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Dilution symmetry of tight-binding Hamiltonians in finite hypercubic lattices leads directly for
pure systems to the convolution-integral formula for the density of states in a given dimension. We
explore consequences of this symmetry for the diagonally disordered models and propose approxi-
mate methods. We compare them numerically with results obtained by exact diagonalization of
small tridimensional samples. Our approach requires very little computer time and, in spite of im-

plicit approximations, gives fairly good results.

I. INTRODUCTION

Recently Pastawski and Wiecko! have pointed out a
new view on a rather classical problem in solid-state
physics, namely that of a tight-binding Hamiltonian on a
finite hypercubic lattice. It was shown there that the ma-
trix Hamiltonian which related to a finite system showed
self-similarity or dilution symmetry as a function of di-
mension. This leads to a hierarchical tree for the eigen-
values which means that those corresponding to a higher
dimension can be derived from those of the preceding one
by a very simple and numerically cheap algorithm. For
the density of states the method is equivalent to the con-
volution formula, namely

NJE)= [ N\(E—E")N,_(E"dE",

where N,(E) is the density of states in d dimensions.
However, the method of Ref. 1 reduces it to finite sums.

The purpose of the present paper is to explore the
above point of view in diagonally disordered systems.>*
There, self-similarity is not perfect due to the randomness
of the matrix elements. However, the structure, due to
the fact that we are still dealing with a hypercubic lattice,
is conserved and, at least on the average, the same dilu-
tion symmetries persist as in the pure case.

We develop approximate methods based on the dilu-
tion symmetry which start from the knowledge of eigen-
values in one dimension. Due to this, in a disordered sys-
tem, as all the states are localized in one dimension,* any
approximate extension to a higher dimension cannot give
information about mobility edges. On the other hand, as
the methods derived in what follows start from exact re-
sults in one dimension and then build up results in higher
dimensions, they will lead to results less exact with
the growing dimension. Nevertheless, the qualitative
features are correctly obtained in three dimensions as we
will show below.

In Sec. II we develop a new formulation based on a ma-
trix representation of the tight-binding Hamiltonian
which leads to a description in terms of direct products of
matrices associated with each dimension element (sites on
a chain, rows in a plane, planes in a cube, etc.). We can
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think of a direct product taken in such a way as
equivalent to the dilution symmetry pointed out in Ref. 1.
We apply the formalism first to the ordered case and it
leads there to the convolution formula for the density of
states as pointed out above. Next we study another exact
case, namely that where the diagonal energy elements are
a sum of terms, each coming in a separate way from an
isolated dimension. We call it the separable-variable (SV)
problem.

In Sec. III we apply the formalism to the diagonal dis-
order problem. There, some approximations have to be
introduced and we study several possibilities.

In Sec. IV we show numerical results for the diagonal
disorder case, both with the square box Anderson? distri-
bution of disorder and with the Gaussian one. Different
approximations are compared with the numerical calcu-
lation by the classical method of Dean® which gives ex-
actly the integrated density of states using the negative ei-
genvalue theorem, both for the density of states and for
the tail behavior explicitly as shown by the integrated
density of states.

In Sec. V we present a different approximation scheme
for the diagonal disorder case, which explicitly takes into
account the localization properties of the states. It there-
fore gives excellent results for the minority component of
the binary disordered alloy. Numerical results are shown
in Sec. V1. Finally we give the conclusions.

We must mention that the study in terms of direct
products is on the same line of thought as the work of
Schwalm and Schwalm® performed for the Green’s func-
tions.

II. THE FORMALISM

The tight-binding Hamiltonian in site representation
reads

H=73 DI+ 3 Vi (ITXT+ITTH, ()
T nr

where ¢; is the on-site energy and V; ;. are the hopping in-
tegrals.
In what follows we will analyze the tridimensional
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case, but the generalization for other dimensions is
straightforward. Thus, each site on a three-dimensional
(3D) cubic lattice can be labeled as

T=i,j,k 2)
with / meaning sites, j meaning rows, and kX meaning
planes. Therefore,

g€k D) —ijk) . 3)
J
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The hopping integrals are

Vijk,i+1jx — between sites ,

Viin ij+1x —>between rows ,

Vik,ijk+1—>between planes .

