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Self-consistent theory of Anderson localization for the tight-binding
model with site-diagonal disorder
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We present a self-consistent theory of the frequency-dependent conductivity with no adjustable
parameters for a tight-binding model with random energy levels, using the locator expansion. The
resulting phase diagram and the conductivity and localization length as a function of energy and

disorder are in quantitative agreement with results of numerical diagonalization of finite-size sys-

tems. The results demonstrate for the first time that quantum interference eA'ects are responsible

for localization over the complete energy range, including the band edges.

Just about 30 years ago Anderson' introduced the no-

tion of localization of a quantum particle in a random po-
tential. The importance of the idea was recognized by
Mott and by Thouless, who extended and refined the
concept and explored its application to electron transport
in solids. It took about 20 yrs until it was realized that the
Anderson transition is in fact a continuous phase transi-
tion characterized by a diverging length, critical ex-
ponents, and an order parameter. The precise form of
the scaling at the localization transition, in particular
whether more than one scaling parameter is required in

the strong-coupling regime, is presently a matter of con-
troversy. ' In the framework of our theory one-pa-
rameter scaling is an inescapable consequence unless there
exist as yet undiscovered singularities of a new type in

terms of perturbation theory omitted in our approxima-
tion. In the following, we will take one-parameter scaling
theory for granted at least in a certain vicinity of the tran-
sition, if not the critical regime itself. The question then
remaining is how to connect the critical regime with the
parameters of the Hamiltonian in a quantitative way. It is

this question to which the present paper attempts to pro-
vide a comprehensive answer.

Early attempts to establish this relation led to the
formulation of self-consistent theories, "' which indeed
yielded scaling in agreement" with field-theoretic treat-
ments ' up to three-loop order in the e expansion. While
this was encouraging, these theories were not yet fully re-
normalized, e.g., in that the coupling constant and the
density of states entering the self-consistent equation were
only evaluated in weak coupling. A qualitative renormal-
ization of the self-consistent theory (SCT) using the anal-

ogy to single-particle localization in an average potential
well was attempted by Economou and co-workers. ' '

In this paper we calculate the parameters of the SCT
for a random tight-binding model in single-site approxi-

mation using a formulation based on the locator expan-
sion. ' The resulting conductivity and localization length
will be compared with numerical diagonalization results
for finite systems.

We consider the Hamiltonian

Yearn In)(m I +XV In)&n I

n, m

with random site energies V„distributed according to
probability P(V) and transition amplitudes e„ for a hop-
ping process from site m to site n (s„„0).In later evalu-
ations we use a rectangular distribution

P(v) -(I/w)e[(w/2) —
I VI ],

where e is the step function.
Our aim is to sum infinite classes of perturbation theory

for the conductivity in terms of the disorder such that the
most divergent terms are taken into account in a self-
consistent and scale-invariant way. " It is useful to phrase
the perturbation expansion in terms of a locator expan-
sion, ' ' a simple locator being defined as the atomic on-
site Green's function g„"I"(E) I/(E —V„+ i ri) with

g 0, and the hopping-matrix element s„. The single-
particle Green's function, e.g. , is expanded as

Gnm (E) gn bnm + ~nmgm +X~nlgl&Imgm + ~ ~ ~

I

Each contribution may be represented by a diagram con-
sisting of propagator lines for s„and locator lines ending
at a point designating a given site. Averaging over the
energy-level distribution P(V) introduces a well-known

difficulty: ' Locators in the expansion which happen to be
at the same site have to be averaged coherently (indicated
by locator lines attached to the same point). Therefore, in

any expansion in terms of averaged locators, lattice sums
are restricted to sites which do not appear elsewhere in a
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(
go o ~0

1 —(gp —crp) Up
(2)

where the angular brackets denote the impurity average
and Up g»U», with

Up ep +e»G»ep (Gp/crp 1 )/crp

the renormalized hopping matrix. For simplicity, we con-
sider nearest-neighbor hopping on a d-dimensional simple
cubic lattice (lattice constant a) for which ep 2';-~
&cosp;a. Note that the self-energy Z(E) E —1/crp(E) is
momentum independent in CPA.

The frequency-dependent conductivity cr(co) or, equiv-
alently, the coefficient of diffusion D(co) cr(co)/
[e N(E»)] may be extracted" from the behavior of the
density relaxation function

p(q, co) 2rciN(E»)/[co+iD(co)q ]

in the limit co, q 0 [N(E) x 'Q» ImG» (E) is the den-
sity of states]. Here p(q, co) Pppp(q, co) and

~,.-X&G,'.„(E+~)G,", (E»,
P

where p~ p~q/2 and p~ p'+ q/2 and R(A) refers
to the retarded (advanced) Green's function. The vertex
function pp(q, co) obeys the integral equation '

(Gp~, —Gp" ) r(~)acp yp(q)

-(Gp —Gp ) yp+gyppep ep yp, (3)

with ypp the irreducible vertex function and

Pp [ypp
—(MOC at final locator point)].

