system, and
Qo(T, E) satisfies Eq. (2.2) from which

=exp(6KQO —b, ) .
0

(2.6)

The factor of 6 arises from the number of nearest neigh-
bors in the three-dimensional cubic lattice which we are
employing. The coefficient A z( T, b ) is given by

T —6QO[J+(1 —Qo)L]

2Qo

Minimization of the free energy is completed by minimiz-
ing Eq. (2.5) with respect to M. The result shows that
there is a continuous transition from the disordered
phase to one characterized by a nonzero value of M
which occurs at temperature T, (b, ) obtained via

A2( T„b,) =0, yielding

which determines ((t, „the surfactant concentration at the
tricritical point. The tricritical point temperature then
follows from Eq. (2.7)

T, /J =6(1—P, , )(1+/, ,L/J),
and b, , from Eq. (2.6)

b, , =6K (1 p,—, )
—T, ln[(1 I|I,—, )/2$, , ] .

For larger values of 6, the transition between the disor-
dered phase and oil-rich and water-rich phases is first or-
der. Thus, there is three-phase coexistence. The coex-
istence line can be found by determining that tempera-
ture, as a function of 5, at which the mean-field free ener-
gies of the disordered phase (characterized by IMI =0)
and water-rich phase (all [MJ equal but nonzero) are
equal. (The free energy of the oil-rich phase is identical
to that of the water-rich phase at H =0 by symmetry. )
Similar procedures obtain for the lamellar phase for
which the set of IM] are spatially dependent. Among
nonuniform phases, only lamellar ones were sought as
they are the most favorable energetically.

The form of the phase diagram is as follows. In gen-
eral, there are water-rich and oil-rich phases which either
disorder continuously, at low surfactant chemical poten-
tials, or via a first-order transition. A tricritical point
separates these two behaviors. When the transition is
first order, the disordered Quid coexists with the other
two phases, of course. Lamellar phases appear at higher
surfactant chemical potentials. These features are illus-
trated in Fig. 1 which shows the phase diagram of the
system with K/J=0. 5, L/J= —3.5, and C/J=O. The
diagram is shown in the temperature, surfactant chemical
potential plane at equal concentrations of oil and water.
First-order transitions are shown by solid lines, and the

I I
(

I I I I

I
I I I I

I
I I I I

C

T, /J =6(1—$, )(1+ tLi/IJ) . (2.7)
O i l i i i i I i i i I ( & i 1 1 i i I li
—I5 -IO -5 0 5 IO

6/J
The relation P, =(1—Qo) between the surfactant concen-
tration and Qo has been used. The line of continuous
transitions terminates at a tricritical point whose location
is given by the solution of A„(T,(b, ),b, ) =0. This con-
dition gives

12L $, , +2/, , (6J+K 7L}L—
+y, [(3J 10JL +2KJ+3L~)——2J2=0,

FIG. 1. Phase diagram in the T, h plane for a system with
E/J =0.5, L/J = —3.5, C/J =0, and equal oil and water con-
centrations. Solid lines denote first-order transitions and the
dashed line denotes a continuous transition. The tricritical
point between them is shown with an open circle. The dotted
line is not a phase boundary, but is the Lifshitz line, the locus of
points at which the peak in the water-water structure function
begins to move from zero wave vector. It takes nonzero values
to the right of this line.
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continuous transition by a dashed line. The dotted line
shown can be ignored for the moment.

Because we have used a lattice rather than a continu-
um model, there is not simply one lamellar phase, but
several, with lamella in the (111)or equivalent direction.
There are first-order transitions between the phases. For
example, as the amount of water is increased relative to
that of oil, there is a transition from a +0—0 lamellar
phase to a ++0—0 phase. Depending on the parame-
ters in the system, the periods of these phases can be
long. ' In a continuum model such transitions would be
absent and there would be only one phase transition in
which the relative widths of the water and oil lamella
would vary continuously. Transitions from the lamellar
phase to the disordered phase can be continuous or first
order, depending on the interaction strengths. The sim-
ple form of the amphiphilic interaction we have taken in
Eq. (1.2) does not lead to the formation of bilayers of am-
phiphile, hence there are no lamellar phases formed in
the two-component limit, water amphiphile, or oil am-
phiphile. This defect is easily remedied as has been
shown elsewhere. '

In the next two figures, we show constant temperature
sections through the phase diagram of Fig. 1. These
figures show the entire range of possible concentrations
unlike Fig. 1 in which the oil and water concentrations
are constrained to be equal. The temperature of the sys-
tem is T/J =4.9 in Fig. 2. This is sufficiently close to the
tricritical temperature, T, /J=5. 2, that there exists a
continuous path from the water-rich side through the
disordered fluid to the oil-rich side at the constant value
of the parameter C/J =0. A lower temperature,
T/J=4. 45, is shown in Fig. 3. The lamellar phases
stretch from a coexistence with the water-rich phase to a
coexistence with the oil-rich phase. The disordered fluid
which coexists with both of them is now isolated, i.e.,
there is no longer a continuous path between oil-rich and
water-rich phases at/'xed parameter C.

