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Thermal fluctuations of vortex lines, pinning, and creep in high-T, superconductors
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Thermal fluctuations of vortex lines are shown to be capable of strongly reducing the value of the
critical current in the mixed state of high-T, superconductors. The theory of pinning in the pres-
ence of thermal fluctuations is developed. The current relaxation law in the regime of single-vortex
pinning is obtained.

The magnetic behavior of single-crystal high-T, super-
conductors shows several unusual properties, namely, (i)
very rapid (presumably exponential) fall of the critical
current with temperature T and magnetic field H, ' (ii)
high values of logarithmic creep rates, and (iii) non-
monotonic T dependencies of the creep rate. There are
several proposals in the literature ' that thermal fluctua-
tions can play an important role in these phenomena due
to low pinning energies and high characteristic tempera-
tures of Y-Ba-Cu-0 and Bi-Sr-Ca-Cu-O.

There are two different types of thermal fluctuations
that can be relevant: phononlike harmonic fluctuations
of vortex lines (VL) or vortex line lattice (VLL) reducing
the effective pinning strength and critical current, and ac-
tivated jumps leading to flux creep. In this paper we be-
gin with the study of the first effect, i.e., we incorporate
harmonic thermal fluctuations into the Larkin-
Ovchinnikov theory of vortex pinning. ' One can note
that at any nonzero temperature any current would lead
to a relaxation through a flux creep; nevertheless, one can
define the critical current j, as the crossover "point" be-
tween linear (j»j, ) and nonlinear (j j, ) current-
voltage relations. We see below that in extreme type-II
superconductor s, harmonic thermal fluctuations can
strongly reduce the value of j,. In particular, regions on
the (T,B) plane are found where j, is an exponentially
decreasing function of T and/or 8, resembling the experi-
mental results of Ref. 1. The second problem that we
shall address is the relation between the current that is
really measured in the magnetic relaxation experiments
and j, ( T). These experiments are usually analyzed' in

terms of Bean's critical state, where the current is sup-
posed to be near critical and its relaxation due to flux
creep is very slow. However, the values of flux creep rate
observed in high-T, superconductors appear to be rather
large; at relevant time scales t —10 +10 sec, it can lead
to a substantial decrease of current from its initial
microscopic-time value j, ( T) To find the . temporal
dependence of j, one needs some model of VL creep. We
shall consider such a model relevant at sufBciently low T
and B values, and obtain the asymptotic behavior of j(t)

in the form j (t )- ( T lnt) '~, a & l.
The elastic energy of the VLL has the form

F= f d r —,'(C, )
—C66)(V u) + —,'C6s(V~u)

+ —,'C44 +5V(r, u)
clu

z
L

where u is the lattice distortion, C» and C44 are the
(nonlocal) elastic moduli for compression and tilt, respec-
tively, C66 is the shear modulus, and

5V(u)= g fdz„5s(z„,u„(z„))

represents the local fluctuations of VLL energy density
due to pins [here 5s(z„,u„(z„)) is the fluctuation of the
linear density of the nth vortex line, and the sum g„ is
over all vortices in VLL]. The correlation properties of
the disorder potential are characterized by the relation

fd3r5s(0)5s(r)e'x'=yF(Kg), (2)

where F(0)= 1 and F(x) decreases rapidly at x & 1.
We start from a simple estimate of the mean-squared

thermal displacement (u ) of the position of an un-
pinned VLL in the field region H, &

&&8 &&H,2. Consid-
ering the transverse deformation modes one gets

(u ) = Tf 3 [C66q +C44(q)q, ]
d q

~here the z-axis is in the direction of the magnetic field,
the elastic moduli C«and C44(q) are

(Sn.i. ) 4~ (qA, ) +1
where No=m6c/e, A, is the London screening length, and
a is VL lattice constant. The compressional modulus
C»(q) is irrelevant since C»(q)»C66 and, therefore,
compressional deformation is small in comparison with
shear deformation. The main contribution to the integral
(3) comes from the region q-a ', where these simple
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formulas are not valid. However, for the qualitative
analysis we shall use them and cut o6' the integration in
(3) at q =q,„=—,'K„where K, =2 ~z3 '~ n(B I@p)'~ is
the length of reciprocal-lattice vector. Then we get

TA.2(u'& =4m'

Let us now assume that pinning is due to some small-

scale weak disorder (e.g. , fluctuations in oxygen posi-
tions}. This probably means that our results are most
readily applicable for Bi-based compounds which are free
from twins. Therefore the pinning energy for an indivi-
dual VL varies on the scale of the coherence length, and
will presumably be reduced by thermal fluctuations if
(u') &g', i.e., at

@3/2+B
T TI. = 2

', Hc] &&8 &&Hc
(2@a}

where ~=A. /g is the Ginzburg-Landau parameter, e.g.,
for 8 =10 6 and ~=200 one would obtain TI'-—30 K.
In the following we estimate the critical current j, at
T ~ TI' and show that it drops very rapidly with tempera-
ture.

