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Theory of Raman scattering with final-state interaction
in high-T, BCS superconductors: Collective modes
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(Received 4 December 1989)

A theory of Raman scattering in isotropic superconductors is presented, where the light breaks a

Cooper pair. The role of the final-state interaction including the long-range Coulomb interaction is

discussed in great detail. It is shown that the Raman spectrum consists of two parts: bound states
with different symmetries below the threshold (co & 2L) and a continuum above the threshold, where

the square-root singularity is removed by the final-state interaction. The small binding energies of
the bound states cannot be resolved because of the experimental broadening and the possible life-

time (recombination time) of the excited pair. The spectrum shows very weak dependence on the

momentum transfer providing that the transfer q is not too large thus q &&5/UF. The spectrum is

sensitive, however, on the polarizations of the incident and scattered light, because the relative

weights of the excited pairs with different symmetries are also sensitive. It is also demonstrated that
it is not necessary to invoke a large gap anisotropy to explain a broadening of the pair breaking edge
at 2b, . The results previously derived by Klein and Dierker and by Abrikosov and Falkovsky are
also discussed. The present results agree with the former ones in the zero momentum transfer limit,

while the later ones are reproduced for small momentum transfer in certain energy regions.

I. INTRODUCTION

Following the BCS (Ref. 1) theory of superconductivity
Anderson ' and Bogoliubov, in their classic papers of
1958, called attention to the existence of collective excita-
tion in superconductors. One of the modes is the plasma
mode and the other collective excitations are bound pairs
of single-particle excitations orthogonal to the Cooper
pairs that lie near the gap edge 2h. Following these pa-
pers Tsuneto and also Bardasis and Schrieffer carried
out extensive studies of the bound pairs, with the latter
authors especially providing a very detailed description.
The basic physical idea is that when a Cooper pair is ex-
cited to two single excitations then the so-called residual
interaction between these excitations, which does not
contribute to the Cooper-pair formation, results in other
bound pairs orthogonal to the Cooper pair. Assuming
that the new pairs have approximately zero total mornen-
tum, then their angular momenta must be different from
zero (1%0). It also was shown that static impurities shift
the energy of the pair but the damping is not apprecia-
ble. When the first experimental attempts to find these
excitations in infrared absorption spectra failed, general
interest in these excitations almost disappeared, except in
superfluid He. It is interesting to note that there was no
early study to show how the residual interaction modifies
the two-excitation continuum.

The two-excitation spectra are, however, measurable
by Raman scattering. The first theoretical work is due to
Abrikosov and Fal'kovskii, ' where the final-state in-
teraction has already been discussed, but no attention was
paid to the formation of bound pairs. Such experimental
studies became feasible by the development of laser spec-
troscopy, as was first pointed out by Tong and Maradu-
din. " The first clear evidence for the existence of the su-

perconducting gap in the Raman spectra was given by
Sooryakumar and Klein, ' studying 28-NbSez. Bar-
deen' has pointed out for us that the interaction between
two single excitations may play a role in the temperature
dependence of the nuclear-spin-relaxation time in super-
conductors (coherence peak).

There is, however, another physical example of the two
excitation bound states that are the two-roton excitations
generated by Raman scattering in liquid He, where the
two free rotons also have a density of states with square-
root singularities as in superconductors. For attractive
roton-roton interaction two-roton bound states are
formed and the continuum spectrum is essentially
modified and also disappears at the threshold, as shown
in Fig. 1(a). In the measurements of Greytak and co-
workers' the bound state has never been resolved; in-
stead a similar curve, shown by the dashed line in Fig.
1(b), has been measured. Fitting the measured Raman
spectra by theoretical prediction, ' ' the roton-roton
coupling strength and the single-roton energy was deter-
mined. ' The obtained roton energy was later verified by
neutron-scattering measurements. '

There is a striking similarity between the measured Ra-
man spectra in 3 -15 compounds and the spectra of two-
roton excitations. There is, however, an essential
difference between these cases, namely, the roton disper-
sion in liquid He is completely isotropic, while in the su-
perconductive gap there is always some anisotropy due to
the crystal lattice even in the BCS state. Previously, the
smearing of the singularity at the threshold has been
mainly attributed to the anisotropy rather than to final-
state interaction. ' ' The main goal of this paper is to
point out that it is not a trivial task to differentiate be-
tween anisotropy and final-state interaction.