Explicitly in this notation we get

H =73 e lijk Yijk |+ Vi i o ik Y G+ 1k |+ i+ 1jk ) Cijk])

ijk

+ Vi + Uik Y + 1k |+ i + 1k Y Cijk D+ Vi Uik Y Gk + 10+ [ijk +1) (ijk]) )

We now define the matrices in terms of projectors
i=|i)<i| R
B,=|i)(i+1+]i+1)(i] .

(5)

In this notation the 1D Hamiltonian reads
N N—-1
H''=3¢e4,+ 3 VB . (6)
i=1 i=1
Now we go to three dimensions and introduce the formal-
ism of direct products which reflects the dilution symme-
try of the hypercubic lattice. It means that we write pro-
jectors in terms of direct products:

lijky=li)®l|j)®lk), 7

and with the definition (5) the Hamiltonian reads
N N N
HY=3 3 3 eu4®4;84,
i=1j=1k=1
N-1 N N
+ 3 X 3 Viki+1x4c®4;9B;
i=1 j=1k=1
N N-1 N
+ : kE Vijkj+1k Ax ®B; ® A;
1

I M

It

!

-~

+

M=z 1M

I M=

N—1
D Vikix+1Be®4;® 4, . (8)
i ji=1 k=1
A. The ordered case
In the ordered case we have

€, =€,

r
using the fact that ] =3 ; 4; and taking e=0, V' =1, the
3D ordered Hamiltonian reads

H=IeleHy' +IoH" ol +Hy eI®l, (10

where H{" is the 1D ordered Hamiltonian.

As the members of sum (10) commute they can be diag-
onalized separately. If P is a unitary matrix and
Dy,=P " 'H P with

Dy=3 E{4;, (11)

where E? are the eigenvalues, we get
DY =p3-1gPpB
=]®I®D,+1®D,®I+D,®I®I1 (12)
with
P¥=pPpgPg®P. (13)

Using (11) we get

N N N
DP=3 3 I (EP+E)+EDA, @4, 4;. (14)

i=1j=1k=1

Thus, we have the result that the eigenvalues of the 3D
ordered case can be obtained as sums of eigenvalues of
the 1d ordered Hamiltonian. This is equivalent to the re-
sult of Ref. 1.

From here it is immediate to say that the density of

_ _ _ 9 states of the high-dimensional system is a convolution of
Vi1 = Vigii+16= Ve 1=V lower-dimensional systems:
I
NP(E)= [ N(EON@(E —E")dE’
= [ [ N(EING(E"NY(E—E'—E")dE'dE" . (15)
f
B. The separable-variable problem V; i+ 1k = Vi,
This problem consists in having Viikij+1k = VE +1 17
g =0a;tB;+v (16) Vijk,ijk-H:V[k-H .

and

In this case we have in three dimensions,
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HY=F ;4,8 4;® A, +5; A, ® 4;® 4,
ijk
Ty Ax ®Aj®Ai+V[(,'1+1Ak ®Aj ®B;
+VE Ak ®B; @ A+ Vi1 By ®A4;4, .  (18)

Due to the separable energies [Eq. (16)], we get

N N-—1
HR)=I®I® | 3 a;4;,+ 3 Vi, B,
i=1 =1
N N-—1
+1e | 3 B4+ 3 VB B |l
j=1 j=1
N N-—1
+ |3 vedit 3 Vi Bi @Il . (19)
k=1 k=1

We can gather the one-dimensional Hamiltonians from
here:

N N-1
HV'=3 a4+ 3 Vi, B, 20
i=1 i=1
etc., and get
H{=IeIeH +IeHy eI +H\" @Il . 2D

Again we can diagonalize each term separately due to the
fact that they commute and get

(3) — pB)— 13 pA3)
Dsy=Psyv" 'HgyPsy

=I®IeD, ' +tIeDy' ®I+D{'sIel (22)

with

P\ =P,®P;8P, (23)
and

DY =S (EFf+EP+E}) A, ®A;2 4, . (24)

ijk
Again the density of states is the convolution
NUE)= [ [ NV(EINPE
XNg,”(E —E'—E")E'dE" . (25)

In Ref. 1 a hierarchical tree as function of dimension was
presented for the eigenvalues for the pure case. There,
each “generation” was given by the increasing dimension
and the eigenvalues at each step were obtained by sum-
ming up to each eigenvalue, of the immediately lower di-
mension, the same set of eigenvalues of a 1D chain. In
the present case of the separable-variable problem a
hierarchical tree can be constructed as well. Now at each
generation, however, a different set of eigenvalues will be
summed up.

