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First we introduce a very efficient algorithm for dynamic simulations of a wide class of arrays of
Josephson junctions with realistic boundaries. With this algorithm one can also represent current-
biased arrays with periodic boundaries. Next we present results of extensive simulations of ladder
arrays. We evaluate the resistance as a function of magnetic field and find striking differences be-

tween different geometries.

I. INTRODUCTION

A wide variety of interesting phenomena occurs in ar-
rays of Josephson junctions.! Large periodic structures
reflect the critical properties of homogeneously frustrated
two-dimensional (2D) XY models,>> while disordered
samples are expected to show spin-glasslike behavior.*~’
The latter are also of importance in relation with
research of 2D inhomogeneous superconductors and
especially of high-temperature superconductors. For ex-
perimental as well as for theoretical research of these
phenomena it is very useful to have accurate simulations
at one’s disposal of a model which contains only the
essential properties of the real system. Such a model is
obtained if one describes each junction by a Langevin
equation with appropriate parameters.® This set of cou-
pled stochastic differential equations can be simulated.
One first discretizes time, and then simulates the stochas-
tic term by drawing random numbers from a suitable
Gaussian distribution. This dynamic simulation tech-
nique has been used to study the nonlinear resistance of
periodic arrays at zero and full frustration.® Other recent
applications are in the field of vortex dynamics.!®”!2
This work contributes an efficient algorithm that can be
applied to a wide class of realistic arrays, where prevail-
ing experimental boundary conditions are taken into ac-
count. The gain in efficiency is very important in order
to allow the study of sufficiently large systems or obtain
good statistics for temperature-dependent phenomena.
Furthermore, we perform an extensive finite-temperature
study on ladder arrays and evaluate the magnetic field
dependence of resistance.

II. THE MODEL

Within the framework of the resistively shunted junc-
tion (RSJ) model, the time evolution of the phase
difference 8¢ across a single junction is governed by the
equation’3:

2
wp—Z%(aq;)+wc“‘%(8¢:)+sin8<p+17(t)=i , (2.1)

where i =1/1., w.=(2e/#)I_R,, and a)p=\/2eIc/f1C.

I is the total current flowing through the junction and I
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is the critical current. R, is the normal state resistance
of the junction and C its capacitance. o, and w, are usu-
ally referred to as the characteristic and plasma frequen-
cy, respectively. n(¢)=I,(t)/I. is the normalized fluc-
tuation current which we consider to be white noise as
usual:

_ 20(t—t")
Bo,
with B=J/kgT=%I_ /(2ekgT). Throughout this work

we will assume that the junctions are highly damped, i.e.,
that

(n(eim(e')) 2.2)

Consequently the first term in (2.1) will be omitted.

We place these junctions on the bonds of a L, XL,
square lattice. In the presence of an external field we
then write for nearest neighbors r and r’

@r)—¢(r')=i(r,r')—B(r,r') (2.4)
with
B (r,r')=sin[p(r) —@(r') =27 A (r,1')]
+n(r,r',t) (2.5)
and
A(r,r')=:;;frr’A-dI . 2.6)

A is the vector potential and ¢,=h /2e is the elementary
flux quantum. In (2.4) we have redefined w t —t. If we
want to simulate this set of Langevin equations we are
faced with the following problem: Given a set {B(r,r')}
we have to find a set {¢(r),i(r,r')] which satisfies Eq.
(2.4), current conservation at every node r and certain
boundary conditions. Following the work of Shenoy® we
can use current conservation to eliminate the currents:
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3 G Hr—r)g(r') E[cp(r)-— (r+8)]
=—3 B(r,r+5)
5
=—D(r), (2.7)

where §=*e,,te, and G~
function, given by

1is the inverse lattice Green’s

G~ l(r—r,): 48:’,r—6r’,r+ex _ar',r——ex

—Sr’,r+ey_8r’,r—ey . (2.8)
These relations have to be inverted using the boundary
conditions. The most common and straightforward ap-
proach is to impose periodic boundary conditions (PBC).
We then find

p(r'), (2.9

N . , 1
@(r)= ;G(r r)D(r)+LXLy >

where G is the two-dimensional lattice Green’s function:

G(r—r')= 3 G(k)err) (2.10)
LxLy K(0)
with
_ 1
Gk)= 4—2cosk, —2cosk, @10
As usual, k;=(27/L;)n; with n;=0,1,2,...,L;,—1
(i =x,y). Note that the last term in (2.9) is of no

relevance because, physically, we are only concerned with
phase differences. It is possible to incorporate a net
current flowing in, say, the y direction by introducing a
twist in the boundary conditions’:

p(r+L,e,)=@(r)+L,g, .