Interesting behavior is obtained at fixed temperature
by varying the parameter C, which expresses the
difference between the interaction of the amphiphile with
water and with oil. Figure 4 shows the phase diagram of
the same system at the same temperature as in Fig. 3 with
the one exception that now C/J =0.3, so that the amphi-
phile prefers oil to water. The disordered region adjacent
to the triple line has become somewhat smaller, and has
moved toward the oil-rich side. On further increasing

C/J to 0.5, Fig. 4, we see that the disordered region is
now accessible from the oil-rich side. There is no longer
three-phase coexistence; the triple line has terminated at
a critical end point. Making the changes in C/J of the
same magnitude but opposite sign produces the same
phase diagrams as those of Figs. 4 and 5, except that the
roles of oil and water are interchanged. We see, there-
fore, that the model produces the sequence of two- to
three- to two-phase coexistence as a parameter is varied,
like the chemical potential of salt, which is appropriate
for ionic amphiphiles. (In order to obtain the behavior
appropriate for nonionic amphiphiles, one must extend
the model to include the effect of hydrogen bonding be-
tween water and amphiphile. ) We can also see from
Figs. 3—5 that, closely related to this behavior, is the ex-
istence of a continuous path from the water-rich region,
through the disordered region, to the oil-rich region. In
order to traverse this path, the parameter C/J must be
varied. This is just the behavior found in systems with
ionic amphiphiles in which a continuous path from the
oil-rich to water-rich phase exists which can only be
traversed if the concentration of salt is varied. (In sys-
tems with nonionic surfactants, such a path exists which
can be traversed if the temperature is varied. ) As the
temperature is increased, the length of the triple line
from one critical end point to the other decreases and
vanishes altogether at the tricritical point. As the tem-
perature is decreased, the region of disordered phase be-
tween the triple line and lamellar phase is reduced and
disappears; the lamellar phase then coexists with oil- and
water-rich phases. This can be seen from Fig. 1.

If a microemulsion exists in our model, it is clear that
it must lie within the disordered fluid phase which coex-
ists with water- and oil-rich phases at low concentrations
of amphiphile, and with the lamellar phase at higher con-
centrations. In order to determine whether the
identification of this phase with a microemulsion can be
made, we turn to the calculation of the structure func-
tions.

III. STRUCTURE FUNCTIONS

In this section we calculate various structure functions
in the disordered fluid phase in order to compare them
with experiment. To do so, we must calculate the fluc-
tuations of the order-parameter fields M, and Q; about
their mean-field values Mo(T, K,H), and Qo(T, b, H). As

WATE R OIL

FIG. 2. Portion of the phase diagram at T/J =4.9 of the same system as in Fig. 1 showing the limits of stability of the one-phase
region. (The tricritical temperature is 5.2.) The three-phase coexistence triangle is shown shaded, and critical points are shown by
circles. Some tie lines are indicated for clarity.
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AMP

/ WR OR
WATE R OIL

FIG. 3. Full phase diagram at T/J =4.45 of the same system shown in Fig. 1. There are seven phases: an oil-rich (OR), a water-
rich (WR), and disordered fluid phase (DIS), all at low amphiphile concentration, a symmetric lamellar phase (LAM), two asym-
metric lamellar phases (LAM ) which are related to one another by interchange of oil and water, and an amphiphile-rich phase (AR).
Three-phase coexistence triangles and tie lines (schematic) are shown on one half of the diagram.

we do not restrict ourselves to equal oil and water com-
position, M0 is not generally zero. The deviations from
the mean values are Fourier expanded

M; ™+QMqe'q',
q

Q;=Q +QQ, e"'
q

where it is understood that the q=0 term is not included
in the sums. These expansions are substituted into Eq.
(2.1) for F„and the resulting expression is expanded to

second order in the small quantities M and Q . Ex-
pressed in terms of the difference between the water and
oil concentrations 5/=MD and the sufactant concentra-
tion P, =1—Q0, the result is

N 'F„([MI,IQI)=N 'FM~(IMI, IQI)

+g[aqMqM q+PQ Q

+yq™qQ +M Qq)],

(3.1)

/
Water OI L

FIG. 4. Portion of the phase diagram at T/J =4.45 of the same system as in Fig. 3 except that C/J =0.3 instead of zero.
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MIATER

