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Hamann has shown how to construct a norm-conserving pseudopotential for the unbound 4f
state in the Ba atom. This pseudopotential which was calculated at —1.877 eV, fails to yield the
sharp 4f resonance found at + l. 501 eV in the Dirac atom. We show that this is a consequence not
of the energy at which the pseudopotential is calculated but rather of the cutoff radius used. We cal-
culate the pseudopotential at —1.877 eV using a cutoff radius intermediate to those used by
Hamann for the bound 4f state of the Ba+ ion and the unbound 4f state of Ba, and obtain the
positive-energy resonance. When the [B~(g'/f)/BE' ]-preserving form of the norm-conserving
pseudopotential recently developed by Shirley et a/. is used, the resonance occurs at 1.507 eV and is
actually larger than that of the Dirac atom. We also discuss the application of these new ideas to
the separable form of the norm-conserving pseudopotential.

I. INTRGDUCTION

Two important advances' in the theory of pseudopo-
tentials have appeared in print recently. Unoccupied
states in atoms such as the 4f in Ba are often unbound;
the technique for obtaining a pseudopotential for such
states has heretofore been to calculate the pseudopoten-
tial for the corresponding bound state in the singly ion-
ized atom and to rely on the (approximate) transportabili-
ty of pseudopotentials from one electronic configuration
and energy to another. Hamann' showed that it is not
necessary to use an eigenfunction to construct the pseu-
dopotential; an unbound wave function normalized
within a sphere of radius rz and calculated at any energy
within the range of energies over which the pseudopoten-
tial is to be used works just as well. There are only minor
constraints on r~. It must be sufficiently larger than the
pseudopotential cuto8' radius r, that the pseudopotential
is identical to the true potential at rz, but not so large
that the exponential growth of the unbound wave func-
tion causes numerical inaccuracy. In the unusual case
that the pseudofunction has one or more nodes, rz must
lie within the first nodal radius. In addition, we have
found in the relativistic case that r& should be sufficiently

large that the relative contribution of the small corn-
ponent of the Dirac wave function to the normalization
of that function is close to the asymptotically small value
it attains as rz~ Do. Since the potential and eigenvalues
in the crystal in which the pseudopotential is to be used
are likely to be closer to those of the atom than those of
the ion, the Hamann pseudopotential will, in general, be
an improvement over the standard pseudopotential for
unbound atomic states.

It is well known that pseudopotentials which are
norm-conserving" generate pseudo-wave-functions which
have the same first energy derivative of their logarithmic
derivative tl(I lgt as the true wave functions and it is this
that gives them their transportability over a range of en-
ergies. The contribution of Shirley et al. (SAMJ) was to

show how by parametrizing the cuto8' functions used to
generate the pseudopotentials one could also force the
second energy derivative of the Pt /Pt to be equal to those
of the true wave functions, thus greatly improving their
transportability.

Hamann' calculated the Ba 4f pseudopotential at the
6s eigenvalue c6, = —1.877 eV using r, =2.41 bohrs, the
same r, he used for the 6s pseudopotential. Using this
pseudopotential he failed to obtain a set of f bands in
BaSe, which he found lie about 9 eV above the top of the
valence bands in an all-electron calculation. Hamann
states, "of course, when eI is deliberately set to avoid a
sharp resonance, the pseudopotential cannot be expected
to reproduce that resonance. " This statement is not quite
correct. There is a natural cutoff' radius for the 4f pseu-
dopotential which will produce the resonance irrespective
of st and that r, is the r, of the bound 4f state in the ion.
One is, of course, free to choose any r, one wants, but the
larger r, is, the less transportable will be the pseudopo-
tential. Hamann's pseudopotential worked well for the
valence and lower conduction bands of BaSe not only be-
cause it was inherently transportable within that restrict-
ed range of energies, but because there is so little f char-
acter in those wave functions that any smooth function
would have made a satisfactory f pseudopotential. We
show in this paper that a pseudopotential generated at
Hamann's c,6, with the natural cuto8' precisely repro-
duces the 4f resonance of the Dirac equation which lies
3.58 eV above c6, . It is also transportable to the ion
where it results in only a small error in the 4f eigenvalue.
The disadvantage of this pseudopotential is its slow con-
vergence in reciprocal space so that plane-wave expan-
sions become impossible (except, of course, for states with
negligible f character). Therefore we have also generated
f pseudopotentials at e6, with an r, intermediate to
Hamann's and the natural r, When B. (QJ/gI)/BE of
the pseudofunction is made to match that of the wave
function, the pseudopotential is very nearly as transport-
able as that with the natural r, .
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FIG. 3. Plot of Ba f functions P&
=r P& (in arbitrary but con-

sistent units) at positive energies. (d) is the large component of
the Dirac j = —', function and (a), (b), and (c) are from the short-,

intermediate-, and long-range SAMJ pseudopotentials. The
highest peaks are at the resonance energies given in Table I,
The other solid (dashed) curves are at energy steps of 0.3 eV
above (below) the resonance energy except for (c), where the
steps are 0.6 eV.

