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The effects of a random component of the magnetocrystalline anisotropy on the magnetic
properties and critical behavior of polycrystalline DyAlz have been investigated using dc-
magnetic measurements. Random magnetic anisotropy (RMA) is produced by site-diluting
ferromagnetic DyAlz with the non-magnetic, isomorphic intermetallic YAlz. Dilution distorts
the cubic Laves phase unit cell because of a slight lattice mismatch thereby lowering the lo-
cal crystal symmetry in a random fashion. Additional contributions to the RMA come from
spin-orbit scattering by the conduction electrons. Hysteresis loops display little remanence and
very small coercive fields, suggesting a weak RMA. This is consistent with estimates of the
RMA strength D obtained using an approach of Chudnovsky et al. The magnetization at high
temperatures (T & 4T,) is well described by a Curie-Weiss law. The paramagnetic Curie tem-
peratures are positive, implying an average ferromagnetic exchange coupling between Dy ions,
and increase with x. The paramagnetic moment shows no evidence of quenching across the
series, thus confirming the well localized nature of the 4f electronic orbitals. Low-field thermal
scans of the bulk dc magnetization show no sign of a spontaneous moment for Dy concentrations
0.10 & s & 0.90, yet a sharp increase in the magnetization occurs at a temperature T, that
increases with x. A ferromagnetic scaling analysis applied to the line of transitions at T, results
in a surprisingly good collapse of the magnetization data. By extending prior theoretical work
of Aharony and Pytte, a direct connection can be made between pure and RMA exponents
which gives remarkable agreement with the experimental values.

I. INTRODUCTION

Magnetic dilution has long been used to probe the na-
ture and strength of interactions between magnetic mo-
ments as well as to produce novel magnetic phases and
ordering phenomena. Of particular interest are the ef-
fects of site dilution, where a magnetic species is replaced
at random by a nonmagnetic counterpart at well-defined
crystallographic sites. The composition of the resulting
compound is commonly referenced by its relative con-
centration z, which gauges the concentration of the mag-
netic species relative to that of the nonmagnetic species.
Hence, the pure ferromagneti compound has z = 1.
Such systems are said to possess "quenched" or static dis-
order because the impurities are rigidly frozen into fixed
positions and are not free to difFuse at the temperatures
under study. This is in constrast to systems with "un-
quenched" or "annealed" disorder where the impurities
are free to reach thermal equilibrium with other degrees
of freedom. ~

The random-axis magnet s is an example of a sys-
tem possessing quenched magnetic disorder. This system
is one for which all macroscopic directions are equally

"hard" magnetically in that it requires energy to align
the magnetization along any single direction. Yet, be-
cause the local magnetic anisotropy varies from site to
site, there is a broad spatial distribution of local "easy"
axes of magnetization. Because of their random mag-
netic anisotropy (RMA), random-axis magnets are also
referred to as RMA magnets.

In recent years, a number of studies have addressed
questions concerning long-range magnetic order (LRMO)
and critical phenomena in systems with a random spin
anisotropy, and they represent the primary motivation
for this paper. Nevertheless, the true ground state
spin configuration for the RMA magnet at low tempera-
tures is still not understood, nor is the nature of the tran-
sition from the paramagnetic to low temperature phase.
In this paper, it will be demonstrated that the proper-
ties of the Laves-phase intermetallic (Dye Yi )Alz are
best understood in the context of the weak RMA model.
Among these properties are the absence of a spontaneous
magnetization, changes in the critical exponents, and a
slow approach to saturation.

The next section brie8y reviews theoretical approaches
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to the random magnetic anisotropy problem. Experimen-
tal results that bear on current physical understanding
are also discussed. Because the original physical con-
text for random-axis magnets was in amorphous sys-
tems, they necessarily dominate the subsequent discus-
sion. Following this section, the growth and character-
ization of the (Dy Yi )A12 compounds are discussed
briefly in Sec. III. The RMA strength and characteristics
of (Dy Yi )Alz are examined in Sec. IV, with the mag-
netization data and scaling analysis presented in Sec. V.
Results and conclusions are summarized in Sec. VI.

II. THEORETICAL AND EXPERIMENTAL
BACKGROUND

A. The RMA model Hamiltonian

In 1972, Rhyne et al. presented evidence for the first
direct observation of an amorphous spin-polarization dis-
tribution obtained from neutron scattering experiments
on sputtered samples of (amorphous) a-TbFez. Concur-
rent bulk magnetization measurements of the same mate-
rial surprisingly indicated the presence of a macroscopic
spontaneous magnetization, the definition of ferromag-
netic (FM) ordering. However, the Curie temperature T,
and saturation magnetization M, of a-TbFez are about
half as large as that of the corresponding crystalline
phase. The results of Rhyne et at are pa. rticularly in-

teresting in that they allowed the first direct comparison
between the magnetic properties of the crystalline and
amorphous phases of materials whose percentage atomic
composition (TbFez) are identical.

Stimulated by the effects of a random spin distribu-
tion on the basic magnetic properties of a-TbFez, Har-

ris, Plischke, and Zuckermann~ (HPZ) proposed a mag-
netic model to account for these experimental observa-
tions. They were cognizant of the strong magnetocrys-
talline anisotropy present in TbFez and other compounds
containing heavy, non-S-state, rare-earth ions that are
predominantly single-ion in nature. Since single-ion
anisotropy is founded in the strong coupling between the
aspherical 4f electron clouds of the rare-earth ions and
the crystalline electric field, HPZ viewed the randomness
in the local magnetic anisotropy as the most important
characteristic of these amorphous alloys. This random-
ness, which produces highly irregular local electrostatic
fields, is a direct consequence of the topological disorder
inherent to the amorphous state. Consequently, HPZ
formulated a Hamiltonian that included a sum over the
local single-ion anisotropy fields.