FIG. 5. Portion of the phase diagram at T/J =4.45 of the same system as in Fig. 3 except that C/J =0.5 instead of zero. The
oil-rich (OR) and disordered fluid (DIS) phases of Figs. 3 and 4 have become one.

where

&q=-,'T(1-4, )[(1-0,)'-5O'] '

—JD, (q}—LP,Dz(q),

P,=-,'TI(1 —4, )[(1—0, )' —50') '+0, ']
(3.2a)

S-(q) =(X,X,)

=T/2A
q

S+(q)=( Y Y )

= T/2A
q

and

—ED, (q),
)'q= ,'T54[(1——0,}'—5—0'1 '

—(C —L5$)D, (q),

(3.2b)

(3.2c)

D„(q)=cos(nq„a)+cos(nq„a)+cos(nq, a) . (3.2d)

Here a is the lattice constant of our model, a molecular
length. The bilinear form of the free energy is diagonal-
ized by the rotation

These averages are closely related to the experimentally
measured structure factors

Sww(q)=(nwnw, &,

Sss(q) =(nsn', ),
Ssw(q)=(n n ),

where n
q

is the qth Fourier amplitude of the deviation of
the water concentration from its average value, and simi-
larly for the surfactant deviation, n . Because

n, =(M, +Q;)/2,

n; =(1—Q;),
Mq=cos8+ +sin8 Yq,

Qq
= —sin8+z+ cos8q Yq,

sin28q 2&q/R q

cos28q=(P —a )/R

Rq=[(aq —pq} +4y ]'

(3.3)

ensemble averages of pairs of these quantities can be re-
lated to (MqM ), (MqQ q), and (QqQ ~). By the
rotation of Eq. (3.3), these are, in turn, related to
(Xqx q) =S ( Yq Y q) =S+ and (Xq Y q) 0
from which we obtain

Sww(q) =
—,'[(1—sin28 )S (q)

The free energy then takes the form

N 'F„=N 'FMFT+ g(Aqxqx q+A Y Y ),
q

with

+(1+sin28q)S+ (q }],
Sss(q) =

—,
' [(1—cos28&)S (q)

+ ( 1+cos28q)S+ (q)),
Ssw(q) = —

—,
' [(1—sin28q —cos28 )S (q)

+(1+sin28 +cos28 )S+(q)] .

(3.4a)

(3.4b)

(3.4c)

A —= aq+p +Rq
2

For the symmetric system C =0, prepared at equal oil-
water concentrations 5/=0, these forms simplify to

From this form, the ensemble average of XqX q and
Fq F

q
are immediatel y obtained as

Sww(q}=-.'[S (q}+S+(q)l. C=54=0 ~

Sss(q) =S+(q), C =5/=0 .

(3.Sa)

(3.Sb)
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Because of the symmetry between oil and water in this
case, the number of independent structure functions is re-
duced by one with the result that

Ssw(q) = —
—,'Sss(q» C =~4=0 . (3.5c)

Note that different experimental structure functions
are different linear combinations of the two independent
functions S (q} and S+(q). That there are two indepen-
dent functions stems from the two independent density
difFerences in a three-component system. As we now
show, the two functions S (q) and S+(q) behave very
differently with wave vector. Because the experimental

S (q)=T/2aq, C =5/=0 . (3.6}

From the explicit expression for as, Eq. (3.2a), we find

that S (q), in the (111)direction, is given by

structure functions are different linear combinations of
these two functions, their behavior will differ according-
ly.

Consider first S (q) = T/2 A
q

. For simplicity, exam-
ine the symmetric system C=O. At three-phase coex-
istence, the disordered fluid has equal concentrations of
oil and water, 5/=0 (see Figs. 2 and 3). For this reason,
it is often denoted "balanced. " For this fluid, the func-
tions y and Oq vanish, so that S simplifies to

S-(1,1, 1)=
(T/J)(1 —P, )

' —6cos(qa/&3)+6(lLl/J)g, cos(2qa/&3)
(3.7)

For small wave vector, this can be expanded as

S (1, 1, 1)=
a2+c, q +c2q +O(q }

with

~2=(T/J)(1 —p, )
' —6[1 (p, /4$—;)],

cI [1 (p. /p. )]

c2 = [4(p, /p,') —1]/36,

Q,
':—J/(4IL I ) .

This structure function has an extremum when

[(P,'/P, ) —cos(qa/&3)]sin(qa/&3) =0 .

