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Two-body density matrix of a normal Fermi fluid
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The microscopic study of the two-body density matrix p2(r&, r2, r&, rz) initiated for uniform Bose
Quids in an earlier paper is continued for the Fermi case. We present formal results on the structure
of the generalized momentum distribution n(p, q)=g"„{%~a„+a- a-a"„~ql), and its Fourier in-

verse p2(r„rz, rI, r2):—p2(r»r2, r|), based on a variational ground-state wave function of Jastrow-
Slater form. The structural relations are inferred from the cluster expansions of these objects, from
the asymptotic condition relating p2(r&, r2, r&) to the particle density and the one-body density matrix

p&(r&, r&), and from formal diagrammatic connections with the Bose problem. The two-body
density-matrix elements p&(r&, r2, r&) are thereby expressed in closed form in terms of certain sums of
irreducible cluster diagrams. Some of these diagram sums are familiar from the analogous theory of
the one-body density matrix; all can be evaluated quantitatively by solving a set of Fermi-
hypernetted-chain (FHNC) equations. Upon invoking the sequential relation between p&(r&, r2, r&)

and p&(r&, r&), the corresponding result for the generalized momentum distribution n (p, q) efFects a
resolution into contributions from various scattering processes occurring in the many-body medi-

um, specified by form factors that are susceptible to FHNC evaluation. This decomposition is com-
parable to that derived earlier for the Bose-Quid ground state but is complicated by contributions
from exchange scattering and by a dynamically dressed Pauli kinematic correction. Silver has pro-
posed a simple expression for the generalized momentum distribution n(p, q), a function which

plays an essential role in his theory of final-state efFects in deep-inelastic neutron scattering from the
helium liquids. Based on the present microscopic treatment, the quahty of Silver s estimate is as-

sessed for the case of normal liquid 'He, by evaluating the necessary distribution functions and form
factors within the FHNC/0 approximation.

l. INTRODUCTION

Valuable information on the dynamic structure of
quantum many-body systems like liquid helium may be
derived from deep-inelastic scattering of neutrons and
other weakly interacting probe particles. The experimen-
tal data from such scattering processes are conventionally
analyzed in the impulse approximation. ' The underlying
assumption is that the probing neutron transfers momen-
tum Ak and energy A~ to a single atom of the helium tar-
get, the remaining atoms acting merely as spectators. As
shown in Fig. 1, the struck atom is ejected with momen-
tum Rp. However, in helium the constituents are strong-
ly correlated even at high momentum transfer. Although
it remains legitimate to describe the process in terms of a
collision of the probe with a single atom, the struck parti-
cle cannot be considered to recoil with the propagator of
a free particle. Rather, it suffers "final-state interac-
tions, ' which entail scatterings with particles of the
medium, leading from momentum state tip to another
final state of momentum fi(p —q). The novel theory pro-
posed and applied by Silver suggests that these final-
state interactions are dominated by the exchange of a vir-
tual phonon, i.e., a density fluctuation of the structured
helium target. Figure 2 sketches the corresponding
scattering process, wherein the phonon acts to conserve

momentum. Strong evidence for this mechanism is pro-
vided by the spectacular agreement between theoretical
and experimental results for the neutron-scattering
Compton profile function J ( Y) in liquid He at the
highest momentum transfers, when final-state interac-
tions are incorporated in the theoretical prediction using
Silver's theory. On the other hand, the numerical
analysis of Refs. 2 —6 employs rather crude approxima-
tions for the form factors that govern the indicated
scattering process. A quantitative test of the current un-
derstanding of the dynamics of deep-inelastic scattering
requires accurate calculation of these form factors by mi-
croscopic many-body methods.

FIG. 1. Deep-inelastic scattering of neutrons from normal
liquid He, as described within the impulse approximation.
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be seen by introducing the density fluctuation opera-
tor p = $-a a- (with q40) and writing Eq. (2) in the

~ k+q ~
form

iL n(p, q)=(%~pza a ~%) n—(p) . (3)

FIG. 2. Deep-inelastic scattering of neutrons from normal
liquid He, involving Anal-state interactions mediated by a den-
sity fluctuation of the target 'He system (a phonon of wave vec-
tor q).

This paper is the second of two that are devoted to for-
mal and numerical evaluation of the form factors describ-
ing the final-state mechanism of Fig. 2. The form factors
associated with the processes shown in Figs. 1 and 2 may
be extracted from the single-particle momentum distribu-
tion n (p) and from the generalized momentum distribu-
tion function n (p, q) characterizing the target system,
which are in turn determined by the one- and two-body
density matrices p, (r, , rt) and p2(r„rz, rt, rz) of the corre-
lated ground state of the system. A detailed study of
these quantities for the case of a uniform, isotropic fluid
of spinless bosons has been presented in the first paper,
Ref. 7. Here, we shall report the results of an analogous
study for Fermi fluids. The formalism is applied in a nu-
merical evaluation of the form factors of the final-state
scattering process depicted in Fig. 2, with liquid He as
target. The formalism (with some modifications for finite
target size and state-dependent ground-state correlations)
may also be applied to the problem of final-state eFects in
quasielastic electron-nucleus scattering and other probe-
target scattering scenarios. ' However, other mecha-
nisms may well be more important in the nuclear context
than the phonon-induced process of Fig. 2.