The HFZ Hamiltonian is a Heisenberg model where
all spins have identical magnitude, but where each spin
is coupled to a local electrostatic field, analogous to the
usual crystalline electric field (CEF), which varies ran-
domly from site to site. Their Hamiltonian has the basic
form4

where V; is the local single-ion anisotropy field at site i,
g is the nearest-neighbor Heisenberg exchange coupling
constant, and J(i) represents the angular momentum op-
erator for the magnetic ion on site i. This form does
not take into account the distribution of values for the
Heisenberg exchange coupling constant h.twhic'h occurs
due to the structural disorder of amorphous alloys. In
principle, this should be included, although it is argued
that the effects of RMA on the magnetic properties of the
heavy rare-earth alloys such as TbAg should dominate
over those based on the exchange interaction. i Experi-
mentally, however, this argument seems to hold only in
the limit of very high fields in excess of 100 kOe, where a
mean-field analysis of the HPZ Hamiltonian yields good
fits to the field dependence of the magnetization of both
TbAg and DyAg alloys. i

The calculation of the explicit form for the anisotropy
field V; in the HPZ Hamiltonian is couched in the lan-

guage of conventional crystal field theory. After some
simplifications and approximations, the Hamiltonian can
be reduced to

+RMA — D ) (J,) (2)

where n; is a unit vector that points in the direction
of the local random anisotropy. Since the axes z, are
randomly distributed from site to site in amorphous sys-
tems, n; possesses a spherical distribution. It is impor-
tant, however, to note that in a crystalline system such
as (Dy~Yi ~)Alz, n; will be limited to a finite number
of directions.

B. Equation of state approach

A mean-field treatment of the HPZ Hamiltonian yields
a ferromagnetic phase when g ) 0.4 Indeed, until 1980,
a variety of amorphous rare-earth alloys had been stud-
ied and were believed to possess long-range ferromag-
netic or ferrimagnetic order below a finite transition
temperature. This view persisted even after theo-
retical papers by Imry and Mas and Pelcovits et al.
cast serious doubts on the mean-field predictions of HPZ.
However, in 1980 a seminal paper by Aharony and Pyttez
(AP) focused attention on how experimental data should
be analyzed, calling into question the methods of analy-
sis used in these experimental studies. Their results rec-
onciled the apparent discrepancy between those theories
which predicted the absence of LRMO in systems with
quenched random interactions and experimental Arrott
plots which seemed to show the presence of a spontaneous
moment.

Aharony and Pytte calculated the magnetic equation

where D ) 0 is a measure of the random uniaxial
anisotropy strength. Most theoretical work is based on
this Hamiltonian. Thus, the final form for the total
Hamiltonian can be written as

'8 = —J) J, . Jq —D) (n; J ) —gag) 8 J;,
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where aA is a constant of order unity for d = 3, n is
the number of spin components, c = 4 —d, and t the
usual reduced temperature. The resulting Arrott plots
make apparent the destruction of LRMO as none of the
isotherms intercept the Mz axis at any finite value. From
their conclusions, it was clear that extrapolating Arrott
plot isotherms from high fields towards H = 0 would
result in artificially lower estimates for T, and would yield
false indications of finite spontaneous moments.

The most spectacular of AP's results was the predic-
tion that all isotherms reach the origin below T, This.
means that, even though there is no LRMO, the zero field
or initial susceptibility yo —+ oo as T —+ T~+. No such
behavior was found in the random field case. AP char-
acterized their infinite susceptibility phase through the
field dependence of the magnetization. Ignoring critical
fluctuation effects, they found that for low field strengths

M H ~, where

10 —db= for T=T,
6 —d
8 —d

for T&T,
4

(5)

In three-dimensional systems, these exponents reduce to

s and 5, respectively. The magnetic susceptibility is then

Clearly x ~ oo as H -+ 0, provided T & T, .
Although extensive experimental tests of the AP con-

jecture failed to yield any definitive evidence for the infi-
nite susceptibility phase, is various other aspects of their
theory were verified, namely the lack of a spontaneous
moment and a change in the value of b near T, . Sev-
eral systems, covering a range of RMA strengths from
0.001 & D/g & 2, were used in these tests. There was
no spontaneous magnetization in the large RMA system,
but the initial susceptibility remained finite at all temper-
atures. On the other hand, the magnetic susceptibility
in the weak RMA system actually did diverge, however a
small moment was observed as well. This prompted the
belief that the AP magnetic equation of state was valid
only in the limit where D &( P. Aharony and Pytte
stressed this themselves and said that their calculations
had been carried out only to lowest order in (D/P)2. In
systems with larger RMA strengths, higher order terms
would have to be included. In a later publication,
Aharony and Pytte suggested the efFects of higher-order
terms would limit the susceptibility to a value oc (g/D)4.

of state for both RMA and random-field (RF) systems
and found no LRMO in either case. The RMA equation
of state has the form

t+M +H , ( n-1 l t'Dl' , (Hb "
+»i r iMr

C. Perturbation approach: The weak RMA limit

A more phenomenological approach was reported in
1986 by Chudnovsky, Saslow, and Scrota (CSS), who
examined the additional effects induced in RMA systems
through application of a finite field that, until then, had
received scant attention. The study of CSS, a perturba-
tive approach which emphasizes the weak RMA limit, is
based on the macroscopic energy density

s = so;(V';M„)(V';M„) —~2p, (M n„) —M H,

where o, oc gaz. g is the average exchange coupling
between spins, a is an average interatomic spacing, and
P„oc D is the average RMA anisotropy strength. The
magnetization M is assumed to be of a fixed length Mp,
determined by the temperature T and the short-range
exchange constants. The unit vector n„plays the same
role as the unit vector in the HPZ Hamiltonian discussed
earlier. Following their notation, they define three char-
acteristic magnetic fields through the relations:

H,„—:nMp/R

H„—:P„Mp, (9)

H, :—P,Mp, (10)
where P, oc D, is the coherent anisotropy strength, and
R~ is the length, measured in units of a, over which the
local RMA axes are correlated. In amorphous alloys this
length is assumed to be only a few lattice spacings, but

This has since been verified by Barbara et al. in a-

Dy~Gdi Ni, but only when g/D is less than 3. For
weaker RMA, the T = 0 susceptibility actually seems
to level off, showing a markedly weaker dependence on

g/D.
In 1985, Goldschmidt and Aharony7 (GA) considered

the eR'ects of a coherent anisotropy in the limit N ~ oo.
They demonstrated that LRMO is stabilized by a second-
order phase transition in systems that possess a sufficient

degree of coherent uniaxial anisotropy to break the rota-
tional invariance of the RMA. For systems with higher
order coherent anisotropies, e.g. , cubic or hexagonal, the
transition is first order. This has the effect of masking the
"pure" RMA properties detailed above inasmuch as it is
impossible to subtract out the effects of a parasitic coher-
ent anisotropy from the experimental data. However, an
especially interesting result occurs at a threshold uniax-
ial strength g„which marks the phase boundary between
the ferromagnetic and spin-glass phases. At this point
the AP infinite susceptibility phase is recovered, even
after all orders in D/ J' have been taken into account.
Still, there is no true theoretical consensus concerning
the nature of the low-temperature phase in RMA sys-
tems. Indeed, Fisher' argues that the spin-glass phase
is unstable to leading order in I/N, leaving this issue an

open question.
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in polycrystals it is expected that Rs » a.
In the strong anisotropy limit (H„& H,„),each spin

is forced to point very nearly along the local easy axis
of magnetization, and the aspects of ferromagnetic long-
range order are essentially lost. An "arrow representa-
tion" of the spin structure is the same as that for a spin
glass where the spins are frozen and randomly oriented
in space such that there is no net moment. The magnetic
susceptibility y in this case is of order Mo jHr, which is
very small, and a large field is required to rotate the spins
into a partial alignment within a hemisphere defined by
the direction of the applied field. Strong coercivity and
hysteretic behavior are observed in this limit.