(3.8)

(3.9)

(3.10)

There are two possibilities. For weak amphiphilic in-
teractions, lLl (J/4, S (q) has a maximum at q =0 for
all P, . For a strong amphiphile, lLl & J/4, the structure
function has its maximum at a zero wave vector only for
amphiphile concentrations which are less than the value
(();. As P, increases beyond this value, the position of the
maximum moves off of the zero wave vector increasing as

q
m ~ (y yc )I/2

more generally,

i.50 I I I
l

I I I I
l

I I I I

1.25—

I.oo—

0.75—

water-water structure function should have, for all q, just
the form of Eq. (3.8) which emerges from our model for
small q. [Two differences should be noted; terms of
O(q ) and higher were identically set to zero in Ref. 6,
and the coefficients az, c&, and c2 were treated as fitting
parameters, rather than derived. ] They observed that the
peak would move off of the zero wave vector when the
coefficient c& changed sign. The way in which this hap-
pens with increasing surfactant concentration, given in

Eq. (3.11},is shown in Fig. 6. Note that the plot of the
wave vector of the peak versus amphiphile concentration
shows a negative curvature. We also remark that the
range of amphiphile concentration shown in the figure

may not be accessible; that is, the lowest value of this
concentration in the disordered phase may be larger than

P,
' so that the wave vector of the peak is always nonzero.
The condition that Sww(q} have a peak at a nonzero

q a /&3 =cos '(P,'/P, ) . (3.11) 0.50—
The position of this maximum increases with amphiphile
concentration, as is observed for the structure function
Sww(q) in experiment. ' [Note from Eq. (3.5a) that the
experimental structure function Sww(q) is not equal toS, but rather to the sum of S and S+. However, we
shall show below that the contribution of this second
structure factor is much smaller than the first, so that the
behavior of Sww is essentially that of S . ] The possibili-

ty that the structure function could have a peak at a
nonzero wave vector was discussed by Stephenson.
More recently Teubner and Strey suggested that the

0.25—

0
0

I I I I I I I I I I I I I

I 2

/p

I I I I l

FIG. 6. The wave vector of the peak in the water-water
structure function is shown vs the amphiphile concentration.
The critical amphiphile concentration, P, is given in Eq. (3.10)
of the text. The wave vector is in units of &3/a. The curve ap-
proaches m /2 asymptotically.
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2g =(a2/cz)'~2+(c, /2c2),

2(2m/d) =(a2/c2)'~ —(c&/2c2) .
(3.12}

The locus of points at which d '( TDis, b Dis, HD, s )~0
defines the disorder line. The microemulsion is then
defined as that region of the fiuid phase in which d ' is
nonzero, while the ordinary fluid phase is that region in
which d ' is identically zero. This definition has the
theoretical advantage that on the disorder line, the corre-
lation functions are generally nonanalytic in their ther-
modynamic arguments T, 6, and H. Even so, there are
no nonanalyticities in the free energy per unit volume of
the fluid on this line. Hence, there is no phase transition
between the microernulsion and the ordinary disordered
fluid in the classical sense of Ehrenfest. The disadvan-
tage of the criterion is that the correlation function is not
measured directly in experiment. A good approximation
to the disorder line in the symmetric system C=0 at
equal oil-water concentrations 5/=0 is, from Eq. (3.12),
c i =4a2c2, where these coefficients are given in Eqs. (3.9)
(c.f. the approximation to the Lifshitz line, ci =0). The
disorder line is not shown in Fig. 1, but would appear to
the left of the Lifshitz line and would also intersect the
triple line of water-rich, oil-rich, and disordered fluid

value of q provides a convenient defining property of a
microemulsion. ' The line where this first occurs is
denoted the Lifshitz line. The peak in S first occurs
at nonzero values at surfactant densities P;( T, h) given by
Eq. (3.10); it first occurs in Sww at approximately the
same value. In the T, b, phase diagram of a system with
equal oil-water concentrations, the locus of P, (T, b ) =P,'
is given by the straight line

T = [6K(1—J/41L~ )
—6]/ln[(1 —J/4ILI )2~L /J),

and is shown dotted in Fig. 1. This is approximately the
Lifshitz line. We emphasize that the free energy per unit
volume is analytic on this line so that there is no phase
transition when this line is crossed. Thus, there is no
clear thermodynamic distinction between the microemul-
sion to the right of this line and the ordinary fluid to the
left of it. All correlation functions are also analytic on
the Lifshitz line. The experimental distinction is in the
dependence of the scattering function on the wave num-
ber.