tion. The long-range pseudopotential resonance is very
broad and occurs at much higher energy.

In Table I are listed the resonance energies, the radius
at which the resonant wave functions peak, and the
bound-state eigenvalues The Srst thing worth nothing is
that second energy derivative matching of the logarith-
mic derivatives does give a large improvement in the res-
onance energies and bound-state eigenvalues for both the
intermediate- and long-range pseudopotentials. The
second thing to note is that the pseudopotential and
Dirac eigenvalues are in much worse agreement than are
the resonance energies. SAMJ also suggested a method
for adjusting the pseudopotential to make it more trans-
portable to changed potentials. A little thought shows
that that would be inappropriate here. The eigenvalue
discrepancy does not arise from any shortcoming of the f
pseudopotential, rather it arises from the fact that the
Dirac and pseudo-6s-eigenfunctions are much different in
the core region so that when one of the 6s electrons is re-
moved to form the ion, the Dirac and pseudoatoms ex-
perience different potential shifts. Since the s pseudopo-
tential cutoff radius has to lie well beyond the last node in
the 6s Dirac eigenfunction, there is really no way to
reduce this difference. To see what happens when the
same potential shift is applied to the Dirac and pseudoa-
toms, we calculated the diff'erence between the self-
consistent Dirac ionic and atomic potentials and added
this to the pseudoatom. We obtained bound 4f states at
—4.068 and —4.062 eV for r, =0.274 and 1.000 bohr, re-

spectively, i.e., the discrepancy between the Dirac and
pseudo 4f eigenvalues is no worse than that for the 4f
resonances when identical potential shifts are applied to
the two atoms to bind the 4f state.

III. SEPARABLE PSEUDOPOTENTIALS

C)
0 E (ev)

FIG. 4. Maximum value of the first peak in the P& of Fig. 3

as a function of energy, for a, the short-range pseudopotential;
b, the intermediate-range pseudopotential; and c, the long-range
pseudopotential. The dashed curve barely visible under curve a
is from the Dirac P~.

The ordinary norm-conserving pseudopotential is
of the form V~, =pi ~ ~ Yi~ ) V&(r)( Y&~ ~. If one uses n

plane waves as a basis set, this necessitates the eval-
uation of n ( n + I ) l2 terms of the form

fj,(kr)j, (k'r)V, (r)P, (cos8k„)r dr at each point in the
Brillouin zone, where PI is a Legendre polynomial of the
angle between k and k' and jI is a spherical Bessel func-
tion. We thereforesuggested writing V, in the form

(I)
P,~ 5 Vt Pi~

where VL (r) is a completely arbitrary local potential, tg
is the pseudoeigenfunction from which V, was con-
structed, and 5VI = VI(r) VI (r) —Note that thi.s reduces
the number of nonlocal terms to be evaluated from
n (n+ I)/2 to n Note also. that f', PI —=V, ttt&, but, in

general, f",g = V, t)j. There are three criteria that
should be observed in selecting a VL (r). (i) The 5V~(r)
should be made as small and as short range as possible.
(ii) If, as in the present case with our short- or
intermediate-range V&, the VJ are sufFiciently dissimilar
so that all the 6VI cannot be made sma11, the posi-
tive 5 VI should be made small. (iii) The ratios

& should be as close to
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TABLE I. The energy of the 4f, &2 resonance and the radius at which the peak in P& =rg& occurs at resonance for the Ba atom

and the energy of the 4f5&2 bound state for the Ba ion calcu1ated with the Dirac equation and with pseudopotentials with three

different cutoff radii. The Ba + ion is formed by subtracting the potential arising from a Dirac 6s electron from that of the pseudoa-

tom. The erst and second columns for the two largest r, use the Vanderbilt and SAMJ pseudopotentials, respectively.