There is a further difference between the roton and su-
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b two excitations: (a) e as e inTh d h d line corresponds to the case of weakly interactingp p o g y
the effect of attractive effective interac ion eexcitations a= .(a=0.01) and the solid line indicates e e e

ex erimental resolution or finite life (recom ination ime
' ' ' '

nb' ti n) time of the pair excitation is showng o p

th t
' h'ft dto1o i Th Lo n broadenind i the bound state cannot be resolved, but the spectrum is s i e o

may be responsible for the artificially long tail of the spectrum at t e - g

perconducting case. sAs Bardasis and Schrieffer pointed
out the bound state is formed in superconductors for an7

ar irb't ary sign of the coupling and, depending on the sign,
the bound pair has mostly a two-electron or electron--hole
pair character.

Recently, the new experimental data on A-15 corn-
tt t d the new interest of Klein an

Dier er inD' k r ' in the final-state interaction, which was o-
ii'4stirn-lowed b the work of Abrikosov and Fal'kovskii, stirnu-

1 d b the discovery of high-temperature superc
owe y e

erconduc-ate y e i
d thetlvlty. The theory of Klein and Dierker s covere

whole energy spectrum, while the former authors concen-
trated on different limits. It will be shown that the two
theories are not contradictory, but that ver differenty d'ff t
questions have been asked.

These recent theories address those materials in whic
t esizeo eh f the Cooper pair given by the BCS coherence
len th ~& is small compared to the penetration ep
the light into the material (go«5). Simple me ae metals with
weak BCS coupling belong to the opposite group (go & 5,

h the excited pairs do not have negligible total mo-
momentamenta. In the latter case that average over the mom

q, must e a en,b t k thus the characteristic features can e
in rinci le, both1 transparent. By Raman scattering, in princip e, oess ra

of the different types of collective excitations can

ied.
(i) Pairs of excitattons which are in

~ ~ I=O s state and
represent long-wavelength density oscillations are cou-

led to the Coulomb field. As it will be shown, in this
case the Raman spectrum is very weak, as it is propor-
tional to q UF cop w/ here q is the momentum transfer, UF

is Fermi velocity, and co is the plasma frequency. T is
problem was first studied by Abrikosov and Genkin,

(ii) Pairs orthogonal to the Cooper pairs can be c arac-
terized by /%0 angular momentum or by different crystal
harmonics. ese ex

'
Th xcitations do not carry net c arge,

n e Coulomb fields.thus they are not coupled to long-range Coulom e s.
In this study, these states are characterize yd b different
quantum numbers L, and for simplicity there is no mix-

ing between t e i eren
hts of these channels in the Raman spectra are deter-weig tso esec

mined by the polarizations of the incident ann scattered
li ht (e, and e, ).

In this paper, a complete study of the Raman spectrum
in BCS superconductors is presente . nn ec. II, the en-
eral formalism is presented. Section III is devoted to the
stud of the vertex equations and the solution in order tostu yo ev
d b the residual interaction in the fina sescri e e

ratel . In PartIV the different results are discussed separate y.
A, first the bound states in the gap and then ehen the continua



8800 H. MONIEN AND A. ZAWADOWSKI 41

are studied in the zero total momentum limit (q =0). In
Part 8, the small q case is discussed, focusing on the cou-
pling between density and the plasma oscillations, and on
the q dependence of the excitations that do not carry net
charge. The results obtained are summarized in Sec. V.
Appendixes A, 8, and C contain the mathematical de-
tails.

II. GENERAL FQRMALISM

(q, a„)
r=

—,
' J d(r r—')e " y (q, ~—~'), (2.5)—T PP

where T is the temperature and co„=2~nT, where n is an
integer.

The cross section is proportional to the generalized
dynamical structure factor S(q, co), which is expressed by
the analytical continuation of y (q, co„)as

PP

In this paper the finite temperature Green's function
technique will be applied to make further generaliza-
tions more straightforward. For the sake of simplicity,
the final results will be given for zero temperature.

1
S(q, c0) = [1+ns(ro)] ——Imp (q, z =co+i 5)

PP

(2.6)

Pq ~ Vk~ k+q o~k, o
k, o

(2.1)

where ak is the annihilation operator of the electron
with momentum k and spin rr (o =+1) in the single con-
duction band treated, and yk gives the strength of the
scattering, which has the form

(klp e, lbk)(bklp e; lk)
yz=(e, e, )+m

t, Ek Ebk+ Col

(klp e; Ibk)(bklp e, Ik)
+

~k ~bk s

A. Raman scattering

The energies, momenta, and polarization directions of
the incident and scattered light are denoted by co;,k;, e;
and co„k„e,; furthermore, the energy and momentum
transfer to the material are co=co, —co, and q=k; —k, .
For A -15 compounds and high-T, superconductors the
penetration depth of the light into the material 5 is large
(5-180 A for Nb3Sn and 5 & 1000 A for high T, materi-
als); therefore, the momentum transfer q is small com-
pared to the inverse of the BCS coherence length, and
thus qv~/6 &&1, where vF is the Fermi velocity.