An alternate, and perhaps preferable, definition of the
rnicroemulsion is by means of the behavior at large dis-
tances of the correlation functions, the Fourier transform
of the structure functions. This behavior is determined
by the limiting form for the small wave vector of S (q),
which is quite generally the same as in Eq. (3.8}. [Howev-
er, the particular values of the coeScients given by Eq.
(3.9) apply only under the condition C =5/=0. ] Be-
cause of this form, and because S (q) contributes to all
three measured structure functions in general, it follows
that the asymptotic form of all correlation functions at
large distances is

g(r)-r 'exp( r/g)sin(2nr—/d),
where

S+(1,1, 1)=
a2+c, q +O(q )

with

(3.14)

a2 = —6(K/J),(TIJ)
S S

c& =(K/J)a
(3.15)

As c& is positive, S+ has a maximum at q=O and de-
cays monotonically with q. From Eqs. (3.5b) and (3.5c),
both Sss and Ssw should have just this simple behavior.
As one moves oft' of equal oil-water concentrations, the
two structure functions are no longer equal. We note at
this point that the magnitude of S+ is much smaller than
that of S due to the presence of the large term T/2P, in
the denominator of the former. Thus, as stated earlier,
the behavior of S dominates that of the experimentally
observable Sww.

In the next several figures, we show the three indepen-
dent structure functions for the system characterized by
parameters T/J=4. 45, K/J=0. 5, and L/J= —3.5.
We first consider the balanced system, C/J =0, of which
the phase diagram was shown in Fig. 3. Figure 7 shows
the structure functions at equal concentrations of oil and
water, 5/=0, for five values of the amphiphile concentra-
tion, values which span the region of existence of the
disordered phase at this temperature, from the triple line
to coexistence with the lamellar phase. The wave vec-
tor q is in the (111)direction and its magnitude is in units
of &3/a, where a is the cell size. The edge of the Bril-
louin zone is q =m. As the amphiphile concentrations
are all to the right of the dotted line in Fig. 1, the struc-
ture factors Sww, shown in Fig. 7(a), all exhibit a peak at
a nonzero wave number. The magnitude of this peak de-
creases with increasing amphiphile concentration, while
the position of the peak increases. Because our lattice
constant must be of a molecular size, it is possible to esti-
mate the absolute values of the peak positions. In partic-
ular, if we take the cell size to be a =30 A, then the peak
for P, =0.085 would occur at a physical q =3.5X10
o

1A This is a reasonable value as can be seen by compar-
ison with the experimental results of Ref. 2. The corre-
sponding wavelength, 2m. /q is 181 A. Thus, we see that
our model, while only containing a single length scale of
molecular size, produces a water-water structure function
which has its peak at a wave vector corresponding to a
length much greater than that molecular size.

phases.
We now consider the other structure function S+(q}

which, for the symmetric case at equal oil-water concen-
trations, simplifies to S+(q)= T/2Pq. From the explicit
expression for Pq, Eq. (3.2b), we obtain in the (111)direc-
tion the expression

S+(1,1, 1)= (TIJ)
(T/J)(1 —P, ) P,

' —6(K/J)cos(qa/&3)

(3.13)

which, for a small wave vector, can be expanded as
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The surfactant-surfactant and water-surfactant struc-
ture functions, shown in Figs. 7(b) and 7(c}are monotoni-
cally decreasing in magnitude. As noted earlier, when
C/J=0 and 5/=0, these two functions are related by

Ssw = —Sss/2
Figure 8 shows the structure functions of the same sys-

tern, but taken along a difFerent thermodynamic path, one
for which all parameters of the system are fixed except
for the ratio of oil to oil plus water. (We shall refer to
this ratio as the "oil fraction. "}The concentration of am-

phiphHe is fixed at 0.12. It can be seen from Fig. 8(a) that
the position of the peak in Sww moves toward a smaller

(a)

Sww Sww

0
0

0
0

O. I 5

fs= 0.135 (b)
0.2

0.59,

O. IO—

sss

O. I I

0.095
OD85

0.075

sss
0.44 0

0.50

0.05—

0
0

0
0

-0.02—

-004 "

Sws
—0.06-

-0.08-

qhs = 0.075

0.0e5
0.115

0.135 40.085

(c)

Sws

0.2

-0.2

0.4—

0.50

(c)

-O. I 0
0

-0.4

FIG. 7. The water-water, surfactant-surfactant, and water-
surfactant structure functions are shown in (a), (b), and (c), re-
spectively, for the system shown in Fig. 3. The wave vector is in
units of &3/a. The different curves correspond to a thermo-
dynamic path in which the oil fraction is held fixed at 0.5 and
the surfactant concentration is varied. Curves are labeled by
the surfactant concentration.