Let us recall the definitions of the momentum A& distri-
bution functions n (p) and n (p, q), which will be the pri-
mary objects of our analysis. The former is the occupa-
tion probability

n(p)=(errata ~e) (1)

for a single-particle orbital p of momentum A and spin
projection e. The correlated ground-state wave function
qi (which we assume is normalized to unity) must be com-
pletely antisymmetric in the case of a Fermi system. We
are interested in the unpolarized normal ground state of
liquid He, so the spin degeneracy is taken as v=2 with
o = f or $. The generalized momentum distribution
n (p, q) is defined by

n(p, )q=g(%~a& at a a„-~%), (2)
k

where p —q=(p —q, a ) and k+q=(k+q, o'), and we
have averaged over all momenta Ak and spin projections
0' of orbital k. The quantity (2) is directly involved in
the final-state mechanism represented by Fig. 2, as may

As in the Bose case considered in Ref. 7, the expectation
value (3) may be interpreted as a transition matrix ele-
ment for scattering a particle out of orbital p to another
orbital p

—
q (without a spin flip), the process being medi-

ated by a (spin-independent) density fluctuation (see Fig.
3). Evidently, this transition just corresponds to the
final-state scattering process occurring at the rightmost
single-atom vertex in Fig. 2. The Fermi problem differs
from the Bose case studied earlier in the obvious respect
that processes involving creation of a particle out of (ab-
sorption of a particle into} a zero-momentum condensate
no longer appear, since, in contrast to the situation for a
Bose fluid, a Fermi fluid does not display off-diagonal
long-range order of the one-body density matrix. We
may further point out that if spin-dependent correlations
are important, one should consider more general quanti-
ties than (2), for example spin-dependent versions of
this quantity in which the sum over k=k, o is replaced
by a sum over the momentum k alone, or in which no
sum is performed.

Ignoring kinematic as well as dynamic correlations be-
tween and among the 1V fermionic constituents of the
fluid, the generalized momentum distribution (2) takes
the simple form

no(p, q) =5qo(N 1)n (p), (4)

FIG. 3. Graphical representation of the transition matrix ele-
ment (4~p~a- a- ~+) of Eq. (3). A fermion is scattered from

orbital p into another orbital p —
q by a phonon.

which recovers the impulse approximation. This result
holds equally well for Bose fluids. However, if we speci-
fy merely that the particles are noninteracting, we must
take account of the fact that the Pauli exclusion principle
generates kinematic particle-particle correlations, leading
instead to a generalized momentum distribution function

nF(p, q) =5 o(N —1)8(kF—p)
—(1—5 )6(k —p)6(kF —

~p
—

q~ ),
where kF is the Fertni wave number. (No such kinematic
effects arise from the statistics of the Bose problem}.
Correspondingly, if we ignore dynamical but not kine-
matic correlations, the Fermi occupation probability (1)
is given simply by the Hartree-Fock distribution
nF(P) =8(kF —P).

In the presence of interactions, nF(p) and both terms of
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n~(p, q) will be dressed by dynamic correlations. A com-
plete theory of the distribution function (2) must, of
course, also incorporate the phonon-mediated scattering
process shown in Fig. 3 [cf. Eq. (3)], which arises from
the correlation structure of the medium. The contribu-
tions from the pertinent physical effects, both kinematic
and dynamic, will be given explicit expression in the fol-
lowing sections, in terms of various dressed quantities
and form factors which are amenable to microscopic
evaluation. The results furnish the microscopic informa-
tion about the ground state that is required for a deter-
mination of the final-state correction to the impulse ap-
proximation corresponding to Fig. 2.

The analysis begins with an appropriate cluster devel-
opment of the generalized momentum distribution
n(p, q). The cluster analysis draws on the same tech-
niques and notations as were introduced in our earlier
study' of the inomentum distribution (1}. The results are
transformed to r space to obtain the corresponding clus-
ter contributions to the two-body density-matrix elements
p2(r „r'„r2). Fermi-hypernetted-chain (FHNC) resumma-
tions may be performed in the standard manner' ' to
elucidate the structure of n (p, q) and pz(r, , ri, rz). In par-
ticular, we achieve a systematic decomposition of the
generalized momentum distribution into contributions
from the dynamical and statistical effects already indicat-
ed. Within this decomposition, form factors for scatter-
ing processes occurring in the medium are identified and
constructed explicitly in terms of a set of (more or less fa-
miliar) irreducible two- and three-point functions, which
also serve to generate p, (r, , r', ) and p2(r, , r2, r', ). The for-
mal analysis paves the way for an accurate evaluation of
the required form factors as functions of the relevant mo-
menta. Much that was learned in the companion paper
on Bose Auids can be carried over without change to the
present context of normal Fermi fluids (or with minor
changes of an obvious nature).

As a first numerical application of the formalism, cer-
tain form factors have been calculated in a Fermi-
hypernetted-chai. n treatment in which elementary dia-
grams are neglected. The results permit a test of the ac-
curacy of the simple approximation to n (p, q} that has
been implemented in Silver's evaluation of final-state
effects in deep-inelastic scattering. In our calculation, the
ground state of liquid He is described by a Jastrow-
Slater variational wave function containing two-body
correlations of the simple Schiff-Verlet type. ' '

Section II sketches the derivation of a cluster expan-
sion for the generalized momentum distribution based on
standard procedures. ' ' The FHNC analysis of the as-
sociated two-body density-matrix elements is presented in
Sec. III. In Sec. IV we extract the form factors corre-
sponding to the phonon-induced scattering process and
the particle-particle Pauli exchange corrections. The
final section reports numerical results on form factors in
liquid He.

II. CLUSTER EXPANSIONS

variety of helium, nuclear, and electronic systems by
means of advanced many-body methods. A recent review
of efforts toward quantitative microscopic prediction of
n (p) may be found in Ref. 21. In the present contribu-
tion we shall initiate the microscopic treatment of the
more complex quantity (2), for the case of Fermi statis-
tics, exploiting the techniques developed in Refs. 7 and 14
for n (p) and for the Bose version of n (p, q), and making
use of the same (or similar) notation and diagrammatic
representations. As in Ref. 14, we approximate the
ground state of N strongly interacting fermions by a vari-
ational wave function of the Jastrow-Slater type and
evaluate the associated generalized momentum distribu-
tion (2) in terms of cluster approximants. Specifically, the
model ground-state wave function is

N
'p =JV ' p f ( r," )4, (6)

i(j
where 4 is a Slater determinant of plane-wave orbitals,
describing the ground state of the corresponding free Fer-
mi gas of particle density p=vkF/6m. and single-particle
level degeneracy v, and f (r,~) is a Jastrow pair correla-
tion function depending only on the scalar separation of
particles i,j The. constant JV, taken as the norm of
gf4, is introduced to normalize 4 to unity.