A physical example of the separable variable problem
is the superlattice where

B;=y k= const (26)

and q; is a function of the site position i. In the superlat-
tice we can have disorder or modulation in one direction
and a translational symmetry in the other directions.

Usually this problem is solved by reducing it to a 1D
problem through Fourier transforming in the ordered
directions.

III. APPLICATION TO THE
DIAGONAL DISORDER CASE

After having discussed two models where, through the
property of the dilution symmetry, the density of states
can be generated by convolution of the 1D problems ex-
actly, we now proceed to study the possible approaches in
the same spirit to the diagonally disordered tight-binding
model.>?

The Hamiltonian reads

Hl()3)=251jkAk ®A4;®A4,+ 4, ®4,®B,
1jk

+4,®B,®4,tB, ®4;®4,, (27

where ¢, are random numbers with (g;; ) =0 and
<E,2jk ) = Wz.

In the disordered case we are forced to make some ap-
proximations. We make them through two different ap-
proaches leading to, respectively, two kinds of treat-
ments.

One view is to propose successive approximations: (1)
the convolution of the distribution of disorder with the
density of states of the pure system, (2) the convolution of
the 1D disordered density of states with the one of the
pure system in the immediately previous dimension [one-
dimensional disorder approximation (1IDDA)], (n +1) the
convolution of the n-dimensional disordered density of
states with that of the (d —n)-dimensional pure system
(nDDA), etc.

The other point of view consists in approximating the
random sequence g,, by one which can be expressed as a
separable-variable problem and then make the convolu-
tion as in Eq. (25), [separable-variable approximation
(SVA)]. Let us analyze them.

A. n-dimensional disorder approximations (nDDA)

1. Approximation of the convolution
of the pure system with the distribution of disorder

We rewrite Eq. (27) as

HF'=T e, A4, ®4;® A, +HF =H+H . (28)
ijk
Supposing
[HY,HY 1=0, (29)

which is true if we average it in the disorder distribution,
we can diagonalize each Hamiltonian, HY’ and H{, sep-
arately and take as an approximation for the eigenvalues
the sum of the eigenvalues of the 3D ordered case and the
random sequence €;; . It means

ER'=(EQ )y +eu=El+E)+EQ+e; . (30)

For the averaged density of states it means
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Nyl = f NG (E —E")pw(E")dE’ , (31)

where p,/(E) is the probability distribution of the €;;.
This approximation is exact for the Lorentz distribution
as was shown by Lloyd.’

2. The one-dimensional disorder approximation

We can make a better approximation than the previous
one by taking

Hp'=Hp'+Hy (32)
with
HP=IeHVVeI+H @Il (33)
and
HY= % A, ®A4;® ;;s,-jk A;+B;
=3 4, ®4;0H} . 34)
Jjk

As H{!) represents an ensemble of noninteracting chains,
we can diagonalize it with

Pl()l)=2 Ak8A1®ij , (35)

i
with P, so that Py 'Hj'P; =D, which is a diagonal
matrix with the eigenvalues of Hji'. The approximation

we make here is to suppose that
[HV,HP 1=0 . (36)

This is true when the configurational average is per-
formed. Accepting the approximation, and proceeding as
in the previous cases, we get

ER=(EQ ) +(Ep )
=E’+EQ+(ER) 37
and for the averaged density of states we get

Ny'= [ N (E")NYNE —E')dE' . (38)

This method allows for the numerical evaluation of the
density of states by the sum of eigenvalues [Eq. (37)] or
analytically from Eq. (38) where the density of states of a
one-dimensional chain can be obtained from the formula
of Dyson-Schmidt.8 In practice, however, this also re-
quires a numerical procedure as in the work of Guber-
natis et al.’