The situation is drastically diFerent when the RMA is
weak compared to the exchange interaction (H„& H,„).
Not surprisingly, several features exhibited by the sys-
tem are strongly reminiscent of ferromagnetism. These
include a large magnetic susceptibility, a large but fi-

nite ferromagnetic-like correlation length ( over which
the spins retain a local ferromagnetic order, and an abil-
ity to form domains. CSS identify three field-dependent
regimes for weak RMA systems, determined by the
strength of the applied field H relative to that of a char-
acteristic field H, defined by

(H,')
Hs =—l(Hs" )I

Following the nomenclature of CSS, the three classes of
ordering are given.

2. The ferromagnet with wandering axis (FWA)

When H & H„ the system is significantly polarized
due to the combined eR'ects of the applied Geld and the
exchange interaction energy. This results in an almost
collinear spin structure in which the spins are tipped from
the applied field direction by an angle 8. The local RMA
prevents complete alignment of the spins with H and
causes the spin axes to wander with respect to H, hence
the name ferromagnet with wandering axis.

Analytical results are much more easily obtained for
the FWA state than for the CSG state because the nearly
collinear structure is markedly less complex than the dis-
ordered, random spin structure of the CSG. For suffi-

ciently large fields, the angle 8 is small, allowing a pertur-
bative treatment of the FWA regime. Using quantitative
response function arguments, CSS were able to derive the
field dependence of the FWA's approach to saturation:

1 (H, i 'f'
M, M, 15 gH) (14)

8. The large-field regime

where M, is the saturation magnetization. This form
has been used with success by Sellmyer et at. i in char-
acterizing the field dependence of the magnetization of
a - Gd7zFeisGais at 4.2 K over a range of applied fields
from 1 kOe & H & 80 kOe. From their fit they obtained
a value of 182 Oe for H, . Thus the requirement, that
H & H, is certainly satisfied.

1. The correlated spin glass (1 SG)

When H = 0, the spins are spatially disordered and
no spontaneous magnetization exists. The spin-spin cor-
relations decay exponentially across the system with a
correlation length ( given by

(
'*i R, ,

so that over a length g, the weak RMA system possesses
a local ferromagnetic order. On a large scale it has an
arrow representation of a spin glass. There are no sharp
domain stalls between the ferromagnetically ordered re-
gions as in a normal ferromagnet; instead, the width of
the domain walls is comparable to that of the ordered
regions, and the local magnetization undergoes contin-
uous rotations over the entire length of the sample. In
the presence of small fields H & H„ the CSG remains.
Unlike the strong RMA system, however, the CSG is eas-
ily magnetized, having a magnetic susceptibility which is
quite large:

(15' Mo 1 (15 H,„iXcsa=
I —, I 2H —, I —, H"

i
("=', "=3)4) 2H, 2„(4 H)

This case is almost identical to that of the FWA except
the spins now lie even more closely along the direction of
H. The approach to saturation is more pronounced and
obeys

bM 1 ( H„
M, 15 (H+H, „)

which is valid for fields H & H „.

D. Experimental background

Although most experimental work on RMA systems
has centered on the study of strong anisotropy, some
studies have been performed in the weak RMA limit.
These weak RMA systems are generally based on the
S-state rare-earth ion Gd, as in a-GdAg, which was used
in the study by von Molnar et al. Its initial magnetic
susceptibility ya diverges at a finite temperature, but a
small spontaneous moment appears as well. Other Gd-
based alloys have been studied by Sellmyer et al. is These
include the GdLaGB glasses, where G = Ga or Co. Zero-
field ac-susceptibility measurements suggest these amor-
phous alloys undergo a ferromagnetic to spin-glass phase
transition as the temperature is decreased. In addition,
a scaling analysis was performed which gave good results
for both the transitions, i.e. , PM-FM and FM-SG. How-
ever, these compounds showed no signs of a spontaneous
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moment, and their magnetic behavior was completely re-
versible above the spin-glass transition. Moreover, the
approach to saturation was well described by that for the
FWA, suggesting that the CSG picture might be more
appropriate. Sellmyer et al. tried to reconcile the two
observations, suggesting that in the presence of an ap-
plied field the CSG phase might revert to a FM state
with appropriate critical exponents.

III. THE (Dy Y, )Al, SYSTEM

A. The intermeta11ics DyAl, and YA1,

including magnetization of single crystals of DyAlq. 2

Magnetization measurements have been made by Bar-
bara et cl.~ between 4.2 and 180 K. These measurements
show that, whereas GdAlz is an isotropic ferromagnet ex-
hibiting an identical magnetization along the [100] and
[ill] directions, DyA12 possesses a strong magnetocrys-
talline anisotropy with [100] being the easy axis for mag-
netization. A spin reorientation at 4.2 K was observed
along the hard [111]axis in a field of 57 kOe. When ex-
trapolated to zero field, the low-temperature saturation
moment along the easy axis was 9.89@~, close to the free
ion value of 10pg.

Rcf = B4(04 + 504) + Bs(Os —210s) i (16)

where the 0' are the Stevens operator equivalents.

Schelp et al.zs were able to fit the low-temperature heat
capacity of DyAlz from 1.5 to 20 K in external fields up
to 7.5 Tesla considering only the crystal field and ex-
change interactions in a mean-field approximation. The
values so obtained for 84 and Bs are given in Table I and
agree within the quoted error with other measurements,

DyAlz has been intensely studied in part due to the
success of the RKKY model in describing many of its
magnetic properties, such as the dependence of the Curie
temperature on the interatomic ionic spacing. Pure
DyAlz and YAlz are intermetallic compounds that crys-
tallize in the cubic-Laves phasezo C15 (Fd3m) structure,
isomorphic to that of MgCuz. The rare-earth sites form
a diamond lattice with each site having four nearest-
neighbor (NN) sites in tetrahedral coordination and 12
next-nearest-neighbors (NNN). There are two magnetic
rare-earth ions per primitive cell. The lattice and neigh-
bor spacings for both DyAlz and YAlz are listed in Ta-
ble I, as are a variety of other properties.