The developments of this and subsequent sections may
be generalized in a straightforward manner to deal with a
more elaborate ground-state trial function in which the
Jastrow correlation factor in (6) is replaced by a Feenberg
function involving irreducible spatial correlations be-
tween triples, quadruples, etc., of particles as well as
pairs. The analysis would lead to essentially the same
structural results for the generalized distribution function
and associated density-matrix elements, with the
qualification that the diagrammatic content of the vari-
ous functions involved is much richer.

Cluster decomposition of (2) is facilitated by recasting
this quantity in the form

n (p, q)=5 0(N —1)n (p)+(1—5 0)(iP~N(p, q)~%), (7)

where

2N(p, q)=pqa- a +a a pq
—a a —a a

(8)

It is to be noted that the operator N(p, q) is not self-
adjoint; rather, N (p, q) =N(p —q, —q).

The first term in (7) is responsible for the independent-
fermion (or impulse-approximation} expression (4}.
Hence the effects of two-body correlations, except as they
influence n (p), must be entirely due to the nonzero ex-
pectation value of the operator N(p, q) of (8). Indeed, at
constant total particle number we may express this opera-
tor as a suin of N (N —1)/2 two-body operators,

N

N(p, q)= g N (i,j) .

The momentum distribution (1) has been the subject of
intensive theoretical study and has been calculated for a

The operator referring to fermions i and j (acting in the
direct sum of their Hilbert spaces, with i Xj ) is
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(ij)=e 'o (j )+e 'o (i),
the action of the one-body operator o- (i) on the
plane-wave orbital

I
k") being defined by

;Ik&=~-;Ip —q&, &kIo =~-„- &pl . (11)

P2(2)( 1 2 1)

+n(3)(p, q)+ ] (12)

The specific procedures applied in the present work have
been described at length in Ref. 14, which the reader
should consult for details. The cluster contributions
n(2)(p, q), n(3)(p, q), . . . appearing in (12) are most con-
veniently represented by generalized Ursell-Mayer dia-
grams. ' The basic diagram rules and some examples
are given in the Appendix. Figure 4 displays the contri-
butions to the two-body cluster term n(2)(p, q). The
three-body cluster term n(3)(p, q) is represented by 138
such Ursell-Mayer diagrams (not shown because of the
prohibitive space required). However, most of these dia-
grams are reducible, as becomes apparent when we exam-
ine the m-body cluster contribution in coordinate space,
i.e., the quantity p2( )(r„r2, r', ) defined by

We are now in a position to invoke the standard pro-
cedures for cluster expanding the expectation value of a
sum of two-body operators, the most familiar example be-
ing the potential energy corresponding to a sum of pair
potentials. In the thermodynamic limit —meaning that
the particle number X goes to infinity while the particle
density p is kept constant —the generalized distribution
function (2) and (7) is decomposed into an infinite series
of cluster terms,

(p q) ="F(p q)+( ~qO)l (2)(p q)

FIG. 5. Diagrammatic representation of the two-body cluster
contributions to the Fourier inverse of the generalized momen-
tum distribution function, i.e., to the two-body density-matrix
elements p2(rl, r2, rl).

p2(3)( r„r2, r', ), derived same manner from n (3) ( p, q ), is de-
picted in Fig. 6. The reducibility of a large share of the
diagrams is evident in the presence of products of graphs.

In order to infer the characteristic structure of expan-
sion (12), and of the corresponding expansion of the
coordinate-space representation, we have examined
selected classes of contributions in four-body cluster or-
der. For the sake of economy, we do not display the
complicated diagrams which enter at this order. At any
rate, with the benefit of some technical experience, the
selected diagrams —together with the results in two- and
three-body orders —are suScient to reveal the structure
of the relevant cluster expansions out to infinite order.
The results of this synthesis are presented in the next sec-
tion.

P2(3)(r 1 r2r l)

1~ —ip (rl —r1)"( )(p q)= p2( )(rl r2 rl)e
v X

—'q. ( — )
Xe ' '

dr&dr2dr& . (13)

+ ~— + + +

+ + + I

Transformation of individual cluster contributions to
n, )(p, q) into their coordinate-space counterparts in

p2, )(r, , r2, r', ) may be easily accoinplished graphically:
Taking each diagram of n( )(p, q) in turn, one simply re-
moves the arrows representing specific plane-wave orbit-
als and changes the (solid) field points that they originally
intersected into (open) root points. Applying this graphi-
cal process to the sum of two-body cluster diagrams in
Fig. 4, we obtain the r-space counterpart p2(2)(r„r2, r', )

shown in Fig. 5. The three-body cluster contribution

+ + + + —— +

+ + l' + 1 O-a~ —— +

+ — +I', + +,". + + I + +

n(2)(P, q) =

il

+ ') +
~ r

)) )i

( + ( +

FIG. 4. Diagrammatic representation of the two-body cluster
contributions to the generalized momentum distribution func-
tion n (p, q).

FIG. 6. Diagrammatic representation of the three-body clus-
ter contributions to the two-body density-matrix elements

I
p2~rl r2 rl).
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III. FERMI-HYPKRNETTED-CHAIN ANALYSIS
)AM

—iq. (r
&

—r&)Xe ' ' dr&dr&dr', . (14)

Our characterization of the structure of pz(r, , rz, r', ) relies

upon certain known properties of the cluster terms
(13), together with (i) features of the asymptotic behav-
ior of the elements pz(r], rz, r', ) and (ii) relation-
ships between these elements and their Bose counter-
parts (cf. Ref. 7). The more complicated quantity

pz( r „o'],rz, o z, r'„cr ],rz, o z ) may be dealt with in a similar
manner.