In other words, the approximation consists in adding
disordered chain eigenvalues to each eigenvalue of the or-
dered 2D system.

B. The separable-variable approximation

As discussed previously in Sec. II the problem of separ-
able variables can be solved exactly. We apply it now to
the disordered system given by Eq. (27).

The approximation'® reads
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Eijk =a; +Bj+vi »

(39)
(a,B])=(BJYk )=(ai7k)=o .

This approximation for €;; means to introduce correla-
tions between sites whereas they are absent in the original
model:

Cegpeipn) ={ai)by+ (B8, +(¥E)bu . 40)
Taking

(a})=(B)=(y})=w}, 41)
we have

(elp)=Wi=3w}, 42)

In this way the problem is solvable as shown in Sec. II B.
Thus, in this approximation the eigenvalues are obtained
by adding three disordered one-dimensional chains:

ER =~(Ep"), +(Ep");+(Ep)y . 43)

In general, the disorder distribution for ¢, is different
from the distribution taken for a;, B;, v of the starting
chains. The approximation of Eq. (39) requires that the
probability distribution of the 3D site-energy variable
should be the convolution of the probability distributions
of the chain site-energy variables. In the case of a Gauss-
ian distribution its form is conserved by successive con-
volutions with only the change of the standard deviation
(i.e., when a;, B;, v, are random Gaussian variables with
width W, the resulting €, is also a Gaussian but with
width V3W,).

Thus, when the disorder distribution is a Gaussian of
width W, the density of states in the separable-variable
approximation reads

N§AE, W)= [ dE’ [ dE"NY E‘/—".;
w
XN(l) El' —
D ’ ‘/3
w
xN, |[E—g—E", X | .
» |E-E'—E",- % ] (44)

IV. NUMERICAL RESULTS
FOR THE ONE-DIMENSIONAL DISORDER
APPROXIMATION AND FOR THE
SEPARABLE-VARIABLE APPROXIMATION

Here we will check numerically the 1IDDA and the
SVA proposed in the previous section. First we will com-
pare computational results for the 3D density of states
with the diagonal Anderson disorder.? The distribution of
the on-site energies is

/W if e <

p;‘l"(eijk )=

(45)
0 if |e,,,<|>7W :
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In Fig. 1 we show the results of the method 1IDDA and
the SVA method for different values of disorder for a 3D
cubic lattice. These results can favorably compare with
those given by Hu et al.!' using the method of Dean.’
For the central part of the density of states we find a very
good agreement with Ref. 11. However, the tails in our
treatment die less abruptly. We must point out that in
the SVA the final distribution for the diagonal elements is
not exactly the square box distribution and so we are in
some way forcing the comparison. Nevertheless, the
agreement is quite reasonable.

We next compare the methods for the Gaussian distri-
bution (where the SVA can be applied without problems)
defined as

1 —e22w?
\/277We (46)
with the exact numerical results obtained with the
method of Dean.

In Fig. 2 we show the results of our approximations for
the density of states for a given disorder W together with
the exact result in three dimensions. In Fig. 3 we show
the integrated density of states where some discrepancies
in the tails can be evaluated for the two methods. Except
for these discrepancies in the tails, we see good agree-
ment with exact Dean’s results for both approximations.
Also, we see that the results get better with the increasing
disorder, which is reasonable due to the fact that our
starting point in both methods is the 1D disordered chain
where all the states are localized,* and in three dimen-
sions we have localization for all the eigenstates above
the Anderson transition (W > We).>3

In our examples we take relatively small samples in or-
der to be able to compare with Dean’s method which is
time consuming. But with both approximations we can
perform the calculation on big samples with very reason-
able computer times.

pS(e)=
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FIG. 1. Averaged density of states for the square box disor-
dered model for different values of the disorder W. (a) one-
dimensional disorder approximation (1DDA), (b) separable-
variable approximation (SVA). The size of the cubic samples is
20X20X20.
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FIG. 2. Density of states for the diagonal Gaussian distribu-
tion of disorder with disorder strength W =3. The numerical
results obtained through (a) IDDA and (b) SVA methods (dot-
ted line) are compared with the exact ones calculated by Dean’s
method (solid line). The oscillations are due to disorder fluctua-
tions. The sample size is 10X 10X 10 (3D cubic lattice).