Dirac r, =0.274 bohr r, =1.000 bohr r, =2.405 bohrs

E&(Ba) (eV)

R&{Ba) (bohr)
E~(Ba+) (eV)
E~(Ba +) (eV)

1.501
0.83

—4.069
—4.069

1.502
0.83

—3.927
—4.068

1.607
0.92

—3.827

1.507
0.92

—3.916
—4.062

4.980
2.47

—1.841

3.253
2.33

—2.365

unity as possible and in no case less than 0.5. The
reasons for these criteria are the following. (i) Since V,
is presumed to be transportable, it is best to keep that
part of f', which differs from V, as small as possible.
(ii) When a very negative VL is used in the core region re-
sulting in a large positive 5VI, a spurious solution results
that has a wave function y& which is very large near
r =0, but also has a node at small r such that
(PI ~5V&~yi ) =0 but f ~yl ~ VL d r is large and nega-
tive. This solution lies well below the rea1 eigenvalues of
the pseudopotential. When the sign of VL and 5 V& are re-
versed, there can be no low-energy spurious solution. (iii)
When f, operates on a crystal pseudo-wave-function

the ratio (pl ~5V, ~QI )/(Itl ~5V&~l(I ) multiplies
(5 VI @I ). Since, in the core region where 5 VI is nonvan-
ishing, crystal pseudofunctions are fairly similar to atom-
ic pseudofunctions, this ratio should be close to unity. If
(I(oI ~5V, ~gol ) is small, not because 5VI is inherently
small but because 5VI is not of constant sign, the ratio
can become quite large, which is obviously unphysical.

Hamann' chose VL = V&. None ofhis 5VI appear to be
large enough to violate the first two criteria, however, his

V~ do cross his V& making his 5VI of unconstant sign and
thus very likely violating the third criterion. ' When he
treated the Ba Sp core electrons on an equal footing with
the 6s valence electrons, Hamann also violated that part
of criterion (i) which says to make 5V& as short range as
possible. His Sp pseudopotential cutoff radius is 1.20
bohrs. By using a VL with a 2.41-bohrs cutoff he extend-
ed his 5 Vs~ to 2.41 bohrs. Since the 5p pseudopotential is
also a good pseudopotential for the 6p states, ' the uncon-
trolled change introduced by the long-range VL cutoff is
almost certain to make it much worse for the BaSe
valence bands.

We next discuss how 5VI may be changed to insure
that 0'~, yields B (g& /gt )/BE identical to those of the
Dirac equation. First we note that although f', is much
simpler to use than V „when the solution is obtained by
expansion in a set of basis functions and matrix diagonali-
zation, it is more tedious when solving the Schrodinger
equation numerically. We write

+[VL(r) E+gI(r)]/I =0,— (2)
r

where P& =rP&, Vl (r) here represents the entire local
potential, including contributions from the valence-
electron-charge density, and

gi(r) = 5 V&(r) gl (r) . (3)

Because of the nonlocal pseudopotential, the Schrodinger
equation must be solved iteratively for ttt, and f&

' in

(3) represents the ft of the previous iteration. Both in-

homogeneous and homogeneous solutions of (2) must be
obtained and Pi =Pi' '+ Af'I"". In the unbound case
A is chosen to normalize gi inside rz. In the bound
case the gl are integrated in from infinity and out from
the origin. The A's on either side of the matching point
are used to equate the P& and the g'I /g& at the match-
ing point. There is a bound solution for any value of E,
but only those E for which the solutions are normalized
are eigenvalues.

Although in the atom g, and g, are identical
when calculated at the same energy, to obtain
B (fI /Pl )/BE we calculate t)'jl at nearby energies us-

ing fi of the original energy in (3), which results in

different second energy derivatives for gI /gl and
gi' /QI . After selecting a VL that obeys the stated cri-
teria as well as possible, the procedure is essentially the
same for P', as it was for V, . The cutoff function is
parametrized and the parameters varied [which affects
both P&~ and 5V& in (3)] until B (gI~/Pl~)/BE is the
same as that for the Dirac eigenfunction.

