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Sulfur-deficient iron sulfide, Fe, 04S, has been studied in comparison with FeS by Mossbauer spec-
troscopy at various temperatures ranging from 82 to 600 K. It is found that the 4 at. % sulfur va-

cancy makes the crystallographic a transition from the (NiAs, MnP) structure to a superstructure
take place abruptly within 5 K with the superstructure stable up to 410 K. The spin-rotation transi-
tion of Fe& ~S takes place at 455 K, which is higher by 63 K than that of FeS. The Neel tempera-
ture is not affected appreciably by the sulfur vacancy concentration.

I. INTRODUCTION

Iron sulfide exhibits interesting magnetic and crystallo-
graphic phase transitions. Bertaut' has shown that FeS
exists with a NiAs structure above T =—400 K and trans-
forms to a superstructure below this temperature. The
volume of the supercell is six times as large as that of the
unit cell of the NiAs structure. Since the length of the c
axis of the supercell is twice that of the high-temperature
phase, we will call the phase with the hexagonal super-
structure the 2c phase.

Through Mossbauer measurements Thiel and van den
Berg verified that both lc (NiAs) and 2c structures coex-
ist between T and about 200 K with a larger hyperfine
field corresponding to the 2c structure. Recently, King
and Prewitt reported that the iron sulfide transforms
into the orthorhombic MnP structure at T, which in
turn transforms into the NiAs structure at about 580 K.

The volume of the unit cell of the MnP structure is
twice that of the NiAs structure. Since one of the three
lattice parameters of the MnP structure has the same
length as the c value of the NiAs structure, we will call
both phases the 1c phase. In fact, as far as Mossbauer
measurements are concerned, there seems to be no appre-
ciable difference between the two phases because no
discontinuity whatsoever in the Mossbauer parameters
has been observed above T . '

Magnetic-susceptibility and neutron-diffraction mea-
surements ' show that the iron sulfide is antiferromag-
netic with a Neel temperature of about 600 K and that
the spin direction changes from a perpendicular to the c
axis above T~ —-—400 K to parallel with the c axis below
T~. T~ is also found to be independent ' of T and
very sensitive to the kind and amount of impurity atoms.

The purpose of this paper is to report Mossbauer mea-
surements for FeS and Fe& 04S obtained in an effort to
determine the effects of sulfur vacancies on the a and
spin-flip transitions of iron sulfide.
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heating accurately weighed quantities in an evacuated
quartz tube. The sealed tube was heated slowly to 450'C,
kept at this temperature for one day, heated further to
650'C for another day, and then heated finally to 950 C
for three days. After cooling to room temperature the
sample was ground, pressed into a pellet, and annealed at
950'C for a second time in an evacuated and sealed
quartz ampoule for three days.

Extra precaution has been exercised to prevent sulfur
vapors from escaping from the initial mix during the seal-

ing process, as shown in Fig. 1. The quartz tube having
two narrow necks was filled first with the desired amount
of sulfur that was subsequently covered by iron, thereby
blocking any light from the torch reaching the sulfur.
Furthermore, both light and heat from the torch were
prevented from reaching the sulfur by immersing the
quartz tube in black ink during sealing. One may argue
that sulfur vapors may diffuse into the quartz tube during
the heating process. However, sulfur vapors in the sealed
quartz ampoule combined with iron to form solid materi-
al during the initial heating at 450'C, at which tempera-
ture diffusion is negligible.

X-ray-diffraction patterns of the samples at room tem-
perature were obtained using a Rigaku diffractometer
with Cu Ka radiation. An analysis of the diffraction
peaks showed that each sample crystallized with a hexag-

II. EXPERIMENT

FeS and Fe, 04S samples were prepared from sulfur and
iron of 99.999%%uo and 99.995% purity, respectively, by FIG. 1. Sealing technique.
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FIG. 2. Mossbauer spectra of FeS. FIG. 3. Mossbauer spectra of Fe, 04$.
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in all respects, particularly in that the 1c and 2c phases
coexist over a wide temperature range of about 200 K.
Figure 6 shows the temperature dependence of the mag-
netic hyperfine field and quadrupole shift for Fe, O4S. It is
noted in this figure that the spin-rotation transition takes
place at about 455 K, which is higher by 63 K than that
for FeS. The a-transition temperature of 415 K for
Fe, 04S is also higher than that for FeS, suggesting that
sulphur vacancies tend to stabilize the superstructure.
This point can be seen more clearly in Fig. 7, which
shows the abundance of the 2c phase as a function of
temperature for FeS and Fe, 04S, calculated from the rela-
tive ratios of the Mossbauer absorption areas correspond-
ing to the 1c and 2c phases. It is evident in this figure
that the upper limit of the temperature up to which the
2c phase solely exists without any 1c phase is 410 K for
Fe& 04S, whereas that for FeS is about 200 K. Further-
more, the crystallographic u transition in Fe& 04S takes
place abruptly; the coexistence region for the two phases
is only 5 K in marked contrast to about 200 K for FeS.
One may argue that the wide coexistence region for FeS

is possibly due to sample inhomogeneities; in other
words, our FeS sample is extremely inhomogeneous,
while the Fe, ~S sample is homogeneous. In order to
check this point, we ground and heated the FeS sample
repeatedly only to find the same Mossbauer spectra,
thereby proving that the wide coexistence region had
nothing to do with sample inhomogeneities. It should
also be mentioned that our results are reproducible for
different samples of the same composition.

The Neel temperatures of FeS and Fe, 04S were deter-
mined to be 597+2 K, and 595+2 K, respectively, imply-
ing that the 4 at. % sulfur vacancy does not affect the su-
perexchange interactions in the 1c phase appreciably.
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