To estimate critical current j, we use the dynamic ap-
proach, ' which is slightly more tedious than simple

scaling estimates, but is more suitable when dealing with
thermal fluctuations. Following Refs. 6 and 10 we derive
from (1) the equation of VLL motion in transverse direc-
tion:

(f (r, t)f~(r', t') ) =2TI 5,t35„5„, ,

and p is a two-dimensional (2D} vector: r=(p, z). At
strong current one can solve Eq. (7) perturbatively with
respect to disorder:

u(r, t)=vpt +ui(r, t)+uz(r, t)+u, „(r,t), (8)

where vp=(c/ttB )[j B], (u, ) ~5V, ~(Bul/Bt)( ~(5V),
and u,„(r,t) describes thermal vibrations of VLL.

Making use of the iterative procedure, ' one can find
the first disorder correction 5v'" to the VLL velocity,
v =Bu /Bt in the form

i Bu
C66 +C44 ll

ap' a"
5V(u) ——(j B)+f(r, t),1

8ll C

where I '=tJB /c is the kinetic coefficient (cr is the
conductivity of a superconductor in the unpinned mixed
state), f(r, t) is the thermal Langevin force with correla-
tion function

5v(1)

Vo

I d q rF«0)K'K
ll
exp(

Sp K (271 ) [C66q
'+ C4(4q )q ']' +(jBK

(9)

where Sp=@p/B is the area for one VL, the sum is over
reciprocal-lattice vectors E whose component It'~~ lies in
the direction of VLL motion, and the Debye-Wailer fac-
tor on the right-hand side (rhs) describes the efFect of
thermal fluctuations. It was supposed in the derivation of
Eq. (9} that pinning is of 3D collective nature, so that an
influence of disorder on VLL thermal fluctuations can be
neglected. The integral over q in Eq. (9) can easily be es-
timated in two limits corresponding to large or small
values of (qA, ). The sum over K can be converted to an
integral as long as (u ) «(a/2n) [this means in fact

that we restrict ourselves to the temperatures lower than
the melting temperature Tlt(B)]. We also choose
F(K()=exp( —K g ) for the sake of simplicity. Then
the value of the critical current j, can be estimated as the
one that corresponds to ~5v"'/vp~ of the order of unity.
We start from the case of large dispersion, qA, ))1, so
C44=C4 (qiA, ) (we shall see just below that essential
values of q, are much smaller than those of qi ) and
C4=C44 (0}. Introducing variables q, =(QC4C«/A, )q,
and f i=C66qi and performing integration over g, one2= 2

gets

' —3H, 2

8
3v'3 Jp B T
32m j Hc2 TI

1 y
mv'2 y

q', dq i [+if i+(jBKll/c) qj ]'—
q~,0 43/2S C Ci~z jB (2~) ll

q 2~ Q- 4+( 'BK /c)2

where gT=g + (u ) T =( (1+T/Tt'), qi =jB/(Tc, and q2 =C«/a . The limits of integration over qi stem from the
fact that the inain contribution to the integral over K comes from ~K~ =gT, and that to provide the large dispersion
essential qi should satisfy condition q i »j 8/c)T. Then one can expand the square root in the integrand and obtain

3/2

and finally
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3

+I
TT

(10)

if the condition

Jo . 8 T
&-(j +I

K ~c2 TT
L

j/2

Jo

&s sattsfied. Here Jo=cC o(12m &3k g) ' is the depairing current and y,„=(H2(3)2( is the value of the parameter y
corresponding to extremely strong short-scale disorder.