The explicit diagrammatic analysis of the cluster ex-

The formal development now aims toward the resum-
mation of cluster expansion (12) by hypernetted-chain
techniques. It is most efficient to work in coordinate
space, focusing on the two-body density matrix
pz(r, , o, , rz, oz, r'„o'„rz, oz) corresponding to the chosen
wave function of the Fermi fluid, or more specifically on
the reduced version pz(r„rz, r'„rz) in which all spin traces
have been performed. Actually, in a study of the general-
ized momentum distribution function n (p, q) of (2) or
(12) we only need the partially diagonal portion
pz(r, , rz, r', ) =pz(r„rz, r'„rz) of the latter quantity, since

n(p, q)= — f pz(r, , rz, r', )e

pansion of pz(r], rz, r]) [involving Eqs. (12) and (13) in

conjunction with Figs. 5 and 6, plus special four-body di-
agrarns] suggests the general structural decomposition

pz(r„rz, r', )=p zD(r„r zr'])[ L(r ]r']) +L(r ]r zr'])] . (15)

The first factor collects the direct-direct portions of the
full set of diagrams contributing to pz(r „rz, r', ). By
definition, direct-direct diagrams do not have exchange
lines attached to any of the root (or reference) points r],
r2, and r', . The complementary set of graphs contains
only diagrams with exchange lines beginning and/or end-

ing at two or three reference points. Of these graphs, the
ones with exchange lines at two reference points combine
to form the two-point exchange factor L (r], r', ), while the
graphs with exchange lines at all three reference points
compose the three-point function L(r], rz, r', ). Either of
these exchange functions vanishes if any one of the coor-
dinates in its argument recedes to an infinite distance
from the others. In the Bose limit, obtained for level de-
generacy v~ ~ with kF ~0+ at constant density p, the
function L(r„r', ) approaches unity and the three-point
function L(r], rz, r]) goes to zero. As expected, only the
direct-direct contribution p2D survives. Returning to
finite v, this component of (15) may be compared, at a di-
agrammatic level, with the structural result that was de-
rived for the Bose-fiuid pz(r, , rz, r', ) in Ref. 7. We arrive
thereby at the representation

pzD(r], rz, r'] ) =pp]D(r„r] )f ( Ir, —
rzl )f ( Ir', —rzl ) exp[ —P(r, , rz) —P(r'„rz) —P(r„rz, r', }] . (16)

The generating functions P(r, ,rz)=P( r, —rzl):P(r}—
and P(r, , rz, r', ) are irreducible quantities —sums of irre-
ducible diagrams —just as in the Bose case. Figure 7
gives the leading cluster contributions to these functions.
In fact, the diagrams shown do not differ from the lead-

ing diagrams that occur for the Bose fluid. However, as
in the familiar example of the one-body density matrix

p, (r„r', ), additional, non-Bose diagrams will arise from
the systematic introduction of exchange insertions at the
field points of the Bose diagrams of higher orders.

The function p, D(r„r', ) entering (16) is just the direct-
direct component of the full Fermi one-body density ma-
trix p, (r„r', ). The structure of p, D is well known from
previous work. ' ' This quantity is generated by the ir-
reducible phase-phase correlation function Q(r], r]) (see
Fig. 7, and Figs. 8 and 10 of Ref. 14},according to

in analogy to the nodal-elementary separation of these
quantities in the Bose case. ' ' Figure 7 shows the lead-
ing diagrams of nodal (N) type. Elementary (E) dia-
grams, contributing to Egg(r), Eg(r), and Eg(r], rz, r', ),
will first appear in the next cluster order (not explicitly
shown).

Concentrating next on the exchange factors L(r„r', )

and L (r, , rz, r', ), we consider the limit rz~ ao and exploit

p]D(r], r', ) =pno exp[ —Q(r, , r', )], (17)

where no = expQ(r, , r, ) is an overall strength factor.
The functions Q(r), P(r), and P(r, , rz, r', ) (where, and

throughout, r = lr, —
rzl ) may be resolved into nodal and

elementary contributions,
—P(r&r2r']) =

—
Q (r) =Ngg(r)+Egg(r),

P(r) =Ng (r)+ Eg (r—),
—P(r, , rz, r', ) =Ng(r], rz, r] )+Eg(r] rz, r] )

(18) FIG. 7. Diagrammatic representation of the cluster expan-
sions of the irreducible direct functions Q(rl, P(r}, and
P (rl, r2, rl ) (leading cluster contributions shown explicitly}.
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the asymptotic condition

lim, „p2(r„rz, r', }=pp, (r, , r', ) . (19)
Lt(r) =

This relation should hold under very general assumptions
on the interactions within the Quid, which are supposed
to become vanishingly small at asymptotically large inter-
particie separations. If particle 2 is far from particle 1,
the correlations between them should be negligible, and
hence Eq. (19) should apply. The structure

p, (r„r', ) =p,a(r, , r', )[L,(r, , r', )+Lz(r„rI)] (20}

L(r„r', ) =L, (r&, rI )+L2(r&, r', ) . (21)

of the one-body density matrix appearing on the right-
hand side of (19) is well known, ' ' in terms of the
direct-direct component p&D of (17) and the exchange
functions L

&
and L2. The exchange functions L, and L2

are in turn known, both formally and numerically, within
the FHNC scheme. ' ' The diagrams contributing to
these functions through three-body cluster order are
given in Fig. 8. [The functions L, and L2 were originally
denoted N, and Nz (Ref. 14)].

Going to the asymptotic regime r2~ 00 in expressions
(15) and (16), and comparing with (19) and (20), we make
the identification

4(r) = —Q ~

FIG. 8. Diagrammatic representation of the cluster expan-
sions of the exchange functions L&(r) and L2(r) (two- and
three-body cluster contributions shown explicitly).

The structure of the three-point exchange function
L(r„r2, r&) cannot be determined from asymptotic prop-
erties; it is instead inferred from the cluster expansion
(12} and the associated r-space representation (13) (see
Figs. 5 and 6). The results through three-body cluster or-
der are displayed diagrammatically in Fig. 9.