The point symmetry of DyAlz is nearly face-centered
cubic, but it lacks inversion symmetry through the origin.
This does not affect the expression for the crystalline
electric field which can still be written in the cubic form

B. (Dy Y, )Al, preparation and characterization

The diluted (Dy Yi )Alq compounds (0.10 ( z (
1.00) were prepared at the University of Zaragoza. Start-
ing from Dy and Y of 99.9% purity and Al of 99.999% pu-

rity, the compounds were repeatedly melted in an argon
arc-melting furnace to ensure homogeneity. They were
then annealed for one week at a temperature of 800 'C.
The polycrystalline samples were cut on a diamond saw
into long, rectangular shaped blocks with rough dimen-
sions 1.5 x 1.5 x 10 mm . These samples were later cut
and shaped with an abrasive to minimize demagnetizing
effects. In order to check for the presence of impurity
phases, metallographic analyses were performed using
both an optical light microscope and scanning electron
microscopy (SEM) in the backscattered electron (BSE)
mode. A full account of this microanaiysis may be found
elsewhere. zs o No evidence was found for a secondary
phase in any of the samples reported in this paper.

Sample concentrations were determined from a wave-

length dispersive x-ray analysis of each compound. The
results of this study indicate a reasonably uniform con-
centration profile across the sample surface, which had
been significantly smoothed and polished. The maximum
difference in z was generally of order 0.01 among five test
points, This analysis is typically accurate to no better

TABLE I. Lattice constants and other properties of DyAI& and YAI&.

Physical property

Lattice constant (A)
NN spacing (A)
NNN spacing (A)
p (gm/cm')
a7NN (THZ)
~7NNN (THz)
B4 (10 meV)
Bs (10 meV)
Ey (eV)
Pg (eV)
K, (V) (10 bar ')

DyAlp

7.837+0.003
3.394+0.003
5.225+0.003
5.974+0.002

+0.021
+0.010

—(0.55+0.13)
-(0.556+0.080)

0.08
0.87+0.02

YAIg

7.8687+0.0001
3.4072+0.0001
5.2458+0.0001
3.8953+0.0002

2.0
0.0263

1.23+0.002

Reference

20,21
~a sp

3+O
(calculated), 21

22
22
23
23

(unknown), 24
(estimate), 25

26,21



MAGNETIC STATIC AND SCALING PROPERTIES OF THE. . . 9139

than 2' of the actual concentration. Nevertheless this is

more than adequate for the purposes of this paper.
The (Dye Yi e)A12 lattice parameters, determined

from x-ray powder difFraction, were found to satisfy
Vegard's law. The lattice spacings for the pure com-

pounds were in good agreement with those reported in

the literature. This is a strong verification of the dilute,
single-phase nature of the (Dy Yi e)Alz series.

IV. THE CONTROL PARAMETER DjJ'

The concept of RMA was first derived to explain the
anomalous magnetic behavior of amorphous systems, and
so it may appear out of place in a crystalline context. sz

It is important then to list factors that might contribute
to the random component of the anisotropy and to es-
timate their size. Given the strong magnetocrystalline
anisotropy in pure DyAlz, it was believed that random
substitution of the Dys+ ions with a nonmagnetic, rare-
earth counterpart such as Ys+ could induce a random-
ness into the cubic crystal field. Dilution destroys the
cubic symmetry of the CEF and should introduce a ran-
dom uniaxial anisotropy with site-dependent easy axes.
Further, since magnetic dilution entails a proportionate
reduction in the exchange field, some control should be
obtainable over the ratio of the random anisotropy to
exchange field strengths D/g, which appears in the AP
equation of state [see Eq. ( 4)].

A.. Decrease of / with dilution

brated magnetic field, are presented for each of the com-
pounds. The data were fit to a Curie-Weiss law of the
form

H
M(T, H) = ysH + (17)

B. Sources of D

Several sources are believed to contribute signficantly
to the RMA character of (Dye Yi )Alz . Each is dis-
cussed at length below and, where possible, an attempt
is made to estimate its strength.

using a least-squares fitting routine, where yp includes
both background contributions from the sample holder
and the sample Pauli paramagnetism. This was found to
be several orders of magnitude smaller than the Curie-
Weiss contribution. Demagnetization corrections were

made by identifying Oz as Oz —4m NC, where N is the
effective demagnetizating factor along the applied field
direction. As only rough estimates could be obtained for
the demagnetizing factor for each sample, this quantity
is the principal source of error in the determination of
ez. Both the Curie constant and the background terms
were insensitive to changes in the value of N, as they
should be. The result that e& decreases with decreasing
z is further evidence of magnetic dilution. In addition,
all of the temperatures are positive indicating that the
average exchange interaction J decreases with dilution,
but remains positive.

In Fig. 1 the results of high-temperature de-
magnetization measurements, performed in a small cali-

1. Distortion of the unit cell
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The cubic point symmetry of the unit cell is distorted
upon dilution due to the lattice mismatch between DyAlz
and YAlq. This effect is amplified by the large magne-
toelastic coupling in DyAlp. Approximating the elas-
tic constants by the bulk modulus K, = 1.1 x 10 z

erg/cms, the magnetoelastic coefBcient can be estimated
from the saturation magnetostriction As ——1420 x 10
to be ~B( 1.6 x 10 erg/cms. If the full 0.37% lattice
mismatch were to appear as a uniaxial strain, the cor-
responding change in magnetoelastic energy would cor-
respond to DJ(J + 1) 2.5 K or D 0.04 K. The
value of g from Table I including both AN and JjqNN
contributions is of order 1.5 K, so that an upper limit of
D/j0. 027 can b'e placed on this source, which is quite
weak.

Differences in screening

FIG. 1. Dependence of the paramagnetic transition tem-
perature O„on x, the Dy + concentration. Note that all of
the temperatures are positive indicating a positive average
exchange interaction g which decreases with dilution. Ex-
trapolation to T = 0 yields an effective percolation threshold
of x, = 0.15.