In the hydrodynamic limit co,q 0, (3) may be solved
for the density relaxation function p P&pp and the longi-
tudinal current relaxation function &J g&(vp. q)p»

diagram. This inconvenience is handled by extending the
sums over all lattice sites, and correcting for the added
terms by subtracting "multiple-occupancy corrections"
(MOC). For a given diagram MOC's are constructed by
breaking off locator lines from common sites in all possi-
ble ways and subtracting these terms from the original di-
agram. Note that MOC diagrams may, in turn, require
MOC's (next generation) if they happen to have multiple
locator lines at any site. The problem is not peculiar to lo-
cator expansions but also arises in an extended state for-
mulation on the lattice.

The approximation we are going to be using for calcu-
lating quantities which behave noncritically at the Ander-
son transition is the single-site approximation or
coherent-potential approximation (CPA). ' It may be
viewed as the first term in a cluster expansion and is ex-
pected to become exact in the limit of large lattice coordi-
nation numbers. ' For the averaged one-particle Green's
function it amounts to summing up all diagrams of 6 with
noncrossing locator lines and the corresponding MOC's.
The resulting averaged Green's function (in momentum
space)

G (E) -[I/ap(E) —s ]

is found from the self-consistency condition

cop-qP -2rriN(E)+0(co),

qL&+M/ qR,
(4)

where L, M, and R may be approximated by their q 0
limiting value. It follows that the diffusion coefficient is
given by D(co) iL(—co)/M(co) Her. e M(co) is a gen-
eralized current relaxation rate, given by a momentum
average of the irreducible vertex ypp, and L is a single-
particle quantity.

In single-site approximation ypp is given by a renormal-
ized locator pair yo consisting of the series of all possible
bare locator "stars" with renormalized propagators Uo
plus all noncrossing MOC's s

A R R A

yp(co)-
co(1+ U"crlc+ U"cJ")+U& —U~

' (5)

The corresponding quantity without MOC's at the outer-
most legs is'

GA GR
yp(co) - yp(co) .

~A ~R ~~R~A

By summing the ladder diagrams with yp as the irreduc-
ible vertex, one finds

2i(Imcrp ) /ImGp
IL(q, co) 2, for co q 0,

co+ED'
(7)

which has the correct diffusion pole structure, with Do, the
bare diffusion constant, given by

Dp [rcN(E»)] 'g(vp q) 2(ImG» )
p

Quantum localization is caused by the coherent back-
scattering of electrons in a random potential. In perturba-
tion theory this is expressed by an infrared divergence of
the sum of maximally crossed diagrams: App (q, co)

I L (p+ p', co). These diagrams contribute infrared
divergent terms to the irreducible vertex ypp which renor-
malize the diffusion coefficient to smaller values. This in
turn affects the diffusion pole and hence App, and feeds
back into App. The fully renormalized ypp may be deter-
mined following Ref. 10, where it was shown that the
most divergent diagrams of ypp at the Anderson transition
may be summed up to give the density relaxation function
with two legs interchanged, i.e., p(p+p'). The selection
of the set of "maximally crossed" diagrams for ypp in-
cluding all possible internal parts is the principal approxi-
mation of the present theory. To proceed, we have to ac-
count for the fact that the diagrams for p do not have
MOC's at the two outermost locator points, whereas ypp
does have those. This introduces a correction factor C; for

(where vp Vpep is the particle velocity) using the projec-
tion

yp(q, co) Apy(q, co)+Bp(q)y, (q, co)+ay»,

with A and 8 to be determined below. The term hpp is
less divergent than p and p~ for q, co 0 and may be
dropped. Multiplying (3) by one and vp q, respectively,
and summing on p, one derives the continuity equation
and the momentum relaxation equation '
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each diagram of p(p+p'), which depends on the structure
of the outermost locator averages, i.e., whether two or
more locators are connected. In the latter case the locator
star may reach into the interior of the diagram, which
would generally lead to a momentum-dependent correc-
tion factor. We have not been able to sum these contribu-
tions directly. The same di%culty arises in calculating the
projector coefficients A~ and Bz(q).

Fortunately, one can make use of a symmetry property
of the locator expansion, which greatly simplifies the
calculation of the C s. We consider a shift of the zero of
energy such that s~ e~+Eo and E E+Eo. All ob-
servable quantities must be invariant under this transfor-
mation, e g , G. ~.(E) and D(ro), whereas rro

' ea '+Eo
and yo, yo are not. We may use the freedom to choose Eo
to our advantage. It turns out that in the limit Eo oo all
expressions simplify because the momentum dependence
gets suppressed. In particular, it may be shown that the
correction factors C; for multilegged locator stars dis-
cussed above vanish as 1/Eo compared to the locator pair.
Thus, only locator pairs have to be kept, which intro-
duces a momentum independent C, determined to be
limp, (ya/yo) .