V. THE ALTERNATIVE LOCALIZED EIGENSTATES
APPROXIMATION (LEA)

We want to present here an alternative method for the
problem of diagonal disorder based explicitly on the lo-
calization properties of the states in one dimension. This
method can be easily developed with the formalism intro-
duced in Sec. II although it does not lead to a convolu-

10
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00!
w
[a IR} TR
r(b)
01 r
001
-
ALLJA':. N B ST S

-6 -4 -12 -10 -8 -6 -4 -2 O
E

FIG. 3. Tail behavior of the integrated density of states (IDS)
for Gaussian disorder of strength W =3. The logarithmic scale
magnifies the disagreement for high absolute energies between
the exact results calculated by Dean’s method (solid line) and
the approaches of (a) 1IDDA and (b) SVA (dotted line). The
samples size is 10X 10X 10 (3D cubic lattice).
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tion formula for the density of states.

We stare with the Hamiltonian for the diagonal disor-
der as defined in Eq. (27), and explicitly separate in it the
block Hamiltonians corresponding to chains in the x
direction of the terms, including hopping between them
in the other directions, by writing

HY'=3 4, ® 4;® [T e A, +B,
jk i

+3 4, 8B;®4,+B,® A4;® 4,

ijk
=3 4, ®4;8H;}'+ 3 4, 8B;8 4,
Jjk ijk
+B,®A4;®4; . (47)

First we diagonalize these 1D Hamiltonians H ] ik 'by
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x Hj'Py =D ze,,’A,, (48)

where we order the eigenvalues e,]k of a given jk chain
with the index / which corresponds to the site of localiza-
tion of the respective eigenvector. In doing this we have
made the hypothesis that all the eigenstates are localized
on different sites.

Next we apply to the overall Hamiltonian of Eq. (47)
the ortogonal transformation

PV=73 4, ©4,8P; , (49)
jk
where, due to the ordering we have taken for the eigen-
values, the rows of P, corresponding to eigenstates of
Hj, V" are ordered accordmg to its site of localization.
After applying (49) we have

H;)B)‘:P(l)_'HO)P(l)
=3 epdA04;84,+3 A4, 8L; P '+ 3 A4, ®R; ®P;'P; . 1,
ljk Jjk jk
+3Li®4;@P; 4P it DR ®A; 9P Py (50)
jk jk
with
L;=1j+1 {1,
(51)
=|j)j+1].
Let us define the matrices
Qij+1x =P 'Pit1i »
ks j J (52)
ij,jk-H:P_[k Piyys
and
m =11 {m]| . (53)
Now we have
=S e A ®4;84,+ 2(Q1k1+1k)lm Ay ®R;® 4, + 2 Qikj+1k)m Ay ®L; ® 4,
1jk
Im Im
+ E(ij,jk +l)lmRk ® Aj ® A[m + 2 (ij,jk+l)m1Lk ® Aj ® A[m . (54)
Jk Jjk
Im Im
I
This is the same Hamiltonian H}}' given on a different (Qjkj+1k Vim =8im - (55)

basis. So up to now HJ} is exact but more complex. We
have eliminated the term 4, ® 4; ® B; but we have add-
ed more complex couplings. It means that connections
between neighbors into the rows jk have disappeared but
new multiple connections between different planes have
been established through the Q matrices defined in Eq.
(52).

Now, due to the fact that eigenstates are localized in
one dimension for any given disorder,* the matrix ele-
ments (A4 ;.4 ), decrease exponentially with [/ —m].
The LEA consists in neglecting all the off-diagonal ele-
ments of the Q matrices and taking all of them as the
identity matrix, i.e.,

This is a strong assumption which is true in the large dis-
order limit (W — o).