To make an estimate in the case A,q « 1, let us define

x =( c'C 44/jBiKiii)' q„y =(cC«ljBiKiii)qj,

and rewrite (9) in the form
1/2

y C

2~oC«&C~, jB, f K jK i exp( Kgr—)f dx f(2n ) (x +y) +1

j =10-Jo y
c 2

3 m TL+T

Noticing once again that the main contribution to the integral over K comes from iKi =fr, and taking into account
that essential x and y are of order of unity, one can find that the condition of the small dispersion is satisfied as long as

j,«j o/~ . Performing a trivial integration one gets

2
c2 L

8

at j, ((jp/K .
Before analyzing the results [Eqs. (10)—(12)], we shall obtain formulas for the critical current for another regime,

where each VL is pinned independently. We proceed analogously to Ref. 10 (the only difference is that VL is situated in
3D space rather than in 2D as it was in Ref. 10). The equation of motion for VL is

1 Bu z o . B5e(z, u)
(13)

where I, =o8C p is the kinetic coefticient, n is the unit tangent vector along the vortex line, and
C, =(4o/4m', ) [in(1/qg)+ 1] is UL tension. Looking for the solution in the form

u(z, t) =vt +5u„;,(z, t)+SuT(z, t),
where the second term on the right-hand side (rhs) is the correction to the displacement of VL due to the disorder, and
the last term accounts for the thermal fluctuations of VL. One can obtain the first correction to the VL velocity analo-
gously to (9):

5v = —y fdt f F(q, K)exp iK vt — ([u(0)—u(t)] ) iK K G (q, t)(1)— dqd'K . K z

(2n) 2 ll o (15)

3 Jp yj~( T && T„)— 2/32m [ln( y~ax/y )] ymax

Tj,(T »T„»)=j,(T« T„*) exp
L

' 2/3

(16)

where the crossover temperature T„* is given by

V
]

1/3

U
(18)

with Go(q, t)=e(t)exp( C, q t). Perfo—rming the in-

tegration, one gets the critical current from the condition
i5v'"/voi —1 [e(t) is the step function]:

The picture of single VL pinning is valid at suSciently
strong critical currents, i.e., when the inequality opposite
to the rhs of Eq. (11)holds.

Now we are in a position to discuss the whole picture
of the j,(T,B) dependence on the region H„«B«H, 2.
The "phase diagram" on the (T,B) plane is shown in Fig.
1. The numbers in each area show which formula for j,
should be used. At low temperatures the crossover from
single-vortex pinning to collective pinning occurs at
B =B& —-0. 17(y/y, „) H, z The second c.rossover be-
tween di6'erent regions of collective pinning occurs at
B2 ——B

&
ln (B

&
/H„). Thermal fluctuations are sub-

stantial at T & max( T„,T; (B)).
The critical current value given by Eq. (17) decreases

very fast at T )T„,so its domain of applicability is prac-
tically absent when 8 is not very close to 0„. With in-
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T, (B)

c 'Puj =f per a unit length of VL (see also Ref. 13
where more detailed discussion of the similar problem is
given). Let L(j) be the size of VL line segment that
jumps under the action of force density f. The jump
length u (j}is related to L (j) by Eq. (20). Then the ener-

gy gain due to a jump is E (j ) =fu (j )L (j), whereas the
energy cost is of the order of the depth of energy valley
for the same segment, that is, E~(j)-C,u (j)/L(j).
These energies should be of the same order of magnitude,
so one gets

(21)

Bp

FIG. 1. Phase diagram of the (T,B) plane. The numbers in
each area represent which formula for j, should be used (aster-
isks denote the high-temperature limits of corresponding formu-
las).

creasing T the dependence (16) crosses over to (10') and
then to (12'). It is interesting that in region (10") the ex-
ponent is B independent [and coincides up to numerical
factors with that of Eq. (17)],so the critical current grows
as B in that region. At larger B, crossover
[(10")~(10}]takes place and j, decreases rapidly with
B. Such a nonmonotonic behavior at not too low temper-
atures resembles the experimental observations of Ref. 1.
Moreover, if one considers thermal correction to j, in re-
gion (10) at T « TL', one obtains

Jc & 2 Fmax TA, B
' (TB)
j,(O, B) y $02 H,

(19)

[u (0)—u(L)] = AL ~, (20)

where A is some constant. At present, an exact treat-
ment of the similar 3D problem is absent, but numerical
simulations' point at the validity of Eq. (20) in the 3D
case as well. Now our goal is to estimate the energy bar-
rier that should be overcome by a segment of VL when it
jumps into some new position under the action of the
external current j that produces a transverse force

which type of behavior was also observed in Ref. 1. In
the preceding discussion it was implicitly supposed that
the characteristic temperatures T„',Tl'(B ) are much
lower than that of T„otherwise the temperature depen-
dencies of all the parameters entering Eqs. (10)—(18)
should be taken into account.