FIG. 8. The water-water, surfactant-surfactant, and water-
surfactant structure functions are shown in (a), (b), and (c), re-
spectively, for the system shown in Fig. 3. The wave vector is in
units of &3/a. The different curves correspond to a thermo-
dynamic path in which the oil fraction is varied, and the surfac-
tant concentration is fixed at 0.12. Curves are labeled by the oil
fraction.
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wave vector as the oil fraction deviates from 0.5 in either
direction. Figures 8(b) and 8(c) show that the other
structure functions also show peaks whose positions
move toward a smaller wave vector as the oil fraction
moves from 0.5. This is not surprising as we have seen
that all structure functions are different combinations of
the same two basic functions, S (q) and S+(q). It is the
former which has a peak at a nonzero wave vector, and
the behavior of this peak with varying oil fraction is
reAected in all structure functions. We note from Fig.
8(b) that Sss(q) develops a substantial shoulder as the oil
ratio deviates from 0.5. This is due to the increasing con-
tribution of S (q) to Eq. (3.4b) as the mixing angle Hq in-
creases with increasing 5$, the difference in water and oil
concentrations. [See Eqs. (3.2) and (3.3).] Figure 8(c)
shows the interesting behavior of Sws(q). It has been ar-

gued that Sws(0) is proportional to the average mean
curvature of the oil-water internal interfaces. A better
indicator would be Sws(0) Sos(0) which is manifestly
zero when the system is symmetric with respect to inter-
change of oil and water. It follows from the incompressi-
bility of the system as a whole that this difference is equal
to 2Sws(0)+Sss(0). As the surfactant-surfactant struc-
ture function is positive, the water-surfactant structure
function must be negative when the average curvature
vanishes, taking the value —0.5Sss(0). This caveat aside,
the general behavior of Sws and the average curvature
should be similar, and, as it has been extracted from ex-
perimental data, ' it is the quantity we have chosen to
present. Huang and Kotlarchyk measured, indirectly,
the ratio Sws(0)/Sww(0) in a water-decane-AOT system
and obtained a value of approximately 0.2 at the oil frac-
tion of 0.5. From Figs. 8(a) and 8(c) one sees that this ra-
tio of structure functions obtained from our model varies
from —0.27 to 0.21 as the oil fraction varies from 0.39 to
0.61. From this, we conclude that the ratios of our struc-
ture functions are quite reasonable. Were the results we
have obtained for the largest and smallest oil fraction ac-
tually experimental data, they would suggest that the sys-
tem consisted of water-in-oil droplets and oil-in-water
droplets, respectively.

The next two figures show the effect of causing the sys-
tem to be out of balance, in particular by making the arn-

phiphile prefer oil. The system is the same as that of
Figs. 7 and 8 except that the value of C/J is no longer
zero, but is 0.3. The phase diagram of this system was
shown in Fig. 4. The structure functions are shown in
Fig. 9 taken along the thermodynamic path characterized
by a constant oil fraction equal to 0.645. This path
passes through the triple point. A comparison of Figs.
9(a) and 7(a) shows that the differences in Sww are not
dramatic. For the same concentration of surfactant, the
peaks are higher and closer to the zero wave vector in the
unbalanced system. Figure 9(b) shows that the Sss has
developed a significant shoulder, the amplitude and loca-
tion of which both increase with increasing surfactant
concentration. The most dramatic difference occurs in

Sws which now resembles Sww, although with a consid-
erably smaller amplitude. Along this path, the ratio
Sws(0)/Sww(0) varies from 0.15 to 0.24 as the amphi-

phile density varies from the lowest to highest values.
Again this would suggest the interpretation of water-in-
oil droplets which become smaller with increasing amphi-
phile concentration as expected. Figure 10 displays the
structure functions along a path in which everything is
fixed except for the oil fraction. The surfactant concen-

(a)

Sww

0
0

0.2
(b)

01-
ps=0. ~35

O. II 5
O.C85

0.085
0.075

0
0

0.4

= 0.075
(c)

Sws

0.2

0

FIG. 9. The water-water, surfactant-surfactant, and water-
surfactant structure functions are shown in (a), (b), and (c), re-
spectively, for the system shown in Fig. 4. The wave vector is in
units of &3/a. The different curves correspond to a thermo-
dynamic path in which the oil fraction is held fixed at 0.645 and
the surfactant concentration is varied. Such a path leads to the
triple point. Curves are labeled by the surfactant concentration.
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tration is again 0.12. All functions show a peak whose
position moves toward the zero wave vector as the oil
fraction increases. Perhaps the only surprise is that the
wave vector of the peak is not the greatest for that oil
fraction which corresponds to the triple point 0.645.

Finally, in Fig. 11, we show Sww along a path in which

l.5

Sww

0.5

l.5

Sww

I.O
645
69
4

0
0

FIG. 11. The water-water structure function for four
different systems. The wave vector is in units of &3/a. Each is
characterized by T/J =4.45 and K/J=0. 5. In each, the oi1
fraction is 0.61, and the surfactant concentration is 0.12. The
systems differ by C/J which label the different curves.