So we will work with an effective Hamiltonian H .4
which corresponds to an ensemble of decoupled disor-
dered planes
Hp"=~Hyg=T3 E(I}k)Ak ®A4;©4,

1jk
+ 3 A, ®B;® 4, +B;, ® 4,8 4,
1jk
_2 1:1(2)® A, (56)
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where H|? identifies each I plane with random site ener-
(1),

gies given by the previously obtained eigenvalues ¢;;;:
HY=TS¢ejl4,®A;+ 4, 8B;+B, ® 4, . (57)
jk

In the second step of the method we have to first diago-
nalize the bidimensional effective problems. To do this
we proceed as above for each H?. Thus, after having di-
agonalized the rows /k in the planes with the Hamiltoni-
an

Hj'= 3 ejji 4;+B, (58)

J

and having made the approximation (55) for the resulting
Q matrices, we have the new effective Hamiltonian

Hi=3¢2 4,84, ®A4,+B,®4, ® 4,

Imk
=S HY®4,04,, (59)

im
where €}2), is the eigenvalue of the Hamiltonian H};’ cor-
responding to a state localized on the site m of the lk

chain.

Now H; is an ensemble of decoupled one-dimensional
chains and, in the third step of the method, it can be di-

agonalized by diagonalizing each one of them. So we
finally obtain

H"=3¢€}) 4,84, 04, . (60)
Imn
As a conclusion the e}, are the eigenvalues used to
determine the 3D density of states. For d dimensions we
have to perform d steps.

Physically the method means the following. We
choose one direction in a cubic lattice and determine a
basis of states corresponding to disordered chains in that
direction. We write an effective Hamiltonian in that
basis for each perpendicular plane which couples all the
localized states corresponding to that coordinate. Next,
on each plane two directions are chosen and the pro-
cedure is repeated. Finally we remark that the LEA is
based on these two assumptions: (a) the supposition that
all the states localize on different sites in one dimension,
and (b) the approximation of the matrices Q by identity
matrices [Eq. (55)].

VI. NUMERICAL RESULTS FOR
THE LOCALIZED EIGENSTATE APPROXIMATION

In this section we will apply the LEA method to
different models of disorder and compare it with the ex-
act computational results of Dean’s method. First we an-
alyze the binary-alloy model,’ i.e., the tight-binding mod-
el of a substitutional alloy of 4 and B components. In
this case the Hamiltonian (27) is given with

ple ) =cd(e; —€4)+(1—c)d(e; —€p) , (61)
where we choose energy units such that
€,=—W, eg=W, (62)

and c is the concentration of A atoms.
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In Figs. 4(a) and 4(b) we show the LEA results for low
disorder (W =2) and two values of the impurity concen-
tration (¢ =0.1 and 0.4) on a 3D cubic lattice. We see
that the LEA accounts well for the overall band shape for
small concentrations. In particular, it gives correctly the
location of the secondary peak related with the minority
component (i.e., the A atoms). However, for higher
values of ¢ the agreement with the exact results is not so
good.

When W increases the agreement increases. In Figs.
4(c) and 4(d) the density of states is shown for W =5 and
¢=0.1 and 0.4. In this case the A and B subbands are
well separated and we can see that the method gives
different results for each subband. While, for the minori-
ty subband (i.e., the band related with the 4 component),

0.18
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357 91

FIG. 4. Density of states for the binary-alloy model. We
compare the exact results of Dean’s method (solid line) with the
curves obtained through the localized eigenstates approxima-
tion (LEA) (dotted line). (a) ¢ =0.1, W=2; (b) ¢ =0.4, W=2;
(¢) ¢=0.1, W=S5; (d) ¢=0.4, W=5. The sample size is
10X 10X 10 (3D cubic lattice). The oscillations are due to disor-
der fluctuations.
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the agreement is excellent, for the majority subband, al-
though the LEA correctly gives the band limits, it does
not account for the shape of the density of states.

The fact that the LEA works very well for the minority
subband in lower concentrations of A is in good accord
with the idea of the method which is based on the locali-
zation properties of the states. This is because it is
known that in the limit of large W and low ¢ almost all
the states of the minority subband are localized in three
dimensions. !