The Raman scattering can be treated as a scattering on
an effective density p

where n~ is the Bose distribution and 6~0.

B. Long-range Coulomb effects

(q, r —~') = —( T,[p (~)P (~')]),
rr (q, r ~') = —( T,[p (r)p (~')]),
nor(q, r r')= —( T—,[pq(r)p q(~')]),

~no(q, r —r')= —(T,[pq(r)p q(r')]),

(2.7a)

(2.7b)

(2.7c)

(2.7d)

where the charge operator pq is defined Eq. (2.1) with

y =1. The Coulomb energy operator is

4m.e
Hc 2Xpq 2 p q.

q

(2.8)

The summation of the diagrams in Fig. 2 gives the total
susceptibility y (q, co)

PP

In the case where the light produces charge fiuctuation
in the electron gas, the coupling to the long-range
Coulomb forces reduces the scattering rate. Therefore, it
is useful to treat these forces separately. The relevant di-
agrams are shown in Fig. 2. Coulomb lines for which the
diagram splits by their removal must be treated separate-
ly. Considering only the diagrams without such
Coulomb lines, the following polarization terms are
defined:

(2.2)

where m is the electron mass and b stands for the band
index of the electron excited out of the conduction band,
and the corresponding states are Ikb) and lk), respec-
tively. In the case of time-reversal symmetry,

=myq+m. oPP

4n.e 4~e 4m.e

q q q
z z 00

(2.9)

(2.3)

holds. yk does not depend on q, as q «k~, but it is very
sensitive to the polarization directions of the light.

The scattering probability is determined by the suscep-
tibility

(q,.—.)=-(T,[p (.)p (')]), (2.4)

where ( ) denotes the thermal average and T, is the
complex time ~ ordering operator. Its Fourier transfor-
mation is

+ — — +

FIG. 2. The diagrams contributing to the generalized
density-density correlation function ypj are depicted [see Eq.
(2.9)]. The Coulomb interaction with small momentum transfer
is represented by dashed line. The circles represent the free par-
ticle propagations and the vertex corrections due to the interac-
tion between the particles except those depicted by the dashed
lines; thus the circles contain the vertical Coulomb lines also.
The dots correspond to the density operators and the effective
density p is labeled by y.
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which can be rewritten as

Krp7Tpr jjrp7T prX-- "rrPP +pp '
Kpp

(2.10)

ment was used by Abrikosov and Genkin and by Klein
and Dierker. '

C. Hamiltonian and scattering channels

where

Xpp ~pp
4me

1 —
happ (2.11)

is the density-density response function, which in the
q~0 limit behaves like y-(UFq) /co&, where cuz is the
plasma frequency. This behavior persists even in the su-

perconducting state as will be shown in Sec. IVB1.
Thus, for small q only the term in the bracket is impor-
tant on the right-hand side of Eq. (2.10). A similar argu-

HO=X ekak, ai,
k, a

(2.12)

The general electron-electron interaction is given by the
Hamiltonian

One conduction band is considered with energy ck, and
the dispersion is linearized at the Fermi energy; thus the
terms proportional to the effective mass are neglected as
they result only in smaller corrections. Thus the unper-
turbed Hamiltonian with energy c.k measured from the
Fermi energy is

=1H, = g ai, ai, (k cr k2 o'IVlk3 cr'k4 cr)ai, ai,
3, cr' 4, cr

1 2 3 4

(2.13)

which is determined by the matrix element ( I Vl ). This
Hamiltonian acts in the two-particle (Cooper) and the
electron-hole (zero-sound) channels, shown in Fig. 3.