The drawback of PBC is that they often do not imitate
the experimental situation. We immediately see that the
periodicity of the ¢(r) represents a short circuit:

(2.12)

@lr)—¢g(r+L,e,)=0 and ¢(r)—p(r+L,e,)=0
(2.13)

In order to achieve this short circuit, the net current in
the x and y direction fluctuates in time. Therefore, the
twist (2.12) does not give a well-defined constant net
current, in contrast to the experimental situation where
the system is usually current biased.

However, aside from this short circuit, PBC can be
very useful in diminishing boundary effects. In general,
one can often gain a lot of information on large systems
by looking at small systems with PBC. In the next sec-
tion we will therefore introduce an improved version of
the usual PBC, where the array is current biased. Then
we further improve this representation by including real
boundaries. In a direct approach!®!! one could, again,
eliminate the currents using current conservation and ob-
tain a set of equations of the form

zg Yr,r)p(r')=—d (1), (2.14)
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where g ~! contains all the information of the lattice.
The @(r) are then obtained by inverting this matrix.
However, if one uses this method without optimization,
the computation time grows as (L, L,)*. With PBC built
in the situation is much better, because the Fourier trans-
form can be performed with great efficiency using the
standard fast Fourier transform (FFT) algorithm. As a
result computation time grows roughly as

L,logy)(L,L,)."* We therefore put an effort in devel-
oping an algorithm which exploits the efficiency of the
FFT even when representing real finite systems, instead
of periodic boundaries. Comparison of experimental re-
sults with simulations usually requires a detailed study of
large systems at finite temperatures. An acceleration of
this magnitude greatly improves the extent to which this
can be accomplished.

III. THE ALGORITHM

Starting point for the presentation of the algorithm is
the observation that one can always split a set of bond
variables in a divergence-free and a rotation-free part.
More precisely, if we have a set of bond variables
{b(r,r')} which satisfies PBC, then we can write

b(r,r—e,)= LxLy,Eb —e,)
+3 A, G(r—r')d(r')
—>A,G(R+e,—R')c(R’), (3.1a)
=
b(r,r—e,)= L. L
+3 A,G(r—r')d(r)
(3.1b)

+3 A, G(R+e,—R')c(R') .
T

Here R denotes the dual lattice site corresponding to r:
R=r—(e, +e,)/2. The quantity c(d) is the discrete curl
(divergence) of {b(r,r')}:

c(R)=3 b(r,r) (3.2)

with summation performed in anticlockwise direction
over the four bonds surrounding R, and

=¥ b(r,r')=3 b(r,r+8), (3.3)
d )

where 6= +ex,iey Finally A, (A,) is a difference
operator in the x (p) direction: A,f(R)=f(R)
—f(R—e,). Equations (3.1) can easily be verified in
Fourier language. As we shall see below, the spatially
homogeneous term in (3.1) is of importance, in contrast
to the homogeneous term in (2.9).

First we impose PBC on the ¢(r) and apply (3.1) to the
bond variables B (r,r’) in (2.4). With (2.9) we find
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i(r,r—e,)=—3 A,G(R+e,—R')C(R)
N

1

+ = :
L.L, ?B(r,r e.), (3.4a)
i(r,r—e,)= 3 A,G(R+e, —R')C(R’)
&
1
+ r'—e,) . :
L.L %‘,B(r,r e,) (3.4b)

C is the discrete curl of B(r,r’) as defined in (3.2). From
(3.4) we conclude that choice (2.9) inevitably leads to a
net current (1/L;) ¥ B(r,r—e;) in the i (i =x,y) direc-
tion which fluctuates in time.