In this limit we show the detailed agreement of the
LEA with the exact density of states for the minority sub-
band in Fig. 5. We can obtain with this method the
characteristic three-peaked structure (with some sub-
structure) of this band. Physically,'® the central peak of
the minority band is due to isolated impurities, while the
two satellites arise from the bonding and antibonding lev-
els of a nearest-neighbor impurity pair cluster. Tradi-
tionally the density of states of disordered models is ob-
tained through the application of the coherent-potential
approximation (CPA).!* Since the CPA is an approach
based on an effective periodic medium it is incapable of
describing the effects due to the local environment of the
atoms, and then it cannot reproduce the peaked structure
of the minority subband.!®> Due to this, there has been, in
the past, numerous attempts to generalize the CPA in-
cluding cluster effects.!® Many of these attempts have
found problems in the analytic properties of the Green’s
function in the high-disorder limit or they require a hard
computational effort (for a discussion of the CPA gen-
eralizations see the review of Elliot ez al.).'® It is in this
context that we think that the LEA method is relevant.
We say that the LEA is complementary of the CPA be-
cause it works well where the CPA does not, although it
fails where the CPA is good.

Recently Chu-Liang and Wei-Liao!” developed a
method based on the renormalization group for the densi-
ty of states of binary alloys. We want to point out that
their method cannot account for the central peak in the
alloy problem. Besides it has been performed only for
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FIG. 5. Density of states of the minority subband of a binary
alloy with ¢ =0.1, W=10. We show the agreement between
the exact numerical results of Dean’s method (solid line) and the
results of the LEA (dotted line). The sample size is 10X 10X 10
(3D cubic lattice).
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two-dimensional cases. Now we evaluate the relevance of
the approximations on which the LEA is based as men-
tioned at the end of Sec. V.

The first hypothesis of the LEA is the supposition that
all eigenstates localize in different sites for one-
dimensional lattices. We check this hypothesis by di-
agonalizing an ensemble of disordered chains and taking
the configurational average of the number of coin-
cidences, (NC ), in the site of localization of the eigen-
states of each sample. Then, the LEA will be appropriate
when (N, ) is small.

The second hypothesis of the LEA is the approxima-
tion of Eq. (55). To evaluate this we take the mean value
of the Q matrices over an ensemble of chains and calcu-
late the ratio between the off-diagonal elements and the
diagonal elements of (Q), obtaining what we call the
concordance ratio

L 15(0),/3(0:)] . 63)

C =
TON-L | Z j i

Then, when C, is small we expect that the LEA can be
applied. (Also, we checked that the matrix elements
(Q ), decrease exponentially with [/ —m|.)

In Fig. 6 we show the number of coincidences and the
concordance ratio for the binary-alloy problem for
different values of W and different concentrations. We
see that (N, ) is independent of W and decreases with the
concentration. On the other hand, C, tends to decrease
for small concentrations and, also, it appears that it
slightly decreases with W. The fact that these two pa-
rameters behave in opposite directions explains the situa-
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FIG. 6. Test of the validity of the hypothesis of the LEA for
the binary-alloy model over an ensemble of 100 chains. (a)
Mean value of the number of coincidences in the site of localiza-
tion (Nc) vs the concentration ¢ of 4 atoms. (b) Concordance
ratio C, as defined in Eq. (63) vs c¢. The error bars are of the
same order magnitude of the point values. X, W =2; 0, W =S5;
O, w=1o0.
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tion that we cannot reach an agreement with the exact re-
sults for both subbands simultaneously.

Finally, we apply the LEA method for Gaussian disor-
der as defined in Eq. (46). For small values of the disor-
der (W <2) our results do not account for the shape of
the density of states in the same way that the LEA could
not give correctly the majority band in the binary-alloy
case. For these values of W the 1DDA and SVA
methods analyzed in Sec. IV are better.