In general, the polarization dependence of the Raman
scattering strength yk, the interaction matrix element

( I Vl ), the electron dispersion ei, as well as the
momentum-dependent superconducting gap hk can break
the rotational symmetry even for a spherical or cylindri-
cal Fermi surface. In the general case these functions
can be expanded in terms of crystal harmonics. The gen-
eralization is straightforward, thus we assume that only
the Raman strength yk breaks the symmetry that can be
expanded in terms of spherical harmonics Y& (8,$) or
Fourier terms e' ~ depending on the dimensionality

I

(d =3,2), where the angles (8,$) determine the direction
of the momentum. In general

(2.14)

where PL forms a complete set of functions. As the total
mornenta of the particles both in the Cooper or zero-
sound channels are very small; therefore ( I VI ) depends
only on two momenta. Considering the channels sepa-
rately, as shown in Fig. 3(a), 3(b), and 3(c), in the Cooper
channel

(k, o; —k, —o
I VI

—k', —o",k', o )

= —g pL(k)gLL pL (k )* '(2.15)
L, L'

and in the zero-sound channel

Cooper chonne t: g„,C

Q I

I-k -~
)

(k a;k', crlV, lk', cr;k, o )= g P (k)g, P (k')'
L,L'

for L,L'%0 and

(k', —o;k, o I Vlk, o",k', —o )= —P,(k)g, P,(k')

(2.16)

(2.17)

Zero-sound chonnel: g
Z

LAO

k, c

g i LAO

k, ~

k, cr k,-a.

k,-cr

(b) (c)
FIG. 3. The interactions introduced by Eqs. |,'2. 15)—(2.17) are

represented by wavy lines in the Cooper (C) and the zero-sound
{Z) channels. In these channels the states characterized by L
and L' quantum numbers are connected by the interaction.

for L =0, where PL o is a constant. The simplification in

the last equation (2.17) holds for most of the interactions.
The different signs on the right-hand side of Eqs. (2.16)
and (2.17) are associated with the different order of
operators and are introduced for further convenience.
Furthermore, in Eq. (2.16) L,L'WO.

I. the interaction is rotation invariant, then

g« =6«gL and g« =5«.gL are diagonal i»pherica1z = z c c
harmonics basis. The more general case is discussed by
Klein and Dierker. ' Assuming the BCS interaction with
strength g

* the following identities hold:

(2.18)

for the channe1 L =0. Additionally, the residual interac-
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tions in channels LAO are introduced for which

gL =
gL

—=gr (LAO) (2.19)

1 CO~ + Kk
G(k, ai„)=-

co +F +5 (2.20)

while the anomalous Green's functions are defined as

holds. For attractive interaction g*)0 and gL )0 and
for BCS ground state g*&gL, but gL is not necessarily
attractive.

In order to describe the superconductivity we use the
Gor'kov formulation. The Fourier transform of the nor-
mal Green's function G p(x, x') =(2 pG(x —x') is

n ".(q;r 7')—= —( T,[Qg(q, r)Q, ( —q, r')]), (3.1)

where p, v=O, +, —and L" stands for PL (k) in the fol-
lowing quantities:

1
QL (q, r)= — Q PL(k)ai, + (r)ai, (w),

2Vi,
(3.2)

where the diagrams start with an electron-hole pair that
propagates with normal and anomalous Green's function,
and they interact with each other. The starting bare ver-
tex may contain a weight function Pr (k) depending on
which polarization term is calculated. Including the
effect of residual interaction the following quantities can
be introduced:

F,p(xx') = ( T,[p (x)pp(x')] ) = I pF(x——x'), (2.21)

F p(xx')=(T, [f (x)Pp(x')]) =I pF(x —x'), (2.22)

where x =(x,r) is the four-component coordinate, p is
the electron field operator, the spin matrix I is

1
QL+, (q, r) =—y ixyL, (k)ai, +q (~)a i, (1-),

k, a

QL, (q, r)= —VgaPL(k)a+i, q (r)ai+, (r) .
k, a

(3.3)

(3.4)

0 1

—1 0 (2.23)

Similar quantities defined with the BCS Green's function
but without the residual interaction are labeled by (0) as

and

F(k,~„)=
co +f +6 (2.24)

In order to sum up the diagrams shown in Fig. 4, the fol-
lowing matrix vertex equation must be solved to obtain
W~L (q, co„):

is the Fourier transform of F(x —x'). Finally the gap
equation for zero temperatures is

where

(3.5)

D dc
(+2+ 2)l/2

(2.25)
(3.6)

where uD is the energy cutoff and p0 is the density of the
electron states at the Fermi surface for one spin direction
(po=kFm I2m for spherical and po=k~m I4mc, for cy-
lindrical Fermi surface with size n.c in the axial direc-
tion).