The effective charge screening is different for Y than
for Dy, and a simple point charge model for the CEF
implies that this difference will lower the local symmetry.
The magnitude of this efFect will depend in detail on the
response of the outer 5d 6s electrons of the Dys+ ion
to a given Dy/Y nearest-neighbor configuration. This
contribution is not possible to quantify as there are no
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8. Differences in spin or-bit scattering

The spin-orbit scattering strength of conduction elec-
trons is different between Y and Dy. Barton and
Salamonss used this as the primary source of RMA in
their early work on a-FeMo alloys. They drew on the
work of Fert and Levyss who demonstrated the presence
of a Dzyaloshinky-Moriya type of random off-diagonal
exchange interaction due to spin-orbit scattering of con-
duction electrons by nonmagnetic transition-metal ions.
The resulting expression for D/g is

~7RKK Y
(18)

where Pg is the difference between the spin-orbit coupling
constants of Dy and Y, Ey is the Fermi energy, and Zz
is the number of d electrons on the atom providing the
differential spin-orbit scattering. The Fermi energy is

data for the band structure of DyAlz available in the
literature. However, Berthier et al.s4 studied NMR data
on (Dy Yq e)A12 in the concentration range 0.65 & z &
1.00, and assumed dilution with Y did not substantially
modify the band structure of DyA12. If this assumption
is valid, it is reasonable to conclude that differences in

charge screening between Y and Dy will be very slight,
which would again argue for a weak RMA strength.

unavailable for DyAl2, but it should certainly be close to
that for YAlz, which is 2.0 eV. The spin-orbit coupling

constants are tabulated by Griffithzs; Pd is approximated

by the difference between Lu and Y so that Pd —0.08
eV. Assuming Z4 ——2, one obtains D/ J & 0.10, which is

comparable to the lattice-distortion contribution.
Three basic sources of random magnetic anisotropy in

(Dy Yq )A12 have been examined. Each serves to lower
the local cubic syrrunetry, the net result of which is to in-

duce a Bq term into the crystal field Hamiltonian at the
expense of higher-order terms. The coefficient of this
lowest-order term is the RMA strength D, whose magni-
tude will contain contributions from all of these effects.
While an exact calculation of D is not possible, it is clear
that D/ J will be small. Further, the RMA direction
will necessarily vary from site to site in a random fash-
ion causing a distribution of local easy axes, the exact
number of which will depend on the immediate Dy/Y
environment.

The concentration dependence of D is not known ana-
lytically, but a maximum in D must be achieved at some
intermediate value of the Dy + concentration. This is
reflected in the hysteresis data presented in Fig. 2, where
the coercive field H, and magnetic remanence are plot-
ted as a function of z. A definite maximum is apparent
in the neighborhood of 0.70. The small values of H,
(& 400 Oe) are further evidence of weak RMA in these
systems and contrast sharply to the tens of kOe found in
typical strong RMA systems such as a-TbAg.
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C. Estimate of D from approach to saturation

A more direct method of estimating the RMA strength
D exploits the CSS result for the FWA's approach
to saturation. Figure 3 shows the fit for the z
= 0.370 compound at 5 K using the expression

100

I I I I
I

I I I I
I

I I I I
I

I I I l
I

1 I I I1

0.8

~ 1 I ~ I 1 I ~ ~ 1
I

l I I l I I I
I

(b)
0.8

0.6

& 0.4

0.2

0.4
(Dyo ~Yo.es)Ala

7=5.0K

0.2 0.4 0.6 0.8

Concentration x

I i i i i I I I I I I I I I I I « i i I0
0 10 20 30 40 50

Internal Field H,„, (kG)

FIG. 2. Coercive and remanent fields versus x. A maxi-
mum in the vicinity of x=0.70 is suggestive of a maximum in
the RMA strength D. Lines are guides to the eye.

FIG. 3. Fit to the approach of Chudnovsky et al. to sat-
uration for x = 0.370.



41 MAGNETIC STATIC AND SCALING PROPERTIES OF THE. . . 9141

TABLE II. Parameter values and uncertainties from the fits to the F'|A'A approach to saturation.

0.370
0.468
0.513
0.828
0.914

M. (G)
567+ 20
716 + 15
787 + 20
1273 + 25
1408 + 15

H. (kG)

696 + 96
395 + 48
292 + 66
169 +49
131 + 14

H, (kG)

1.9 + 1.1
3.5 + 0.7
9.1 + 1.6
11.0 + 3.2
11.5 + 0.3

ygx10
+1.54 + 1.5
—1.25 + 1.2
—3.14 + 1.3
+0.83 + 2.6
—4.11 + 2.1

I( H,M(H)=M, 1 ——
I15 i,H+H. )

+ ybH,

where M, is the saturation magnetization and H, is the
field due to the coherent portion of the anisotropy. This
form gave a statistically better fit than did the H z form
of Eq. ( 15). The fit was performed over a range of fields
from 10 to 50 kOe holding M, fixed at the value

Sz )t'
M. =

I
—,)10wa,

&&o)
(20)

where ao is the lattice spacing, 10@~ is the Dys+ free-ion
moment, and eight is the number of rare-earth ions in the
unit cell. For z = 0.370, M, = 567 G. Although the fit
is excellent, the value obtained for H, exceeds the maxi-
mum field H used in the fit by over a factor of 10. This
is true for each of the fits for the other compounds. Thus
the condition K & H, is not satisfied. Uncertainties in

M, arise principally from errors in z that are of order 2%
and lead to an uncertainty of +20 G. The corresponding
variation in H, is about 14'%%uo. When lower field values
are included in the fit, H, grows larger. Thus the fitted
values for H, are interpreted as upper bounds only.

The root of this problem must lie with the prefactor
of is in Eq. ( 19). If this equation were valid only when
H & H„ the FWA approach to saturation should hold
only when the magnetization has reached over 93'%%uo of its
saturation value. This condition is clearly too general to
be true. In light of the good fit achieved for H & 10 kOe,
a prefactor of order unity is indicated.

The values for M„H„H„and yy for a number of
the samples are listed in Table II. The background term
g~ is always of order 10 4 and so never contributes more
than 2%%uo to the net magnetization. From Table II it is

2nD
Mz (22)

where n is the Dys+ spin density. Using this and the
expression for n, one obtains the following relation for
H, :

H =2 ~) & ~) I'M) (23)

An empirical value of D/ J can be obtained by multiply-
ing H, by T, and taking the fourth root of the result.
This follows from the mean-field result

~
Z(v+1),

2zgi'
kg) (24)

which underestimates g, so that the true result should
be smaller than that listed in Table III.