Instead, we now want to consider a current-biased ar-
ray and therefore we drop the PBC on the ¢(r). Howev-
er, we still impose PBC on all other quantities like, for
example, the phase differences. The PBC on the ¢(r) are
replaced by the requirement that the net currents flowing
in the x and y directions are constant in time: zero in the
x direction, say, and L, i, in the y direction. If we apply
(3.1) to the {i(r,r')} in this current-biased array we find
that

i(r,r—e, )=p(R)—u(R+e,), (3.5a)
i(r,r—e,)=pu(R+e,)—u(R)—ij (3.5b)

with
(3.6)

w(R)=3 G(R—R)y(R') .
<

Here y represents the curl of {i(r,r')}. A homogeneous
term analogous to that in (2.9) is omitted in (3.6).

To understand the physical meaning of the u(R) we
write down the z component of the magnetic moment p,
of the current distribution in the array. Clearly, the total
magnetic moment is not uniquely defined, because there
is a net current. We choose the origin at the center of the
array, which amounts to leaving out the i; in (3.5). This
gives us

r+r

e, =3 % X(r'=niirr)

(r,r')

=y uwRe, .
R

(3.7

As usual, the first summation is over pairs of nearest
neighbors. We see that u(R) is the contribution to this
magnetic moment of the cell at site R.

With the single junction equations (2.4) we see that
(3.6) is equivalent with

#R)=3 G(R—R')C(R') . (3.8)
<

Given a set {B(r,r')} we have now found the {i(r,r')},
and with (2.4) also the {¢(r)}, which make the array
current biased. The voltage difference between endpoints
has become the fluctuating quantity and the ¢(r) are no
longer periodic.

Next we make the current-biased array finite. For ar-

8929

bitrary bond variables b (r,r’'), defined on the finite lat-
tice, we write

b, (k)= b,(r)sin[k,(x —3)]cos(k,y) , (3.92)

b,(k)=73 b,(r)cos(k,x)sin[k,(y —3)] . (3.9b)
r

For convenience we have denoted b(r,r—e;) by b;(r)
with i =x,y. We use a notation where r=(x,y) and
R=(R,,R v ). Also, we will choose the origin on the dual
lattice, therefore R, and R, are integers and x and y are
half-integers. Combining (3.9) with the definitions of curl
and divergence (3.2) and (3.3) it follows that

b (r)=+3 A,G=(r,r)d (r')

—3 A,G*R+e,,R')c(R), (3.102)
o
by(r)=+3 A,G(r,r')d (1)
<
+3 A,G*(R+e,,R')c(R') (3.10b)
&
with
G(r,r')= > G'(k)cos(k,x)cos(k,y)
LiLy o
Xcos(k,x")cos(k,y’) , (3.11a)
GHRR)=7— 5 G(ksin(k,R, )sin(k,R,)
xLy k(=0)
Xsin(k, R, )sin(k,R;) . (3.11b)
As wusual, k;=(w/L;)n; with n;=0,1,2,...,L,—1

(i =x,y). In (3.11) we have defined

G’(k)=(1—§8kx,0—~%8kyyo)G(k) . (3.12)
Equations (3.10) can be applied to the currents after we
have replaced i(r,r—e,) by i(r,r—e,)+i;. Analogous
to the previous case, we directly find that the currents are
still given by (3.5), but here (3.8) is replaced by

wR)=3 G*R,R")C(R') . (3.13)
B

To find the associated ¢(r) we apply (3.10) to the vari-
ables B(r,r'). We insert the result in (2.4) and, with
(3.13) and (3.5), we obtain
@lr)=—3 G*(r,r")D (r')—yij, . (3.14)
Now we have a description of a finite current-biased ar-
ray using Fourier transform. Note that every column has
its own current source. Therefore we can vary the ap-

plied current along the width, for a finite array. With
PBC such a variation is merely a redefinition of the u(R).

IV. SIMULATIONS ON LADDER ARRAYS

In this section we study the magnetic field dependence
of the resistance of different types of ladder arrays. The
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ladder arrays are of interest of their own and also in rela-
tion with the more common wide arrays. The ladders
share some important properties with the wide arrays, yet
are easier to manufacture. In addition, the resistance of
the ladders has a more continuous dependence on mag-
netic field, which makes them better suited for accurate
simulations. Consequently they offer the possibility to
make a detailed comparison between simulations and ex-
periments. The systems we study here have already been
manufactured,'> % or will be manufactured in the near fu-
ture.!