00(0)

~ (0) +0(0)

—0(0 )

0+(0) 0—(0)

++(0) + —(0)

7T
—+(0) ——(0)

vr

and similarly holds for n' '; furthermore

(3.7)

III. VERTEX EQUATIONS AND THE SOLUTION

In the following the main task is to calculate the polar-
ization functions defined by Eqs. (2.7a) —(2.7d). These po-
larization functions correspond to the diagrams in Fig. 4

and, finally, the coupling matrix is

—g 0 0

0 0 g
0 g 0

(3.g)

FICs. 4. The corrections to the density vertex are depicted.
The solid line represents the electrons. Each line must be
decorated by a single or two arrows shown in the lower part of
the figure where the first row corresponds to the normal and the
second one to the anomalous Green's functions. Only those dia-
grams must be considered where the charge is conserved at each
vertex. The interaction points are labeled by g.

We assume the following: (i) The superconductivity is
BCS type and the gap is isotropic. (ii) The Fermi surface
is a sphere or cylinder. (iii) The one-particle band energy
ei, is isotropic. (iv) The residual interactions in channels
LAO are rotationally invariant, and Eq. (3.5) is diagonal
in the channel indexes for L =0 and LAO as well. In
each separate channel the diagonal matrix elements of
the couplings defined by Eqs. (2.15)—(2.17) must be used.
The derivation of Eqs. (3.5)—(3.8) is lengthy but straight-
forward.

In the more general case these equations have matrix
structure in the channel indexes and their solution is
more complicated. For further discussion see Sec. III.5
in Ref. 21.

The m matrix can be given in terms of the Green's
function in coordinate representation as
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GG F— t/2FG '—t/2FG

@x—x') = &2FG F G
v'—2F6 G F

(3.9)

A C C
rr'' '(q rd )'= —C B D

—C D B
(3.10)

In general the functions A, B, C, and D are defined by
Eq. (3.9) and for zero temperature their expressions are

I

where G=G(x —x'), G=G(x' —x), and F=F(x —x').
This result holds for each channel independently for iso-
tropic superconductors.

The Fourier transforms of the matrix elements can be
calculated directly using Eqs. (2.20) and (2.24); only one
co„summation must be performed. The matrix structure
of the result is

given in Appendix A in integral forms. Their limits at

q =0 and the first expansion terms are presented in Ap-
pendixes B and C.

After applying a unitary transformation

1 0 0
U = 0 I /&2 I /&2

0 —1/&2 I /v'2
(3.11)

the solution of the vertex Eq. (3.5) can be given a simple
form introducing the unit matrix

"C'="(')0(I O'-—'""""'"U)-' (3.12)

which split to a 2 X 2 and 1 X 1 matrix after using Eq.
(3.10). This splitting corresponds to the separation of the
amplitude and phase modes, but as can be seen from the
algebra, only the amplitude mode is coupled to the light

(the third component of the vector ~ ' ' U vanishes).
The final result for n (q;co„) has the form

A —g A (D +B) 2g cC~-
1+g A g(D+—B) gg A —(D+B)—2g g C

(3.13)

which also holds for each channel independently. The in-

tensity of the Raman scattering can be obtained by insert-
ing Eqs. (3.13), (2.14), and (2.10) into (2.6). The remain-
ing task is to use the explicit expressions of A, B, C, and
D, given in Appendixes B and C.

I

As we have discussed in the Introduction, bound states
are formed and the continuum is renormalized. To ob-
tain these results expressions (B2)—(B5) for the A, B, C,
and D coefficients must be inserted into Eq. (3.13) for vr

and the analytical continuation to the real axis must be
taken

IV. PHYSICAL RESULTS

A. q=0 limit and bound states {L %0)

Considering an LAO channel that does not couple to
the Coulomb field, only the first term on the right-hand
side of Eq. (2.10) contributes; thus the Raman scattering
is proportional to

I y L I'Im~LL (q;~. )I;.

~~LL(q ~. ) ~LL(q ~)1

The result can be expressed by the function

00 1 1
Io(z) = d x

z+x (x +1)' (4.1)

where z =1—co /4b —I'5, and 5~+0. The analytical
expressions for different regions are given by Eqs.
(B6a)—(B6c) in Appendix B.