The Ba f pseudopotential —of short enough range to
yield the sharp resonance —represents a worse possible
case for constructing a separated pseudopotential.
We chose VL

= V for r) 1.7 bohrs and VL= VL (0)[(a —r)/a]' for r(1.7 bohrs with VI (0) and a
chosen to make VL and dVL /dr continuous at r=1.7
bohrs. This makes 5VI=O for r & 1.7 bohrs. Although
VI has an r, of 1.0 bohr, its Vanderbilt cutoff function is
still 0.16%%uo of its maximum value at 1.7 bohrs so that 5V&
is of no longer range than Y&. We did this for both the
Vanderbilt and SAMJ VI. The latter is displayed in Fig.
5. The separable Vanderbilt pseudopotential resulted in a
greater B (g&/g&)/BE error than the nonseparable; the
elimination of this error causes the kink in the SAMJ po-
tential in Fig. 5 to be somewhat larger than that in Fig. 1.
With some YL that we tried and discarded the kink be-
came a large oscillation. Note that the kink causes 5Yf
to have a small positive region. This causes the ratio of
criterion (iii) to be 0.9973. We could have chosen
VL = VI for r & 1.5 bohrs which would have made the ra-
tio unity, but which also would have put the kink in VL
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TABLE II. Energy of the 4f, ~z resonance of the Ba atom
and the bound 6s and 4f~~2 eigenvalues of the Ba+ ion (formed
by subtracting the potential of a Dirac 6s electron from the
pseudoatom) calculated from the Dirac equation and using the
Vanderbilt and SAMJ separable pseudopotentials. For compar-
ison, the last row lists 6s eigenvalues with nonseparable pseudo-
potentials.

Dirac Vanderbilt SAMJ

Ef(Ba)
~f(Ba +)
E (B D+)
EN(BaD+ )

1.501
—4.069
—7.939
—7.939

1.651
—3.932
—7.936
—7.935

1.514
—4.056
—7.927
—7.928

4 r (bohi-)

FIG. 5. Ba'+ SAMJ s and f separable pseudopotentials to-
gether with VL.

and made VL (0) 1.8 Ry lower, which is getting close to
violating criterion (ii).

Using the separable Vanderbilt and SAMJ pseudopo-
tentials we calculated the Ba 4f, ~2 atomic resonance en-

ergy (the wave functions are indistinguishable from those
in Fig. 3) and the Ba +

4fs&2 eigenvalue (where the D+
indicates atomic pseudopotential plus the difference be-
tween Dirac atomic and ionic valence potentials). The
results are listed in Table II. A comparison with the re-
sults in the r, =1.000-bohr column of Table I shows that
the separable form of the SAMJ pseudopotential results
in negligibly worse results than the local form. Because
the results for s electrons depend on the VL that were
chosen to suit the f electrons, we have checked the s ei-
genvalues for the Ba + potential. These results are also
in Table II, where they are seen to be in excellent agree-
ment with the Dirac eigenvalue. What is surprising is
that the Vanderbilt result is better than the SAMJ. We
thought this could be a consequence of the fact that their
VL are different (because they were constructed from
Vanderbilt and SAMJ f functions) so we also performed
the calculations with the nonseparable pseudopotential
and, as is seen in Table II, obtained essentially identical
results. The removal of a valence electron has two
separate effects; it lowers the eigenvalue and it changes

the shape of the potential. For the s electron these ap-
parently cause transportability errors of the opposite sign
in the pseudopotential and when the former is corrected
by making B (t/i,'/g, )/BE agree with the Dirac equation,
the total error gets worse. For the f electrons either the
errors are of the same sign or, more likely, since the
bound f eigenfunctions are of short range compared to
the electron that was ionized, the potential shape effects
are very small. We note from Eq. (5) of Ref. 2 that if
U(r) were constant over the range of the f electrons
[where A, U(r) is the change in potential], B(gf/l(f )/M,
would be the same for Dirac and norm-conserving
pseudo-wave-functions. One could, in principle, make
B(l(,'/p, )/M, and B (p,'/p)/BE both identical to their
Dirac values by adjusting parameters in the cutoff func-
tion, but we doubt it would be practical to do so.

In conclusion, we have shown that an f pseudopoten-
tial calculated from an unbound state at —1.877 eV in
the Ba atom yields the Dirac atomic resonance at 1.501
eV and the Ba + bound state at —4.069 eV with essen-
tially perfect accuracy as long as the cutoff radius is tak-
en to have its natural value r, =0.274 bohr. When an in-
termediate cutoff of 1.000 bohr is used, the agreement
with the Dirac results is still excellent as long as the
SAMJ pseudopotential is used. What is really amazing,
however, considering that 5Vf is so huge (56.2 Ry at the
origin), is that when this pseudopotential is put in the se-
parable form, the error in both the resonance energy and
the bound eigenvalue is still only 0.013 eV.
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