However, for larger values of disorder (W X 2) we see
an excellent agreement of the LEA with Dean’s exact re-
sults as it is shown in Figs. 7 and 8. Here, also the con-
cordance of our results with the exact density of states in-
creases with W. In this case the agreement is better than
the 1DDA and SVA results and the LEA can also
correctly give the band-tail behavior of the integrated
density of states (Fig. 8) when the other methods cannot.
Also we have compared our LEA calculations for big
samples (50X 50X 50) with the exact numerical diagonali-
zation performed in the work of Li et al.'®* There they
have fitted a previously proposed law of exponential de-
cay for the tail of the density of states:’

N(E)~e¢ ™ |El/24W?

We have done the same fitting in our results obtaining an
agreement of the order of 5% with the values of the fac-
tor A calculated in Ref. 18. Here again the LEA works
well in a region where the CPA fails.

Next, in Fig. 9, we show the number of coincidences
and the concordance ratio for the Gaussian model as a
function of the disorder. We see that both parameters
decrease for increasing W taking values smaller than
those we have obtained for the binary-alloy case. The re-
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FIG. 7. Density of states for the Gaussian disordered model.
We compare the LEA results (dotted line) with the results of

Dean’s method (solid line). The samples size is 10X 10X 10 3D
cubic lattice). (a) W =3, (b) W =10.
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FIG. 8. Tail behavior of the integrated density of states for
the Gaussian disordered model. We show the agreement be-
tween the LEA results (dotted line) and the exact numerical re-
sults of Dean’s method (solid line). The sample size is
10X10X10. (a) W =3 (compare with Fig. 3), (b) W =10.
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FIG. 9. Test of the validity of the hypothesis of the LEA for
the Gaussian disordered model as function of the disorder
strength W over an ensemble of 100 chains. (a) C, vs W, (b)
(N_) vs W. The error bars are of the same order of magnitude
of the point values.
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gion of values of W where the parameters are small is in
accordance with the range of W where we have seen the
agreement of the LEA with the exact results.

Also we have applied the LEA for the Anderson
square box disorder. For low disorder the agreement
with the results of Hu et al'' is not as good and the
1DDA and SVA methods are better, but for large values
of disorder the LEA results are better, and the tails fall
off more abruptly than with the other methods in accor-
dance with the results of Ref. 11.

VII. CONCLUSIONS

We have explored the consequences of the dilution
symmetry of tight-binding Hamiltonians in finite hyper-
cubic lattices for models with different distributions of di-
agonal disorder. This symmetry leads directly to the con-
volution formula for the density of states in low dimen-
sions as has been studied in Ref. 1. For disordered mod-
els some approximations have to be introduced.

The dilution symmetry reflects itself naturally in the
formalism based on the direct products of matrices com-
ing from the 1D problem as shown in this paper.

We have compared the results of our approximation
with the exact results obtained by Dean’s method for the
square box Anderson disorder, for the Gaussian disorder,
and for the binary alloy. The one-dimensional disorder
approximation and the separable-variable approximation
give a good agreement for the first two disorder models.
However, we find some discrepancies in the tail behavior.
The agreement improves with increasing disorder. For
the binary-alloy model these approximations give slight
discrepancies in the gap positions.

Then we have proposed a different method: the local-
ized eigenstates approximation based explicitly on the lo-
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calization of the states. This last method gives good re-
sults for all three models of disorder. In particular, the
minority component of the binary-alloy model comes out
with excellent agreement for the peaked structure which,
in general, cannot be obtained by the CPA calculations.

An interesting feature of our approximations is that
they require short computer times. The SVA and 1DDA
methods are very fast (they require few minutes of CPU
of a uVAX) meanwhile the LEA requires a bit more of
CPU due to the calculation of the site of localization of
the eigenvectors. Compared with other standard
methods, such as the equation of motion method!’ or the
recursion method,” the localized eigenstate approxima-
tion needs about the same order of computer time. How-
ever, these are not precise at the band tails (due to the
termination of the continuous fraction in the recursion
method, and due to the cutoff in the time of integration in
the equation of motion method), then, in this case and for
large disorder, the LEA method is more reliable.

In conclusion, the dilution symmetry which implies
that the eigenvalues of a problem in a higher dimension
can be obtained from eigenvalues in a lower dimension
can also be used in disordered systems. However, in the
pure case this property is exact and with disorder some
approximation schemes have to be used.
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