The general result obtained is

Imm (q=0;co) =
—,'po

67
mro &-

46
2 (4.2)

CO CO

2
ReIO 1—

4A

CO CO+ a& ImIo 1—
2b 4A

where aL(co/2b, ) is a slowly varying function of the ener-

gy and plays the role of a dimensionless coupling con-
stant

I 2 PogL (4.4)

z ~ pog2 C

aL(a)/2b, ) =—
pogL + 4a' 1 —g,'gg* (4.3)

where g* appears as one of the integrals, expressed with
the help of the BCS gap Eq. (2.25). In the special case
where Eq. (2.19) gL = gL =gL holds, for t—he couplings
near the gap edge, co =26 has a simple form

As the ground state is formed by Cooper pairs, gz &g*
must hold. In general, the parameter a can, however,
take, arbitrary values ( —oo &a& oo). It can be very
small, e.g., a=5X10 for pog*=0. 2 and g =0.2g'. A
typical value may be a =0.05—0. 1 with pog* =0.2 and

gI =0.5g*.
The formula given by Eq. (4.2) was first derived for Ra-
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man scattering in superconductors by Klein and Dierk-
er. ' A very similar expression was derived by Ruvalds
and Zawadowski' ' for Raman scattering on roton pairs
in liquid He in which case a is the roton-roton scattering
strength in the angular momentum channel 1=2. How-
ever, the first term of the denominator was derived much
earlier by Bardasis and Schrieffer, in studying bound
states in the gap region. lA

C:

5

---- vFq/6 =0
v q/b =0.2

F/6 = 0.05

1. Bound states (LAO)

Bound states form when the denominator of the ex-
pression (4.2) vanishes at the energy of the bound state
cu=coL, thus ImIO=0 for co &2b [see Eqs. (86a) —(86c)]
and

ha
D

1
O

Ct)L N
I aL ReIp 1

22h 4g~
(4.5}

C

C
O

As ReIO &0, for co&26 [see Eq. (4.1) or Eq. (86a}], a
must be positive to obtain a bound state. Using the rela-
tion given by Eq. (2.19) gL

= —
gL =gL, it turns out that

a &0 holds for arbitrary sign of gL. The expression (4.3}
contains two terms, the first one arises from the electron-
hole channel (Z) and the second from the two-electron
channel ( C). For attractive interaction (gi & 0) the
second term dominates, while for a repulsive one (gL & 0)
the first applies.

That interesting result is interpreted by Bardasis and
Schrieffer, as in the first case an electron pair is formed
that is orthogonal to the Cooper pair (L %0), while in the
second case an exciton is formed In the. Anderson-
Rickayzen approximation the zero-sound channel is ig-
nored, thus no exciton-like excitation has been found.
Furthermore, col cannot be negative for gL &0, because
then an excitonic insulator is formed instead of a super-
conductor. This feature is in contrast to the two-roton
bound state in liquid He, where the sign of the roton-
roton interaction can be arbitrary and can be changed by
pressure.

The strength of the bound-state pole can be obtained
by linearizing the denominator of Eq. (4.2) around the
bound state and its strength ZL [ImmLL -ZL5(co —coL)
for co & 2h] is given by

~ r

a CO

ZL =
p
pon. ' aL (co)ReIO

BQ7 4h CO
—CclL

(4.6)

The binding energies are plotted in Figs. 6 and 7 of Ref. 6
both for positive and negative gl. For a small binding
energy co& L

=26, —coL (coL-25}, the simplified expres-
sion of a given by Eq. (4.4) can be used. The equations of
Sec. IIIA of Ref. 17 provide detailed information after
replacing the roton-roton coupling g4 by a and the ener-

gy scale D by 2A. For small couplings 0(a ((1,
co~ L

-AaL, and ZL -ppaL. Furthermore, if gL ~g '
then coL ~0.

0--- I I I I I I

0.4 0.6 08 I.O I.2 I .4 I.6 I.8 2.0
op /2Q

FIG. 5. The Raman intensity calculated with Eq. (3.13) for
Snite value of UFq/4=0. 2 (solid line) and u+q/5=0 (dashed
line) is shown. The line broadening I /6=0. 05 and a coupling
strength of a =0.025 are used.

teraction (aL —=0}, the spectrum exhibits a square-root
singularity like (co —4b, )

' at co=26, with strength in
the Raman spectrum proportional to yL (see Fig. 1). The
residual interaction deforms the spectrum in such a way
that above the threshold a maximum is formed in the
continuum. The stronger the coupling is
[aL (co/2b, —1)], the larger the shift of the maximum is
from the threshold. At the threshold co=26 the spec-
trum vanishes as the imaginary part of the function Io
has square-root singularity [see Eq. (86c)].