Inspecting Fig. 9, it is seen that many of the diagrams
factorize; as the simplest example, note that the erst
diagram represents the product —v '1(r)1(r'), where
r=~r, —

r2~ and r'=~r', —r2~. A detailed study of the
three-body cluster diagrams (and selected four-body dia-
grams, not shown), together with a general knowledge of
the nature of cluster expansions, leads one to the follow-
ing structural decomposition of the three-point exchange
function:

L(r&, rz, rI)=+v 'l(r)!(r') —l(r)[P (r') —Pd„(rI, rz, r&)]—l(r')[P„(r)+Pd„(r&,r2, r&)]

—l(r), rt)[Ps, (r) —Pd, (r')+Pd, d(r„r2, r', )]—P~, (r„r2,rI) —P,d, (r„r~,rI }

—Pcec(rl r2 rl}—v[P~( )+Pd~(rl r2 rI)][PCC(r')+Pd~(rl r2 rl}] . (22)

The two- and three-point irreducible exchange functions
Pzp and Pzpy entering this expression are classified ac-
cording to the presence or absence of exchange lines at
the root points. The category to which a given function

belongs is indicated by its subscripts aP or any, accord-
ing to the conventional scheme: cc (circular), de (direct
exchange}, dcc (direct circular), ded (direct exchange
direct), cdc (circular direct circular), and cec (circular ex-
change circular). As usual, these functions may be
separated into their nodal and elementary parts:

1

L(rlr&r'l) =—

+
11

P~(r) =Ng p—(r)+Eg p(r),
—P~~(r, , rz, r', ) =N& &r(r„rz, rI)+E&~&r(r„r2, rI) .

(23)

+ — + + +

The resolutions (23) parallel those asserted in (18) [the
direct subscripts dd and ddd being omitted from (18) for
brevity]. The leading contributions to the cluster expan-

Ng„(r) = ' (Q+ Q)
p p
L L0 0 Q=

+ ~ ~ ~

FIG. 9. Diagrammatic representation of the cluster expan-
sion of the exchange function L (rl, r2, rl) (two- and three-body
cluster contributions shown explicitly).

FIG. 10. Diagrammatic representation of the two-body clus-
ter contributions to the cluster expansions of the circular ex-
change function X&„(r) and the direct-exchange function

Ngd, (r).
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NQ4 4(r)r2r'))—

NQ 4 (r(rgr')) =— 9+ I + I

FIG. 11. Diagrammatic representation of the three-body
cluster contributions to the cluster expansions of the irreduc-
ible three-point functions N«„(r„r2, r', ), N«, &(r„r2,r&), and

Ng, ~,(r„r2,r] ). X[1 +L (r, , r z, r, )] . (26)

g (r) =f (r) exp[N&z(r)+Ezra(r)]

X {1 —v 'I (r)+21(r)[N«(r)+E„(r)]

+2[N&,(r)+E&,(r)]+ [Nz, (r)+Ez, (r)]

+ [N„(r)+E„(r)]—v[N„(&)+E„(~)]'I .

(25)

At r&=r'„ the results (15), (16), (17), and (21), together
with the property' L, (r, ,r, )+Lz(r, ,r, ) =1, yield

p (zr&, r zr, )=p f (r){exp[ —2P(r) —P(r„rz, r, }]}

pz(rl rz rl ) p g ( )r (24)

For the assumed wave function (6), the structure of g(r)
was established at the very beginning of FHNC theory.
Explicitly, g (r) takes the form

Qcec(r{r~r'{) =

sions of the P & and P & (or equivalently the N& &
and

N& &r, since the elementary diagrams are of higher order)
are depicted in Figs. 10—12. The two-point functions P

&

arise already in the theory of the one-body density matrix
and may therefore be regarded as known quantities; their
structure has been thoroughly investigated within the
FHNC formalism. ' ' They may be calculated to all
cluster orders by solving a coupled set of FHNC integral
equations. ' In FHNC/0 approximation, elementary
contributions are neglected, so the three-point functions

Pzpy are approximated by their nodal portions lV&y.
Since our initial numerical investigation is carried out at
the FHNC/0 level, we do not give explicit representa-
tions of the various elementary contributions. They may
be constructed in a straightforward manner as the need
arises in subsequent, more elaborate numerical calcula-
tions with scaling or interpolation schemes.

It is instructive to specialize our structural results to
the case r, =r', . The matrix elements pz(r~, rz, r&) must
reproduce the radial distribution function g (r) according
to

In Ref. 7 it was shown that for the Bose Quid, the ex-
ponential expression in (26) reduces to

—2P (r) —P (r$, rz, r])=Nag(r )+Egg(~), (27)

where N~~(r) and E~~(r) are —as required for (24) to
hold —the nodal and elementary diagram sums that gen-
erate the radial distribution function. (Again, the direct
subscripts dd and ddd are understood in the Bose case,
and therefore omitted in Ref. 7.) Relation (27) also holds
for the Fermi fiuid, provided the functions Nzz(r) and

E~~(r) are interpreted as the direct-direct nodal and ele-

mentary generating functions involved in Eq. (25). (We
stress that these diagram sums differ from their Bose
counterparts by the presence of extra diagrams having
exchange lines at field points. ) Specializing the irreduc-
ible exchange quantities among P &(r) and P &~(r&, rz, rI)
[which define the structural decomposition (22)] to the
case r, =r &, we obtain the analogous relations

—P«(r) —Pz«(r„rz, r&) =N„(r)+E«(r),

2Pge(r ) Pgeg(r] rz r])=Nge(~)+Eye(r)

es (r1 rz I 1 ) Nde(&)+Ede(&

—P„,(r&, rz, r&)=N„(r)+E„(r) .

(28}

The nodal and elementary diagram sums on the right-
hand side are just those (with corresponding subscripts)
which arise in the FHNC analysis of the radial distribu-
tion function [cf. Eq. (25) and Ref. 20]. Insertion of (28)
into (26), via (22), completes the desired connection (24).

To conclude this section, we point out that the rela-
tions (28) provide the basis for a simple recipe for
constructing the elementary three-point functions

E& & (r„rz, r', ) from the corresponding elementary two-
point functions appearing on the right-hand side, which
may be considered as known quantities. The dynamical
and/or exchange bonds ending at the root point r, of
contributions to a given two-point function are to be
properly opened up to yield contributions to a three-point
function with the three distinct root points r, , r2, r&.

IV. FORM FACTORS

FICi. 12. Diagrammatic representation of the four-body clus-
ter contributions to the cluster expansion of the irreducible
three-point function X&„,(r I, r2, r

&
).