0
0

0.6

Sss

(b)

everything is constant except for the value of C/J, i.e.,
the balance of the system is changing. The surfactant
concentration is 0.12 and the oil fraction is 0.61. In such
an oil-rich system, one expects and does find that the
peak is furthest out in that system in which the amphi-
phile most favors oil, C/J =0.3.

0.4 IV. SUMMARY

0.2

0.50

0
0

Sws

0.5—

0.74
(c)

0.50

0

FIG. 10. The water-water, surfactant-surfactant, and water-
surfactant structure functions are shown in (a), (b), and (c), re-
spectively, for the system shown in Fig. 4. The wave vector is in
units of &3/a. The different curves correspond to a thermo-
dynamic path in which the oil fraction is varied, and the surfac-
tant concentration is held fixed at 0.12. Curves are labeled by
the oil fraction. In (b), the result for oil fraction 0.57 is not
shown as it is almost indistinguishable from that for 0.5.

In this paper we have asked how much of the behavior
of a microemulsion can be understood in terms of an ex-
tremely simple model; that of a ternary mixture in which
one component is favored energetically to sit between the
other two. We have studied a model Hamiltonian which
di6'ers from the simplest one describing a ternary mix-
ture only by the addition of a term which captures this
single property of an amphiphile. We first considered the
phase behavior. As regular solution theory of a ternary
mixture already exhibits the 2-3-2 sequence of coexisting
phases, it is not unexpected that our model does also.
Along the triple line, oil-rich and water-rich phases coex-
ist with an isotropic fiuid which is a disordered mixture
of a11 three components. To traverse the triple line from
one critical end point to the order, C/J, one of the four
interactions in the model free energy is varied. If
C/J =0, a tricritical point can be reached by varying a
second interaction, T/J. This phase behavior is the same
as that exhibited by microemulsions, and suggests that
C/J is a function of the temperature and/or the activity
of salt in a physical system. As the strength of the am-
phiphilic interaction, ~L/J~, is increased, the amount of
amphiphile needed to solubilize oil and water decreases,
and lamellar phases appear. Transitions to them can be
either first or second order. They are first order in much
of the parameter space. The fourth interaction in the
model, I( /J, is a measure of the interaction between am-
phiphiles.

In general, the disordered fluid exists as a single phase
for surfactant densities between those values which
characterize it at three-phase coexistence with oil and
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water phases and at two-phase coexistence with the
lamellar phase. We found, for systems not too near the
tricritical point, that there is no continuous path from the
oil-rich region, passing through the disordered fluid, to
the water-rich region at a fixed value of C/J. However,
such a path exists in the larger phase space and can be
traversed if C/J is varied. A similar statement can be
made for systems with nonionic araphiphiles if "C/J" is
replaced by "temperature. " Thus, it appears that the
model captures not only the broad features of the phase
behavior, but also some of the details as well.

To determine whether the disordered fluid could be
identified with a microemulsion, we calculated the three
independent structure functions which characterize it. In
an incompressible ternary mixture, there are two in-
dependent order parameters, and therefore, two indepen-
dent structure functions. We denoted them S and S+.
The measured structure functions are different linear
combinations of these basis functions, combinations given
in Eqs. (3.4). The function S dominates the water-water
structure function when the system is balanced and when
it is measured at an oil fraction of 0.5. The explicit form
which we obtained for S in this case is given in Eq. (3.7)
for a particular direction of the wave vector. (Because of
the underlying lattice, calculated structure functions are
not rotationally invariant. However, their behavior is
qualitatively the same in all directions, as is readily
verified. ) This function exhibits a peak which can either
be at the zero wave vector or nonzero wave vector. A re-
cent study of the water, n-decane, AOT system exhibits
both of these behaviors. We suggested that the ex-
istence of a peak at the nonzero wave vector in the struc-
ture function of the disordered fluid could be used to
define the microemulsion, although there were theoretical
reasons to prefer the existence of a nonmonotonic decay
in the water-water correlation function as a defining
property. No thermodynamic singularities occur when
the line so demarking the rnicroemulsion phase is
crossed. The peak position of the water-water structure
function moves with amphiphile concentration according
to

m =cosv'3 (4.1)

As seen from Fig. 1, the Lifshitz line, at which the peak
in Sww(q) first moves off of the zero wave vector, is

crossed as the tricritical point is approached along the
triple line. This suggests that if a sequence of systems
were prepared which systematically approached the tri-
critical point (something which could be ascertained from
measuring the distance between critical end points), then
one would find that the peak position in the disordered
fluid at the triple line would decrease systematically.
This has, in fact, been observed. '