For weak coupling, the total spectrum is very similar
to the one shown in Fig. 1(b). If the bound state is convo-
luted with a Lorentzian distribution characterizing the
experimental resolution I,„& it is clear that a smeared
curve may exhibit a single maximum [see Figs. 1(b) and
5]. The position of the maximum is difFerent for the
different channels as the couplings aI are different. As
the polarization of the incident and scattered light deter-
mines the strength yl of the channel I. in the spectrum,
thus the peak in the spectrum is expected to be shifted by
changing the polarization. In anisotropic superconduc-
tors the anisotropy of the gap must result in additional
shifts.

B. Small q extension

2. Continuum (L =0) l. General remarks

The formula (4.2) describes the continuum formed
above the threshold (co & 2A). Without the final-state in-

By transferring momentum q to the material, a Cooper
pair can be broken into two excitations with momenta
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k+q/2 and k —q/2, where k is an arbitrary vector. As
the energy of a single excitation is Ez=(b, +ek)'
therefore for a fixed angle 0 between q and k the continu-
um has a lower threshold that depends on that angle.
Thus, considering the energy integral with respect to (,
which replaces the momentum integral perpendicular to
the Fermi surface, the poles in the loop expansion for A,
B, C, and D, given in Appendix A, vary on the Fermi sur-
face [see Eqs. (A4) —(A7)].

The denominators of the expressions (A4) —(A7) after
analytical continuation iso„~co+i 5 can be factorized as

2

(~a+ n+~t n) ~ =-il +0E2 CO

(vzq)
X b+( — +

N

(4.7)

where sz=g and E =b, +g. In Appendix C partial
fraction decomposition is used. Furthermore, it is as-
sumed that for the relevant momentum transfer q

Iq vFI «1
holds as g

-5 ' where the penetration depth of the light
5(200 A. The other form of this assumption is that
5/go» 1, where (0 is the BCS coherence length.

There are three characteristic energy regions:

region I: vFq «~ & 2A,
' 1/2

(qvF )
region II: 2A &co &25 1+

2
4

2 ] /2
(quF )

region III: 2h 1+

For normal superconductors where the gap is small
and 5/(04 1, region II dominates. In A -15, heavy fer-
mion, high-T, materials 5/go»1; therefore (q.vz)/6
serves as a small expansion parameter, as has been dis-
cussed by Abrikosov and Fal'kovskii, and also by Klein
and Dierker. ' The first authors studied two extreme lim-
its and an intermediate region: (i) the lower edge of region
II, (ii) the intermediate region co-(co —b, )

~ where the
behavior is already smooth, and (iii) the high-energy side
of region III, where the behavior is like that in a normal
metal ( -co ). These regions, however, do not cover the
region where the strong changes and the maximum have
been found. They showed that at the low-energy edge of
region II the Raman spectrum goes to zero like
q ln (co —4b ) as co~25 [see Eqs. (19) and (22a) in
Ref. 24]. Klein and Dierker ' studied regions I and III
by taking the q —+0 limit.

In what follows, region II will be ignored as it is so nar-
row that it does not contribute essentially to a spectrum
with finite experimental resolution. Thus in region II the
results obtained from region III are continued in a way
that the spectrum goes smoothly to zero as co~25.

In Appendix C the polarization functions n(q:ro) are

calculated for arbitrary co in order to demonstrate the
anomalous q behavior at the lower edge of region II [case
(i) in Abrikosov and Fal'kovskii's calculation (Ref. 24)]
and to show that these anomalies are absent in region III.

2. Plasma oscillation (L =0)

The plasma oscillations are the consequence of the
long-range Coulomb forces that occur in the zero-sound
channel. The Coulomb force can be added to the cou-
pling go introduced by Eq. (2.17}. As the short-range
force acts only between two electrons with opposite spins
and, on the other hand, there is no restriction on the spin
in the Coulomb interaction, therefore the strength of the
Coulomb field must be multiplied by 2, thus the replace-
ment

z z 2

go ~go+ (4.9)

where lim& Oy(q, ro}=y(co} can be directly determined
from Eqs. (C10)—(C13).

Using this notation and Eq. (Bl) one gets for small q
that

'2
gVF

n. (q;co)=
8 2

1 —g'[8(co)+D(co)] o
— uzp~(co)

Q2

(4.11)

From Eqs. (B1), (B3},and (B5)

2 2

1 g *[80(co)+Do(co)]= gg po ~ Io 1
4A

(4.12)

Introducing the plasma frequency co for a spherical Fer-
mi surface

8m
(4.13)

the last term in the denominator of Eq. (4.11)can be writ-
ten as 3ro~y(co)/b, . It is easy to show that for smaller

must be carried out and go =go =g" holds [see Eq.
(2.18)].