We next explore the structure of the generalized
momentum distribution function (p,nq) of (2) by imple-
menting the structural results (15), (16}, (17), (21), and
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(22) for the two-body density-matrix elements pz(r„r2, ri )

appearing in the integral (14}. To obtain a decomposition
of n(p, q) that separates contributions from differing

physical processes in a clean manner, the function

pz(r„rz, r, ) is first split up into a portion containing all

terms generated purely by two-point functions, and a
remainder in which the terms also depend on the irreduc-
ible three point functions. Thus

gQaa(r) —1

0 0+~+~+

gQac(r)-1 =—

Qcc("& = + +' + e ~ ~

P2(rl r2 rl) P2 (rl r2 rl)+P2 (rl r2 rl)(2) (3) (29)

in an obvious notation. The last term vanishes if we set
the various three-point functions P(r, , r2, r', ) and
P &r(r„r2, r', ) equal to zero.

Secondly, we invoke the Fermi-hypernet equations re-
sulting from the FHNC analysis of the one-body density
matrix. ' ' These equations relate the bare correlation
function f (r) to the spatial distribution functions defined
by the non-nodal and nodal diagram suins X&,&(r) and

N& &(r) introduced in Refs. 15 and 16:

Figure 13 indicates the diagrammatic structure of these
quantities, in leading cluster approximations. Having es-
tablished the necessary notation, the hypernet equations
read

f (y)e '" =g&dd(r),

f (r)e —P'"'P„(r)=v 'l (r)Fdd(r)+F«(r), (31)

FIG. 13. Diagrammatic representation of the cluster expan-
sions of the spatial distribution functions g«&(r), g&„(r), and

g«, (r) (two- and three-body cluster contributions shown explic-
itly).

g&dd(r) = 1+Fdd(r) = I +X&dd(r)+N&dd(r),

g&«(r) = I +F«(r) = I+X&«(r)+N&«(r),

g&d, (r)= I+Fd, (r) = I+X&d,(r)+N&d, (r) .

(30)

f (r)e '—"'Pd, (r) =Fd, (r) .

Equations (31) are used to eliininate the bare correlation
factor f (r) from each term of the explicit expression for
the decomposition (29). These manipulations produce

and

p2 (ri, rz, ri)=ppi(ri, ri)g&dd(r)gQdd(r')+ppiD(ri, r'i)l(ri, ri)[g&dd(r)Fd, (r')+g&dd(r'}Fd, (r)]
—vppiD(ri, ri)[v 'l(r) —F (r))[v 'l(r') —F«(r')]

pz '(r„rz, r', }=pz '(ri, r2, ri ) [exp[ —P (r„rz, r', }]—I )

+PP,D(r„r', )g&dd(r)g&dd(r') exp[ P(r„rz, r—', )]

X [—l(r)Pd«(r'„r2, r, }—l(r')Pd„(r„r2, r', ) —l(r„r', )Pd,d(r„r2, r', )

—P,d, (r„rz, r', )+P,d, (r„r2, r', ) —P,(r„r2, r', )
—vPd (r, , r2, r', }Pd„(r'„rz,r, )

vP (r)Pd (ri, r—
&, r, ) —vP (r')Pd (ri, r2, ri)],

(32)

(33)

where, as before, r =
~r&

—
rz~ and r'= ~r', —r2~.

Inserting (29) into the integral (14), and utilizing the results (32) and (33), we arrive at the decomposition

n(p q) =N& On(p)+Fdd(q)[n (p)+n(Ip —ql)]+Fd. (q)[nDi(p)+aDi(Ip ql)]
—lio[e(kF —p) —F„(p)][e(kF—

Ip —ql) —F..(Ip —ql)]+~"'(p, q)+ii"'(p, q) .

Thus the component n (p, q) —N6 On (p) of the generalized momentum distribution is expressed as a sum of (i) separable
contributions involving form factors

F &(q)=p f F &(r)e'q'dr (35)

and either the one-body momentum distribution (1), a modified momentum distribution

nD&(p}=v ' t P,D(r)l(r)e'~'dr, (36)

or the strength factor no [second, third, and fourth terms of (34), respectively]; (ii) a nonseparable integral n ' ' (p, q) in-
volving only two-point quantities; and (iii} another three-point integral n ' '(p, q} generated froin the component (33) of
p2(r„r2, r', ). Explicitly, the fifth term is

I

V
(37)
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where

E(r„r,, r', ) =pp, (r„r', )Fgdd(r)Fg, „(r')+pp»(r„r', }l(r,, r', )[Fgdd(r)Fd, (r')+Fgdd(r')Fq, (r)]
—vp[p&D(r&, r'&) —pno][v 'l(r) —F„(r)][v 'l(r') F—„(r')] . (38)

Inserting the Fourier inverses of the two-point functions F&dd, etc. , appearing in K(r„rz, r', ), while recalling that

p, (r„r', ), p, D(r„r', }, and 1(r„r', } depend only on Ir&
—r', I, we may convert (37) into a three-dimensional integral in

momentum variables.
Appealing to the sequential relation'

P2 rl r2 r1 r2 + 1P1rl rl (39)

the intermediate result (34) may be recast in a preferable form. In momentum space, the sequential condition becomes

n(p, q=O)=(N —1)n(p) . (40}

We specialize (34) to q=0 and compare with (40). The condition for equivalence is then framed as a condition on the
form factors entering (34):

[I+2Fdd(0)]n(p)+2Fd, (0)nD&(p)+n' '(p, 0)+n' '(p, O)=no[8(kF —p) —F„(p)]

Assuming that (41) is fulfilled, we may employ it to rewrite (34) in the form

n (p, q) =(N —1)5,0n(p)+(I —5 o)Fdd(q)[n (p)+n(Ip —ql)]+(I —5 o)Fde(q}[nD~(p}+nD~(Ip —ql)

—nc(1 —5qc)[e(kF —p) —F (p)][6(kF—
Ip

—qI) —F (Ip —qI)]+(1—5qo)n~ ~(p, q)+(1 —5 0)n~ ~(p, q) .