We now proceed to the discussion of our second sub-
ject, that is, current relaxation due to Aux creep. Here we
restrict our consideration by the single-vortex pinning re-
gime [i.e., region (16) in Fig. 1]. Let us consider single
VL placed in 3D unbiased random potential. A similar
problem for a domain wall (DW) in 2D space was con-
sidered in Ref. 11 where it was shown that a random po-
tential leads to a wandering of the DW so that its trans-
verse displacement u grows with a distance L along the
DW-

dJ tv~exp
T

Jc

J
(22)

where it is assumed that T«T„*,j «j, . In the con-
sidered case, Eq. (22) substitutes usual flux creep rela-
tion' with the rhs proportional to exp(const. j). Finally,
one obtains

j(t)=j,(T,'/Tint)', Tint ~ T„" . (23)

The value of g was found to lie numerically in the in-
terval 0.6+0.65.' ' " Using the results of the
renormalization-group analysis by Halpin-Healy' and
Nattermann, ' we can conclude that (=0.6 and u =

—,'.
The appropriate interpolation between our result (23}

and the Anderson formula is
—7

T,* «T ln(r/to) «7T„' .
(24)

This result holds at T «T,*, B «B, , i.e., in region
(16) of Fig. 1. Moreover, there is an additional restriction
whose existence was recognized by Geshkenbein as J
decreases the mean jump length U(j) grows [cf. Eq. (21)]
as well as the interaction energy E;„, between jumping
VL and neighboring VL. We estimate

E;„,= ($0/4m. A, ) u (j )L (j)/a

and obtain [with Eqs. (20) and (21)] the condition

E;„, E in the form

j(r) &j,(B/B
&

)' ' (2&)

At low values of current density [that do not obey Eq.
(25)] the interaction between diff'erent VL should be taken
into account. An analog of Eq. (23) for that region is
found in Ref. 18.

In conclusion, we have shown that thermal fluctuations
of vortex lines can considerably reduce the pinning

where Eo is the energy barrier at j—j, . To estimate E,
one would need a value of coefficient A in Eq. (20), but it
is much simpler to note that E, should be approximately
equal to the crossover temperature T,* [see Eq. (18)] that
leads to VL depinning. With all this in mind we can esti-
mate the rate of thermally activated VL creep under the
current density j:

a
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strength in high-T, superconductors. This can supply us
with an alternative explanation of the experimental
findings, which were viewed there to be a consequence of
VL lattice melting. In fact, it is easy to see that the tem-
perature of the melting transition Tst(B) [for details of
calculation see Ref. 22] is lower than our depinning tem-
perature TL* only at sulciently strong magnetic fields
B &BM=(2CI ) H, z (CL =O. l is the Lindemann num-
ber). Indeed, T~(B) is deterinined by the condition
(u )r=(CLao) (ao is a VL lattice constant), whereas
Tz'(B) corresponds to the condition (u ) r =r =(1.4() .
Thus, in the field range B & Bzt, VLL should be depinned
at first at T =TL'(B) by thermal fluctuations and would
melt at higher temperature T(B). Note here that the
calculation of the exact value of CL for VLL would be,
therefore, of great importance for the drawing of a com-
plete phase diagram of high-T, superconductors in a
strong magnetic field. Critical current dependence on
teinperature and magnetic field is obtained and shown to
be in qualitative agreement with the experimental re-
sults. ' Vortex lines that creep under the action of weak
(j«j, ) current is considered, and the resulting relaxa-
tion law j(t) is obtained.

After this work was completed we became aware of
work' ' where the concept of thermally assisted flux
flow (TAFF) was introduced. This concept has much in
common with our description of low-j creep phenomena.
However, an important difference exists: it is assumed in
Refs. 19 and 20 that Es « T « E~ (Es:b, W—and E:—U

in Ref. 19), whereas in the regime we have studied
E =Es » T so that the V(j) dependence is strongly non-

linear even at j (&j, . It looks very probable that we have
considered some moderate current regime [cf. Eq. (24)],
whereas the asymptotic regime at very low j is described
by the TAFF theory. Moreover, we would like to note
that TAFF is a rather probable explanation for the
unusual resistivity behavior observed in Ref. 21.
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