Strictly speaking, the values for D and D/g cannot be
compared directly to one another across the concentra-

apparent that 8, increases with z. As the pure limit
is approached one expects the amplitude of the coherent
anisotropy field to increase. Surprisingly, H, decreases
monotonically with z, never showing a maximum. Note
that even if the factor of is is adjusted to unity, the
random anisotropy field H, remains comparable to H, .

The RMA strength can be extracted from the values
obtained for H, . The CSS macroscopic energy density
[see Eq. ( 7)] contains two parameters n and P„. A simple
argument identi6es e with the exchange energy through
the expression

2JQ
g2pM

Similarly, one can argue that P„ is related to D via

TABLE III. Table of values for the random anisotropy field strength D/p~ relative to the
exchange field strength H „, and the ratio D/g The values for .T, are obtained in the section on
scaling.

0.914
0.828
0.513
0.468
0.370

T, (K)
47.5 + 0.6
43.4 + 0.2
18.4+ 0.3
13.4 + 0.3
8.2 + 0.5

H (kG)

7070 + 89
6460 + 30
2740 + 45
1990+ 45
1220 + 74

(D/~~)(If-/s)'" (kG)

2.76 + 0.11
2.76 + 0.25
1.66 + 0.14
1.42 + 0.07
1.15 + 0.11

(D/~)(&-/s)"
0.66 + 0.02
0.73 + 0.06
1.03 + 0.07
1.21 + 0.05
1.61 + 0.10
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tion series. In part this is because the degree of situration
is not held constant given the limiting field strength of
50 koe. Higher fields are needed to saturate the magne-
tization more completely, and would make numerical fits
to the perturbative approach of CSS more valid. This is
most likely why the RMA strength D increases with de-
creasing z, rather than achieving the expected maximum
value near z = 0.70. Furthermore, R, may depend upon
z. These results nonetheless confirm our expectation that
the total RMA strength must be weak. The modest as-
sumption of R, = 10a leads to values of D/g 0.05,
well within the range of the estimates made in Sec. IV B.

V. ORDERINC IN RMA ALLO%8

A. Low-field magnetic behavior

The thermal dependence of the magnetization M was
measured in as low a field as possible for each of the 14
compounds from 0.10 & z & 1.00. Such low-field magne-
tization scans are essential in determining the presence of
a "kink" point in the magnetization. s Internal demag-
netizing fields limit the experimentally measured ratio
M/H to a value of 1/4xN, producing a magnetization
that is temperature independent below the kink point.
This kink point is often considered the aine qua non for
ferromagnetism.

Each sample was field cooled (FC) from room tem-
perature in the small remanent field of the magnetome-
ter. The field was measured employing an NBS Pd SRM
(Standard Reference Material) as a field probe.

The low field magnetization measurements are remark-
able in that they show no demagnetizing limited moment
for z & 0.828. Indeed, aside from pure DyA12, which is
known to be ferromagnetic, only the z = 0.914 com-
pound exhibits a feature that could be interpreted as a
kink point in nominal zero field as shown in Fig. 4. Its
magnetization reaches a value of approximately 22 —23
G as expected for H = 10.3 Oe and 1V = 0.036.

The pure compound (z = 1.00) is clearly demagne-
tizing limited. The decrease in magnetization at lower
temperatures is attributed to an increase in anisotropy
strength that, in this polycrystalline sample, serves to
torque a fraction of the spins out of alignment with the
applied field. On the other hand, the 0.828 sample is
far short of being demagnetizing limited. Its estimated
demagnetization factor of N = 0.014 produces a demag-
netizing limited value of about 21 G in a field of 3.67
Oe, whereas down to 0.23T, the magnetization has not
yet exceeded 19 G. Still, no data were obtained below 10
K, and so it is possible that the demagnetizing limit is
reached eventually.

It might be argued that dilution alone could cause
the observed behavior. Yet if only short-range nearest-
neighbor interactions are important, a percolation model
predicts that all compounds having z & z, will dis-
play LRMO. Because the Dys+ ions sit on diamond lat-
tice sites in the cubic-Laves phase structure, the per-
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FIG. 4. Magnetization scans for 0.60 & 2: & 1.00. Except
for the 0.625 sample, aH samples were measured using the
VSM magnetometer.
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FIG. 5. The designations PM, SG, and CSG stand for
the paramagnetic, spin glass, and correlated spin-glass phases,
respectively. The hatched area separates the CSG region from
that in which ferromagnetic (FM) order may exist.

colation threshold for the (Dy~Y1 s)Alz system should
be 0.428. However, the exchange interaction between

Dy + moments is mediated by the conduction electrons,
and the oscillatory nature of the RKKY interaction can
raise or lower the effective z, . In fact, z, should be lower

than the purely nearest-neighbor value of 0.428 since the
next nearest-neighbor exchange JNNN in DyAlz ls also
ferromagnetic (see Table I). A ratio of gNNN/ JjqN = 0.5
is enough to reduce z, over 50% in the simple cubic crys-
tal structure. In the case of (Dy Yi )Alz, extrapo-
lating the paramagnetic data of Fig. 1 to zero temper-
ature yields an approximate value of z, & 0.15. That
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no spontaneous moment is seen for z & 0.828 is striking
confirmation of the ability of RMA to quench LRMO in

(Dy Yi )A12 .
The peak positions in the magnetization for the very

dilute compounds (z & 0.313) are plotted versus z in

Fig. 5 as are the infiection points that develop for higher
concentrations. Also plotted are the peak positions de-
termined from the ac-susceptibility measurements. To-
gether, these data form the basis of a tentative phase
diagram in the H = 0 plane. These results are discussed
in detail in a companion paper.

3.5

C)

2.50

T & Tc

x = 1.00

P = 038
5 =4.3

T, = 61.5 K

4.5 ~ &

I
~ s &

I
s & s

I
& ~

B. Ferromagneticlike scaling analysis

To explore the validity of a phase transition description
for the (Dy~ Yi ~)A12 system, a scaling analysis based on
equilibrium statistical mechanics was attempted. In this
procedure, magnetization data versus temperature and
internal field are analyzed employing the usual scaling
form of the ferromagnetic equation of state. This is
given by

a s i I a a & I s s & I s i s I i s i I a i a15~ LJ

3 4 5 6 7 8 9

log o(H, /tl~')

FIG. 6. Scaling plot for DyAlp. A total of 371 data
points were used to generate this plot which covers a range of
—0.48 & t & 0.21 in reduced temperature and 1 kOe & H &
3.75 kOe in applied field.