(41)

(42)

This expression achieves the desired separation of contri-
butions from the various scattering processes underlying
the generalized momentum distribution function (cf. Ref.
7). The first term reproduces the result (4) for dynamical-
ly and kinematically uncorrelated fermions [except that
the dressed momentum distribution function n (p) must
be used]. The correlations prevailing in the interacting
fluid permit the scattering of a ferrnion from orbital p to
another orbital p —q, with the intervention of a phonon
to conserve momentum. The effect of this process and
the corresponding time-reversed process are described by
the second term in (42). The associated exchange scatter-
ing effects are embodied in the third term, which is pro-
portional to the exchange form factor Fd, (q) depending
on the phonon wave number q. The fourth term of (42} is
recognized as the dressed version of the kinematic (Pauli)
correlation effect introduced in Eq. (5}. In the present
case, the dynamical correlations, manifested in virtual ex-
citations of fermions above the Fermi surface, lead to
tails on the step distributions (the F„ terms). The
dynamical correlations also produce an overall quenching
of the effect, through the strength factor no (0 no 1).
The last two addends of (42) are terms of "higher order, "
which act to correct the various processes just con-
sidered.

By taking the Bose limit (v~ ~,kF~0+,p fixed), we

may recover the corresponding decomposition of the gen-
eralized rnomenturn distribution of a Bose fluid as report-
ed in Ref. 7. Only the direct contributions to (42) sur-
vive. Thus the third and fourth terms are to be omitted,
and the form factor Fdd(q) is to be identified with the
function F, (q} studied in the earlier paper.

At this point, a useful remark about condition (41) is in
order. In the Bose limit, we may split this relation into

V. NUMERICAL RESULTS

In calculating final-state corrections of the impulse ap-
proxirnation to deep-inelastic scattering from the helium
liquids, Silver has employed the simple approximation

p2(r&, r2, r& ) =pp&(r&, r&)g( Ir&
—

r&I ) (43)

for the relevant two-body density-matrix elements. We
may test the quality of this assumption by evaluating the
functions p2(r, , r2, r', ), p, (r, , r', ), and g(r), and the associ-
ated momentum distributions and structure functions,
within the microscopic treatment developed in the
preceding sections. Such a test was carried out for the
Bose case in Ref. 7, where numerical results were present-
ed in HNC/0 approximation and some steps for sys-

two conditions, one applying at p =0 (the condensate
condition) and the other applying at finite p (and in-

volving terms smaller by a factor I/N). These condi-
tions read, respectively, 1+2F,(0)=0 and n' '(p, O}
+n' '(p, O}=0, in agreement with what was found in
Ref. 7. As discussed in Ref. 7, these conditions constrain
the choice of correlation factor in the Bose case. In the
Fermi case, the situation is different: It may be shown
that the sequential relation expressed in (41) is fulfilled
identically for any Jastrow trial function (6), and indeed,
even if this choice is extended to include multibody corre-
lations of Feenberg type. The automatic satisfaction of
(41) is a consequence of the presence of Pauli exchange
correlations, implied by the Slater determinant 4. Tech-
nically, this property may be attributed to a Fermi can-
cellation phenonenon of the type encountered in the
FHNC analysis of the static structure function S(q) (see
Refs. 29 and 20 for details).
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tematic improvement on the estimate (43) were indicated.
Here we repeat the process for the Fermi problem, where
Pauli exchange effects must be adequately included.

We may view Silver's approximation (43) as arising
from rough erst estimates of quantities in the contribu-
tions (32) and (33) to the expression (29) en route to the
result (42). In more detail, it amounts to a truncation of
(32) corresponding to the replacements

0.5—

0.3—

n(p)

nDI(p

p&(r&, rt) =p]D(ri, r'1)l(rl, rI ),
Fdd(r') =0, Fd, (r') =0

1+Fdd(r)+Fd, (r) =g (r),
v '1(r') F„(r—') =0,

(44)

(45)

(46)

(47)

0.2— '-.Fcc(p)

l I il l l l l

0,2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

p(A )
and to the neglect of the "pure-three-point" contribution
p~z '(r„r2, r', ) of Eq. (33). In momentum space, the re-
placements (44), (46), and (47) translate, respectively, to

and

n (p) =nDI(p),

Fdd(q)+Fd, (q) =S(q) —1,
(48)

(49)

e(kF —p ) —F„(p)=0,

where S(q) is the static structure function corresponding
to the radial distribution function g (r).

The most striking feature of Silver's approximation is,
of course, its violation of time-reversal invariance, evi-
dent in the asymm. etric treatment of at least one of the
pairs Fdd(r), Fdd(r') and Fd, (r), Fd, (r') by Eqs. (45) and
(46).

To make a quantitative assessment of the merit of ap-
proximations (44)—(47), we have used the microscopic
formalism developed in Secs. II-IV to calculate the vari-
ous functions appearing in these relations, for the spe-
cific case of liquid He at equilibrium density,
p =0.016 58 A . The trial ground state is of the
Jastrow-Slater form (6), with the Schiff-Verlet choice'
f (r) = exp[ (b/r) /2] for—the two-body correlation
function. As in Ref. 18, we take b =2.9547 A. The den-
sity matrices p~(r„r', ),p2(r„r2, rI), the distribution func-
tions n (p), nD&(p), and the various form factors
Fdd(q), Fd, (q),F„(q) are evaluated in FHNC/0 approxi-
mation, ignoring contributions from elementary dia-
grams.

In a next step, one should invoke a scaling or interpola-
tion procedure " for the incorporation of elementary
corrections. Numerical work in this direction is in pro-
gress. Although technically involved, this extension
does not pose any serious diSculties.

Figures 14—16 summarize the results at the FHNC/0
level, which should be accurate enough for the immediate
task of judging approximation (43) through its in-
gredients (44}—(50). The momentum distribution func-
tions n(p) and nDI(p) involved in the assumed relation
(48) are compared in Fig. 14. The strength factor associ-
ated with both of these functions is no=0. 2212. The two
functions are seen to have very similar behavior, but their
magnitudes differ typically by 10—15%. Figure 15 pro-

FIG. 14. Momentum distribution functions n (p) (solid curve)
and n»(p) (dot-dashed curve) of liquid 'He at density
p=0.01658 A '. The calculation is based on ansatz (6) with a
correlation factor f(r) of Schiff-Verlet type and employs the
FHNC/0 approximation. The dashed curve is the circular-
exchange function F„{p) [cf. Silver's relations (48) and (50)).