We apply the algorithm introduced in the previous sec-
tion. Time integration is performed using the second-
order Runge-Kutta procedure with a time step of 0.05 (in
units of _ ). Averages are taken over 4-6 independent
runs. One run consists of 20000 time steps after 2000 to
4000 steps are discarded for thermalization.

First we consider straight ladders with a width of one
and three unit cells (see Fig. 1). The length of these
ladders is 31 unit cells and the temperature is 0.3J /kp.
The applied current is i;=0.1 per column. The magnetic
field is measured in terms of the flux f penetrating a cell,
in units of the elementary flux quantum ¢, and we only
consider fields with 0= f = 1. In Fig. 2 we show the aver-
age voltage difference across a vertical bond divided by i
as a function of f. In both cases there is a minimum in
the voltage for f=1. Measurements by van der Zant
and Mooij15 have given similar results. The dip comes in,
because the vortex lattice at f =1 has reached its max-
imum density and is commensurable with the underlying
physical lattice. Therefore one expects a relatively high
energy barrier to move a vortex charge and consequently
a low resistance. Our results are, however, in contrast
with the measurements of van Harlingen et al.'® They

found a monotonous increase for f increasing from O to
1

5
For the 1-ladder the resistance remains low for

S =0.20. In this regime the energy AE, needed to create
a vortex +1 in the vortex-free regime is positive. The
density of vortices and the resistance are therefore low.
If f is raised there is a well-defined f, where AE,

igl \io iov io\ ) ) \iO
K X X X K
i% X X K K
b X X X K
Aig  Aip ig io Aig Adg

FIG. 1. Straight ladders with a width of one and three unit

cells. The Josephson junctions are indicated by crosses. The

simulations were performed with i, =0.1.
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FIG. 2. Resistance as a function of applied magnetic field for
straight ladders with a width of 1 (open squares) and 3 (open cir-
cles) unit cells (see Fig. 1).

changes sign. For f > f, there is a strong increase in the
number of vortices and consequently also in the resis-
tance. The quantity f,; is somewhat similar to critical
magnetic field an‘ In the Appendix we study ladders

with nearest-neighbor interaction of the periodic Gauss-
ian form and explicitly demonstrate the occurrence of f,
for this model.

For the 3-ladder, f, is smaller. The dip at f = is
much deeper, because the creation of a defect in the vor-
tex lattice requires more energy as the lattice becomes
larger. For the same reason there is an extra dip near
f=1%. These dips reflect the commensurability of the
vortex lattice with the physical lattice, and there is in
principle also one near, for example, f =1. However this
dip is smaller and one has to build up much better statis-
tics, and perhaps even lower the temperature, for it to ap-
pear significantly.

Next we study “‘staircase” arrays (see Fig. 3). We con-
sider a 1-staircase and a 3-staircase with a length of 32

iio iio fio
i ) i 19 i )
FIG. 3. Staircase arrays with a width of 1 and 3 unit cells.

Crosses represent junctions. Again, the simulations were per-
formed with i;=0.1.
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FIG. 4. Resistance as a function of applied field for staircase
arrays with a width of 1 (open squares) and 3 (open circles) unit
cells (see Fig. 3). The error bars are of the order of the size of
the data points, or smaller.

unit cells and apply a current of 2i, and 4i, respectively,
with i3=0.1. The temperature still is 0.3J /k; and we
evaluate the resistance as the average voltage difference
across a bond divided by .

The method introduced in Sec. III can only be used if
the boundaries coincide with the coordinate axes. There-
fore we use the lattice formed by both corners and
centers of the cells. Of course, this reduces the efficiency
of the algorithm somewhat relative to that used in simu-
lations of straight ladders.

The resistance is presented in Fig. 4. The 1-staircase
shows a monotonous increase of resistance. In contrast
with the 1-ladder, the unit cells do not share a common
bond and therefore they act independently. In the
ground state all phase differences are equal to f /4. If we
increase f, the increase of this phase difference leads to
an increase of resistance.