The parameters which occur in our model can be ex-
tracted from experiment, in principle, as follows. A fit of
experiinental values of q versus P, to the form of Eq.
(4. 1) (recalling that only a portion of this curve may be
observable), would permit the extraction of the amphi-
philic interaction lLl/J for the system, as well as the

length a which should be of molecular size.
A fit of experimentally determined values of S~w for a

balanced system permits the extraction of T/J as follows.
Recall that for a balanced system,

Sww(q) S (q)
Sww(0) S (0)

(4.2)

If the right-hand side is expanded for small q, it takes the
Teubner-Strey form

(q) 1
as q —+0,

S (0) I+(c, /a~)q +(ci/ai)q
(4.3)

Comparing the theoretical and experimental forms for
the structure function, Eqs. (4.2) and (4.3) to Eq. (4.4),
and using Eq. (3.9), we obtain, inter alia,

T 9[1—f (q a)] 60f (q a)

[1+4f (q a)](1 r)—
where

(q Illa )2

18—4(q a)

=(q a) /18 .

Because f (q a) will be small, the above simplifies to

T/J=4. 5(1—0, ) .

We do not expect our structure function to provide a
good fit to data at large values of q which probes short
distances because the lattice nature of the model must be
manifest there.

The other independent structure function, S+(q),
dominates the surfactant-surfactant structure function
when the system is balanced and when it is measured at
an oil fraction of 0.5. The explicit form which we ob-
tained for S+ in this case is given in Eq. (3.13) for a par-
ticular direction of the wave vector. This function exhib-
its a peak only at the zero wave vector. For a small wave
vector, it can be expanded as

S+(q) 1
as q~0,S+(0) 1+(c,/a2 )q

with the coefficients given in Eq. (3.15). If the experimen-
tal structure function were fit to this form for small q,
then the parameter E/J can be extracted from

( c, /a, )( &/J)(1 —P, )
I( /J=

a +6(c, /a2)

where the coefficients are given in Eq. (3.9). Similarly,
the experimental structure function can be parametrized
in terms of the location of the peak q and the ratio r of
the structure function at q =0 and q =q
«=Sww(0)/Sww(q» as

Sww(q) 1

Sww(0) [1—2(1 r)(—q/q ) +(1 r)(q/q )
—]

as q ~0 . (4.4)
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values of a and ( T/J) having been obtained previously.
We found that the structure functions Sww, Sss, and

Sws which we calculated show the same qualitative be-
havior which is observed in experiment, particularly
along paths of equal water and oil volume fractions. In
addition to the behavior of the peak in S~w, we could
also account for the existence of the shoulder which is ob-
served in Sss. There is also qualitative agreement ' in

Ss. One interesting result of this simple model is that
the wave vector characterizing the peak in Sw in the
one-phase region decreases as the oil fraction varies from
0.5 in a balanced system, all other parameters being fixed.
We know of little data with which to compare this result.
The recent study of water n-decane AOT mixtures does
show just this behavior, but there are data for only two
di6'erent oil fractions. More experimental information on
this point would be very interesting.

It seems, then, that much of the phase and scattering
behavior of microemulsions can be understood in terms
of a very simple microscopic basis. We have not touched
upon the low surface tensions that these systems can ex-
hibit. It seems, however, that the basis for this phenome-
na exists in our model. Consider the oil-water surface
tension as the triple line in Fig. 1 is traversed from the
tricritical point to the four-phase coexistence with the
lamellar phase. At the tricritical point, the surface ten-
sion vanishes. Thus as we decrease (T/J), the tension
must increase. However, as ( T/J) decreases, the stiffness
of the order parameter (the coefficient of the square gra-
dient term in a Landau expansion) decreases. In fact, this
stiffness is just the coefficient c, of Eq. (3.9) and passes
through zero just when the peak in the structure function
moves from zero. We therefore expect that the surface

tension, after an initial increase from zero, will begin to
decrease again with decreasing (T/J) reaching a small
nonzero value at the four-phase coexistence. This
scenario can be investigated within mean-field theory as
well as other interesting related phenomena, such as the
failure of the microemulsion to wet the oil-water inter-
face." ' We shall report on these issues separately. We
have not addressed the question of the topology, or
configuration, of the microemulsion. This can be investi-
gated by, inter alia, simulation of our model. We report
on a few such simulations in two dimensions in the
second of these two papers. Lastly, the role of bending
rigidity, which plays such a crucial role in phenomeno-
logical models, ' remains to be addressed within our ap-
proach. Utilizing the framework we have established
here, we intend to address this issue within a microscopic
framework.
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