As a result, one obtains a self-consistency relation for
the diffusion coefFicient

ImG~~(lmG& )
D(ra) Do+ yg(vp q) (v~" q),

p, p' p+p') z —ia)/D(ra)

(9)

for d 1,2, 3 and Ni I/&, Nz T', N3 2/x. Here
8 2' is the bare bandwidth for Z nearest-neighbor
sites in the lattice. The results are consistent with one-
parameter scaling theory as discussed in Refs. 11, 16, and
23. A two-parameter scaling theory as suggested by cer-
tain perturbation-theory arguments and by renormal-
ization-group calculations would require the existence of
a different kind of infrared singular contribution in the ir-
reducible vertex part y~p which we have not been able to
identify so far. In particular, all states are found to be lo-
calized and D(ra) ira—g in d 1,2 with g the localiza-
tion length. In d 3 we find a metal-insulator phase tran-
sition along a line in the 8'-E plane shown in Fig. 1. In
Fig. 2 the localization length is plotted for given energy
E 0 as a function of disorder in dimensions d 1,2, 3.
Also shown are the results of a numerical diagonalization
for a quasi-one-dimensional finite system assuming scaling
behavior in the transverse directions. ' Excellent agree-
ment is found in the complete energy range. Near the
band edge, the phase boundary is seen to bend outward,
following the density of states. This behavior is simply
due to the fact that for energy E near the band edge the

10 .-

10-

e 10'-

where y 21m(P")/fx N (E)Doj.
We have evaluated (9) numerically by employing the

exact numerical solution of the single-particle CPA equa-
tion. The momentum integrals in (9) were further ap-
proximated by using the isotropic energy-momentum rela-
tion defined by

No(sp) -4np' ] dp/dip ( /(2m)

with the model bare density of states

No(E) ~Ng(B/2) [I —(2E/B) )
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FIG. 1. Phase diagram showing metallic (M) and insulating

(I) regions for the box-shaped level distribution in d 3. Phase
boundary according to Eq. (9) (solid line) and Ref. 23 (full cir-
cles, error bar indicated for E 0: ~0.5 ). Aslso shown is the
band edge as determined in CPA (solid line) and numerically in

Ref. 23 (short-dashed line) and the exact upper bound (long-
dashed line).
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FIG. 2. Localization length g in units of the lattice spacing as
a function of disorder in dimensions d 1,2, 3 for half-band
filling, calculated from Eq. (9) (solid lines) and according to
Ref. 23 (solid circles). Asymptotic power laws for weak and
strong localization are indicated.
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density of states and hence, the effective hopping probabil-
ity increases with increasing disorder. Indeed, the phase
boundary follows the band edge [determined numerically
in Ref. 25 as the energy where N(E) 2.5X10 N(0)] in
the limit of small Win both the numerical and our analyt-
ical results. The quantum interference effect, which is be-
lieved to cause localization in the band center, is seen to
be responsible for localization near the band edges as well,
in contrast to the conjecture put forward in Ref. 25 that
near the band edges potential localization may be dom-
inant. The regime of potential localization may be es-
timated to be well outside the CPA band. Also, the so-
called "classical localization" mechanism proposed by
Gotze and co-workers' and not included in our theory
does not appear to be important. The localization length g
obtained from (9) and plotted in Fig. 2, is in excellent
agreement with the numerical results for d 1 and d 2,
but in good agreement only for d 3. Whether the
remaining discrepancy is due to the single-site approxima-
tion (CPA) being not quite adequate and the approxima-
tion adopted in deriving the SCT being insufficient, or else
the numerical extrapolation procedure being less conver-
gent in higher dimensions remains to be seen. The obvious
trend is for the CPA to become more reliable and for the
numerical finite-size scaling used in Ref. 25 to be more
slowly convergent in higher dimensions (d 2,3). Also in-
dicated in Fig. 2 are the asymptotic power laws in

W(d 1,2, 3) as obtained analytically from (9). For
strong coupling (W ~), the locahzation length de-
creases as W ' . The results of Ref. 25 appear to follow
this law, although for 1 1 and particularly for d 3, the
data do not extend sufficiently far into the strong-coupling
region.

In conclusion, we have derived a quantitative theory of
Anderson localization within the limitations of the SCT
for a tight-binding model with arbitrary site-diagonal dis-
order in any dimension. The dc conductivity and localiza-
tion length calculated for the box-shaped distribution and
nearest-neighbor hopping are in very good agreement with
"exact" numerical results for finite-size systems consider-
ing that the theory has no adjustable parameters. A de-
tailed discussion and further results for the frequency-
dependent conductivity and other level distributions will
be given else~here.
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