The 3-staircase shows much more interesting features.
The resistance behaves quite differently from that in the
3-ladder. The most striking properties are the local
minimum at f = f, ~0.4 instead of at f =1. To clarify
the occurrence of this minimum we monitored the vortex
charge configurations. The configuration for f=f,, is
shown in Fig. 5. Note that every vortex is surrounded by
oppositely charged vortices. Clearly, there is a relatively
high-energy barrier to move a vortex in this

FIG. 5. Ground state charge distribution in the 3-staircase
for the value of f =f,, corresponding to the minimum near 0.4

in Fig. 4. Cells with a “—” contain a charge —f,, and cells
with a “+” a charge 1—f,,.
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FIG. 6. Energy change AE,, due to the insertion of a +1
vortex charge in the vortex-free state, as a function of position
of the vortex. All curves refer to a 1-ladder with unit cells situ-
ated at sites 1-31.

configuration. If f is increased above f,, there appears
an increasing number of excess charges with a relatively
large mobility. Therefore f =1 appears as a local max-
imum. There is also a broad minimum near f=~0.25.
This value corresponds to a ground state where half of
the cells in the center column contains a vortex.

Finally, we conclude by mentioning a few examples of
research where one can exploit the computational advan-
tages of the algorithm in the future. One interesting ap-
plication is in the study of the dynamic response of arrays
to small oscillating magnetic fields.> Here, the most
direct approach to simulate the experiments is to monitor
the magnetic moment of the current distribution in the
array, using Eq. (3.21). The algorithm can also be used to
study relaxation phenomena in disordered arrays. In this
context it is important to note that it is not possible to in-
corporate randomness in the junctions normal-state resis-
tance R, or its capacitance C. On the other hand, as
long as (2.1) holds for all the junctions, it is a very simple
matter to make both the coupling I.(r,r’) and the frustra-
tion A (r,r') random.
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APPENDIX

Consider ladder arrays with nearest-neighbor coupling
of the well-known periodic Gaussian (PG) form. We
want to show that already for this simple model there is
flux expulsion, at zero temperature, for fields smaller than
a certain f;. We explicitly calculate f, as the field where
the energy AE, associated with the creation of a vortex
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in the vortex-free state changes sign. The exact definition
of the model is as follows: Given a phase configuration
we calculate the gauge-invariant phase difference
O(r,r—e;) between neighboring sites in the i (i =x,y)
direction, so that —7 <6(r,r—e;) < +m. Then we define
the Hamiltonian as

Hpg=1J (E) 6(r,r’')
r,r'

(A1)

with coupling energy J. The method of Sec. III can be
applied to the bond variables 6(r,r’). Substitution of
(3.10) in (A1) gives

Hpg=1J 3 D(r)D (r')G*(r,r')

+1J 3 C(R)C(R)G*(R,R’), (A2)
R,R’
where we have used that
3 G HR,R")G*(R",R")=8g g , (A3a)
<
—_ ”n C rn [ — 1
zr‘,G Yr, " )G*(r", 1 )_8""_fxf; (A3b)

with G ~! defined in (2.8). The C(R) represent the vor-
tices and we can write C(R)=27[M (R)— f], where the
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M (R) are integer charges.

Since we are interested in the ground state we take all
D (r)=0. The energy change AE, associated with the in-
sertion of a charge +1 at site R into the vortex free state
is

AEf(R)=21TZGSS(R,R)——41TZf2GSS(R,R') , (A4)
7

which simply depends linearly on the field. In Fig. 6 we
show AE,(y) as a function of y for different values of f,
for the 1-ladder with a length of 31 unit cells. The func-
tions only vary near the boundaries. There the inserted
charge profits only partially by the presence of the nega-
tive charges. This boundary region is small because
G*(y,y') is short ranged.

We conclude that for this model f,=0.29. For f > f,
it becomes energetically favorable for the system to con-
tain a vortex. Moreover, the number of vortices in the
ground state will strongly increase if f is raised above f,
because the AE,(y) is very flat and the repulsion between
inserted charges is short ranged.

Qualitatively, the same conclusions hold for the real
arrays. The calculation therefore explains the low resis-
tance of these arrays for small f and the strong increase
of resistance for higher f.
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