0.4

02—
Fdd(r)+Fd, (r}

d(r)

—0.6—

—l.o

r(A)

FIG. 15. Comparison of the function F«(r)+Fd, (r) {solid
curve) and the radial distribution function g(r) (with unity sub-
tracted, dashed curve) for liquid 'He, based on the Jastrow-
FHNC/0 approximation. The dot-dashed curve is the direct-
direct portion Fdd(r) [cf. Silver's relation (46)].

vides a comparison of the numerical results for g(r}—1

and Fdd(r)+Fd, (r) and thus tests the assumption (46).
Generally speaking, the situation is similar to that found
in our earlier HNC/0 study of the Bose fluid: These two
functions have much the same shape, but quantitatively
they differ signi6cantly.

The poor quality of the estimate (46) is revealed more
vividly in Fig. 16, which shows S(q}—1 and the sum of
form factors Fdd(q)+Fd, (q). The strong deviation from
assumption (49) is clearly exposed and is particularly ap-
parent at small momenta. The corresponding behavior
was noted for the Bose case in Ref. 7. For a Bose fluid,
1 —S(q) approaches unity as q goes to zero, while the
function F&(q) [or Fdz(q), the exchange form factor
F„(q)being absent) goes to —

—,'. The exclusion principle,
and the Fermi cancellation effect pointed out in Sec. IV,
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FIG. 16. Sum of form factors F«(q)+Fd, (q) (solid curve)
compared with the static structure function S(q) (minus unity,
dashed curve), for liquid He as described within the Jastrow-
FHNC/0 approximation [cf. Silver's relation (49)].

alter this picture. For a Fermi system described by the
wave function (6), this cancellation phenomenon guaran-
tees, at q =0, the behavior Xd, (q)=X„(q)=—1 and,
consequently, S(q) =0 and Fdd(q)+Fd, (q}=0. The
latter properties are (approximately) refiected in our nu-
merical results for S(q) and Fdd(q)+Fd, (q) Howev. er,
one does see, in Fig. 16, slight deviations from the correct
limiting values, which result from use of the FHNC/0 ap-
proximation. The standard FHNC approximants (/0, /4,
etc.) are known to disobey the Fermi cancellation rules as
a result of the neglect or inconsistent treatment of ele-
mentary diagrams.

The Pauli exclusion corrections to n (p, q) of the circu-
lar type, involving e(kF —p) —F„(p), are entirely ig-
nored in Silver s treatment —even the trivial kinematic
statistical effect of the first term is absent. The form fac-
tor F„(p), evaluated in FHNC/0 approximation, is
shown in Fig. 14 as the dashed line. This function van-

ishes inside the Fermi sea, jumps to a height of about 0.5
at the Fermi surface, and decreases slowly in magnitude
with further increase of the wave number p. In general
one may therefore expect such statistical effects to be im-
portant. On the other hand, we note that their net con-
tribution to n (p, q) of (42) is proportional to the strength
factor n0, which is only about 0.2 in liquid He.

At this stage, we shall not report numerical data on the
contributions n' '(p, q) and n' '(p, q) to n(p, q) as ex-
pressed in (42). They may be calculated from quantities
generated in the FHNC/0 treatment, by performing a
series of integrations. It must be recognized, however,
that within the FHNC/0 framework the sequential rela-
tion (39) is not fulfilled because of the neglect of elemen-
tary diagrams. This shortcoming of the FHNC/0 ap-
proximation may be adequately corrected by implementa-
tion of a suitable scaling or interpolation scheme.
Accordingly, we postpone a detailed assessment of n' '

and n' ' until such an improved numerical evaluation has
been completed.
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(17.3) o = o = l(lr1 —r'1I) —= l(x) = 3x (sin x—x cos x)
r, r',

(17.5)
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FIG. 17. Elements of the diagrammatic representation of
cluster contributions in the variational description of a uniform
Fermi Auid.

In summary, an initial application of the microscopic
theory of the density-matrix elements p2(r„rz, r', ) has un-

covered significant quantitative deficiencies of the simple
estimate proposed by Silver. On the other hand, it
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APPENDIX

The elements of the Ursell-Mayer diagrammatic repre-
sentation, adapted to a Fermi system described by a
Slater-Jastrow wave function, consist of root (or refer-
ence, or external) points, field (or internal) points, direct
bonds, exchange bonds, plane waves, and degeneracy fac
tors. Figure 17 serves as a key.

A root point represents a particle coordinate, say r, ,
which is not integrated over, whereas afield point, say r&,
implies an integration fdr& and a density factor p. In

the diagrams of this paper, root points are indicated by
open circles with the implicit labels r„r2, and r'„while

field points are drawn as solid dots. The bottom left open
circle is identified with r, , the bottom right with r, , and
the top open circle with r2.

Bonds representing dynamical and statistical correla-
tions join pairs of coordinate points. As shown in dia-
grams (17.1) and (17.2), the dynamical direct bonds are
wavy or dashed lines. An exchange bond is a solid line
bearing an arrow, as in diagram (17.3); note that the
direction of the arrow is actually immaterial. A plane-
wave bond, as in diagram (17.4) or (17.5), also consists of
a solid line with an arrow, but the line extends beyond
the coordinate points on either side. The analytic coun-
terparts of wavy-direct, dashed-direct, plane-wave, and
exchange bonds joining points r; and r. are, respectively,

g(rj )=f(rj ) —1, rl(rI)=f (rj )
—1, exp(ip r,"), and

=3x 3(sinx —x coax).
Chains of exchange bonds connecting coordinate

points introduce factors v, where v is the single-
particle level degeneracy. Precise rules are given in Refs.
14, 20, and 31; in particular, a closed loop of exchange
lines joining m fields points contributes a factor v'

The application of the diagram rules is illustrated by
the following examples:

diagram (17.6)= l (r„r2)l (rI, rz),

diagram (17.7)= f dr2l(r, , rz)l(rz, rI)=l(r, , r', )=(17.3),

diagram (17.g ) = f d r3((I J
13)l (r, , r, )l (r3, r2)l(r2, r', ),

2

diagram (17.9)= f

�1
P'(fl 1'I lq'(rl r2)

drI, dr2((r„r, )l(r„rz)1(rz, rI)e ' ' e

The second line asserts an important convolution property of exchange lines.
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