(25)

where f(z) is a scaling function, P and 6 are critical expo-
nents as described previously, and t is the reduced tem-
perature. The scaling form of Eq. ( 25) develops two
branches, one corresponding to T & T, and another to
T ) T, . The uncertainties in the exponents and T, are
estimated by observing the range of values in each quan-
tity that does not disturb the "best" collapsing of the
experimental data.

To touch base with a familiar example, the magneti-
zation data for the pure ferromagnetic case of DyAlz is

plotted in Fig. 6. The important feature to notice is the
region of the branch for T & T, where the ordinate be-
comes nearly independent of the abscissa, marking the
development of spontaneous order. At lower temper-
atures the anisotropy becomes important, and the net
moment decreases as M attempts to lie along the local
easy axis of the polycrystalline sample. The theoreti-
cally predicted values for the critical exponents of a 3D
Heisenberg system are P = 0.36 and b = 4.7. Given the

experimentally determined values of P = 0.38 6 0.02 and
b = 4.3+ 0.3, the DyAls compound can be classified as a
three-dimensional Heisenberg ferromagnet with a critical
temperature T, = 61.5 6 0.2 K, in good agreement with
the literature. z~

This scaling analysis was applied in turn to all com-
pounds from z = 0.370 up to the pure limit. Representa-
tive plots are shown in Figs. 7 and 8, for z = 0.828 and
0.625, respectively. A surrirnary of the scaling results is

given in Table IV.

C. Discussion of exponents

Three conclusions can be reached on the basis of the
preceding results. First and foremost, for z & 1, the
branch for T & T, does not level out in any of the scaling
plots; that is, M always depends on H. Instead, each
branch appears indicative of a pure power law depen-
dence of M on H. This is in accord with the magnetiza-
tion temperature profiles presented in Sec. V A, where no

TABLE IV. Critical parameters for the (Dy Yi )A12 system. The exponent p was obtained
using the scaling relation 7 = P(b —1).

1.000
0.914
0.828
0.625
0.513
0.468
0.370

T, (K)
61.5 + 0.5
47.5+ 0.6
43.4 + 0.2
27.5 + 0.1
18.4 + 0.3
13.4 + 0.3
8.2 + 0.5

0.38 + 0.02
1.00 + 0.20
0.61 + 0.02
0.61 + 0.02
0.60 + 0.03
0.60 + 0.03
0.75 + 0.05

4.3 + 0.3
2.5 + 0.2
2.8+ 0.2
2.9 + 0.1
2.9 + 0.1
2.9 + 0.1
2.5 + 0.1

1.25 + 0.2
1.50 + 0.5
1.10 + 0.2
1.16 + 0.1
1.14 + 0.1
1.14+ 0.1
1.15 + 0.2

—0.48
—0.57
—0.53
—0.09
—0.73
—0.18
—0.39

t range

&t &0.21
&t &0.33
&t &0.59
&t &0.13
&t &036
&t &0.12
&t &3.27
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FIG. 7. Scaling plot for s = 0.828. The plot spans
—0.53 & t C 0.59 in reduced temperature and 500 Oe & H &
1.4 kOe in applied field. A total of 396 points were used to
generate the plot.

FIG. 8. Scaling plot for x = 0.625. The plot spans
—0.09 & t & 0.13 in reduced temperature and 300 Oe & H &
5.0 kOe in applied field. A total of 155 points were used to
generate the plot.

sample exhibited a demagnetizing limited magnetization
in nominal zero field, except possibly for z = 0.914.

That the data scale so well provides a strong indication
that a true thermodynamically driven phase transition
occurs in the (Dy Yi )Alz system, and lends credence
to the tentative assignment made in Sec. V A of a critical
line of transitions separating the PM phase from the CSG
phase in the phase diagram. Further, data taken over a
wide range of fields and temperatures obey the scaling
relation. It is an unanswered question as to why scaling
theory works as well as it does so far from the critical
regime. However, one must bear in mind that no sponta-
neous moment ever develops, and so the magnetization
M cannot be viewed as the proper order parameter for
these compounds.

The actual values of the exponents are noteworthy. Ex-
cept for z ) 0.914, the values for 6 lie near 2.9, and those
for P lie near 0.60. This uniformity of scaling is striking
indeed and suggests that some crossover has taken place
from pure d = 3 Heisenberg exponents to those describ-

I

ing random magnetic anisotropy. These values cannot
be classified with any known universality class such as
those represented by the three-dimensional Heisenberg,
XY, or Ising ferromagnets. Even an assumption of some
sort of dimensionality reduction resulting from dilution
does not work since the values of the exponents lie far
from the two-dimensional Ising values of P = 0.25 and
6 = 1.5. Since there is no spontaneous moment in these
compounds, within experimental uncertainty, the critical
exponent P can no longer have the meaning it enjoyed
in the ferromagnetic case where it governed the thermal
dependence of the spontaneous magnetization. The ques-
tion naturely arises, then, of the precise meaning of these
RMA exponents.

By modifying the AP (Ref. 2) RMA equation of state,
one can establish a direct connection between the RMA
exponents and those describing the pure ferromagnetic
compound DyAlz. Starting with Eq. ( 4), one replaces

(H/M) with (H/M)i~~ and M with Mi~~ as is done for
the so-called modified Arrott plots. Thus, one has

H 2 -ei2p

qM) gn(n+2)p 4J) kM)
(26)

where e = 4—d as before. One then examines two limiting
cases. Near T„both t and M ~I are small so that

Note that in d = 4 dimensions

b =1+—=6 (29)

II - I' '&«' ')~

from which one identifies the RMA exponent

(27)
since r = 0. At very low temperature, the inverse sus-
ceptibility (H/M) approaches zero as H ~ 0 so that

27
(a+2)P ' (28)

Thus,

z&~ Mi+z&l~~ (30)
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27
bi —1+— (31)

by definition of bi. Here bi ~ oo for e = 0, which simply
means M has lost its dependence on H, i.e., ferromag-
netism is restored in four dimensions. One can easily
recover the AP values of b~ = 3 and b~ —5 in the limit
that P =

&
and 7 = 1 for d = 3. The ferromagnetic

scaling form given by Eq. ( 25) is now rewritten in the
Qrm

Since d = 3, the theoretical value for P, is z times the
pure value for P, which is 0.38 6 0.02, i.e. ,

P = 0.57 + 0.03 .

This value agrees remarkably well with the experimental
values of 0.60 and 0.61 obtained from the scaling analysis
of the magnetization data for 0.40 ( z ( 0.80. (Note
that the mean-field value for P is 0.75.) At the same
time,

6, = 3.00+0.13, (36)

which is entirely consistent with the experimental values
of 2.9 to 2.8.

Although the scaling analysis does not yield values for
bi directly, these can be estimated from the slope of the
subcritical branch at the lowest temperatures. The pre-
ceding analysis predicts

bi ——7.00 6 0.39 .

This exceeds the experimental values, determined from
the low temperature slopes of the subcritical branch of
the scaling plots, which range from 4.7 to 5.3 over the
same concentration range. In all probability the data do
not reach the asymptotic limit. To illustrate this point
graphically, a line with slope 1/bi (7i) has been drawn on
the two scaling plots in Figs. 7 and 8.

It is important to point out that the modified AP
equation of state has a form almost identical to that de-
rived by GA (Ref. 7) to leading order in the random
anisotropy, and in the limit of zero uniform anisotropy
and random fields. The sole de'erence is that the expo-
nent e/27 in Eq. ( 26) is just c/2, i.e., there is no 7 in
the denominator. However, should it be the case that

M/t~ = f(H/tl' ~
) = f(z) z'l"

in the limit of low temperatures, T ( T, . Here p, and
6, are subscripted to distinguish them from the "pure"
critical exponents. Then,

H - (t)-i'-~"-'-&M" .

Equating exponents of ~t~ in this equation and Eq. ( 30)
and substituting in the known expressions for bi and b,
yields the fallowing relation between the RMA exponent
P, andP:

po = l~e+211 p = l(6 —d)
p&2)

the crossover exponent P, = e/2 = 0.5 for N = 3 and
d = 3, the two equations of state would agree. In view

of the fact that the Ap equation of state is only valid in
the limit of vanishing D/P, it is quite remarkable that
this modification can account for the observed scaling
behavior so well.

D. Limits on g: (J/D')4 or (4mN) '?

A few comments concerning the size of y are in order.
The pure compound clearly has a demagnetizing limited
susceptibility. However, neither the 0.914 nor the 0.828
compound susceptibility reach their respective demagne-

tizing limits. In fact, y never exceeds 40%%uo of I/4mN
in either case. However, there is a striking difference in
both the field and temperature dependences of the sus-
ceptibility between the 0.914 and 0.828 compounds. For
z = 0.914, y exhibits a maximum as a function of field.
Moreover, this peak position is temperature dependent,
as is its size, the maximum occuring at T, . In contrast,
the susceptibility for z = 0.828 increases monotonically
both with decreasing temperature and field down to as
low as 10 Oe. At present, mare data is needed to char-
acterize fully the temperature and field dependences of y
for all concentrations.

Because the ratio D/J has only been determined
to within the unknown factor R, /a, it is not possible
to compare quantitatively the measured susceptibilities
with the theoretical form (g/D) for each compound.
The work of Barbara et sl. s has shown, in any case,
that weak RMA systems (D/J ( 0.3) can deviate sub-

stantially from this form. The one firm conclusion that
can be reached is that no sample exhibits a demagne-
tizing limited susceptibility, but that below z = 0.914,
g increases dramatically at low fields and low temper-
atures. At lower temperatures and fields some limiting
value must be attained. Whether it is intrinsically lim-

ited by the RMA or by demagnetizing fields remains an
issue to be resolved in a future study.

VI. CONCLUSIONS

Until now, (Dy Yi )Alz has been believed to be fer-
romagnetic over most of the concentration range. How-

ever, the results of this paper show that LRMO in pure
DyA12 is destroyed by as little as 10% dilution with non-
magnetic Y, far above the percolation threshold. This
is seen to be a consequence of the dilution-induced ran-
domness in the magnetocrystalline anisotropy of DyA12,
whose eH'ects have been modeled, with varying degrees
of success, by the weak RMA theories of Aharony and
Pytte and Chudnovsky et al.

In addition to underscoring the fragi1e nature of LRMO
in the presence of weak RMA, the results presented here
have shown that a random component can be introduced
into the magnetocrystalline anisotropy by site dilution
of a crystalline material without having to resort to the
use of amorphous materials. %hen the dilution proceeds
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by the introduction of nonmagnetic impurities, the cor-
responding reduction in the exchange interaction g com-
bines with D to give a range of eRective RMA strengths.
Modulo the unknown factor of R, /a, D/ +ra'nges from
0.66 to 1.6 as z decreases from 0.914 to 0.370. These
numbers corroborate the estimates made in Sec. III which
were of order 0.1 or less. This requires R, to be only a
few lattice spacings, an entirely reasonable value. How-
ever, more work is needed to clarify what happens at
lower concentrations and higher fields.

A dramatic increase in the bulk magnetization is ob-
served in passing from the high-temperature paramag-
netic phase to temperatures T ( T, for z ) 0.370. To
test the relevance of a phase transition description for
this line of transitions, a scaling analysis pertinent to
ferromagnets was applied. Remarkably, excellent scaling
fits are obtained for each compound, with critical expo-
nents that are independent of a over a wide range of
concentration. As no spontaneous moment is seen in any
of these compounds (with the possible exception of the
z = 0.914 compound), this low-temperature phase can-
not be ferromagnetic. Nevertheless, these results strongly
suggest the existence of a true thermodynamically driven
phase transition to a novel magnetic state. Moreover, the
critical exponents cannot be reconciled with any known

universality class, even assuming the possibility of a di-
mensionality reduction due to the dilution. Instead, by
modifying the AP equation of state, agreement between
theory and experiment is achieved, lending further cre-
dence to the claim that a novel low-temperature phase
replaces LRMO in the presence of weak RMA.

Goldschmidt and Aharony" argue that this phase is a
spin-glass phase in the absence of any uniform anisotropy
(cubic, hexagonal, etc.), but that if sufFiciently strong,
these anisotropies can stablize the ferromagnetic state.
On the other hand, Fisheri7 has argued on theoretical
grounds that the proof of a spin-glass or ferromagneticlike
phase in the presence of RMA is still an open question.
Clearly, more work is necessary on both theoretical and
experimental sides in order to elucidate fully the nature
of this RMA-induced phase.
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