In order to get the response function m in channel
L =0 the small q expansions for the quantities A, B, C,
and D [given by Eqs. (C10)—(C13)] must be inserted in
Eq. (3.13).

Because of Eq. (2.18), such a combination of the A, B,
C, and D coefficient occurs in the numerator of m.

which disappears in the q —+0 limit [see Eq. (B2)—(B5)].
Thus, one can write

A (q, co) g* A (q, cu)—[B(q, co)+D (q, co)] 2g" C (q, c—o)

(quF )'

Q2 pox(q ~»

(4.10}
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energies 26 & co «co the ratio of these two terms has the
order of co /b, , thus there are no zeros for the denomina-
tor and as co~25, that ratio becomes even larger.

The plasma pole occurs at co=co, thus asymptotic for-
mulas valid for co/6 &&1 must be used. The asymptotic
expression for y can be obtained by a lengthy but
straightforward calculation based on Appendix C and the
result is

T

UFq
25 &m &25 1+

2 1/2

theory ' established in the q~0 limit is correct in that
limit. On the other hand, the Abrikosov-Fal'kovskii
theory deals with the first nonvanishing correction to
that; however, it is limited to a very small energy region
near the threshold

1 1 coy(co)- —g" Io 1—
24 g2 4&2

(4.14)

The continuum can be obtained by taking the imagi-
nary part of Eq. (4.11). It has already been mentioned
that the term proportional to g dominates the denomina-
tor, thus

(qu~) ImI [Bo(co)+Do(co)]y(co))
Imn(q; co).=

g2 [3(~2 /+2))2~~( )~2

«1
Q2 2

P

(4. 15)

therefore the contribution of channel L =0 is negligibly
sma11. It can be shown again that at the threshold co=26
the spectrum disappears as ImIO(z) is the only diverging
function.

4. Continuum in channels L %0

In Sec. IV B2 the continuum in the q =0 limit has al-
ready been calculated with couplings given by Eq. (2.19).
The first correction can be obtained on the basis of Eq.
(3.13) using the expressions (C9)—(C13). In expression
(C9) there is one integral over the Fermi surface to be
performed. The integrand is a product of the factor
(v~ q) and one of the functions Az, B2, Cz, and D2.
The latter ones also depend on q as their argument, z is
sensitive on q. Thus the integral either must be carried
out numerically or the assumption co —(2b) ))(uzq)
must be made. In the second case the arguments z and z'
of the functions I„can be replaced by their value with

q =0, as I„(n =0, 1,2) are slowly varying functions
everywhere except at ~-2h. The results for both q =0
and finite q are shown on Fig. 5. The calculated spectra
demonstrate that the Raman spectrum is not sensitive on
the momentum transfer q as far as (u~q) &&(2b, ) holds,
even for vFq as large as 0.2b. Finally, it must be men-
tioned that this calculation is valid only in region III not
very near the boundary line between regions II and III.
Since region II is very narrow in the limit (uzq) «(2b ),
we calculate the curve in Fig. 5 by extrapolating from re-
gion III to co=26.

V. SUMMARY

The theory of Raman scattering in a single band BCS
superconductor has been developed. For the A -15 com-
pounds and the high-T, superconductors UFq/6 is a
small parameter. It is found that the Klein-Dierker

where the identity So ' f dS(v~ q) =(uzq) /3 is also
used.

3. Continuum in channel L =0

or to rather high energies. That former region is almost
negligible for the high-T, materials but may be relevant
in cases where UFq/6 is not very small but still smaller
than unity. This theory covers the complete energy re-
gion provided that the momentum transfer is small.

For the sake of simplicity, this theory is completely ro-
tationally invariant; the Fermi surface is a sphere or a
cylinder, depending on the effective dimensionality of the
material. In that case the different angular momentum
scattering channels characterized by L =(I,m) or L =m,
respectively, are decoupled. Coupling between the chan-
nels occurs if any of the four assumptions (i)—(iv) made in
Sec. III is dropped. The generalization of this theory is
straightforward but tedious.

The calculated spectrum consists of two parts, a bound
state and a continuum co) 2b. The bound state is formed
in the L %0 channels for any sign of the coupling and it is
orthogonal to the condensed Cooper pair formed with
quantum number L =0. The binding energy depends on
an eff'ective coupling aL defined by Eq. (4.4). Even if this
coupling may take any value, the most typical ones are
around the value 0.1 or they are even smaller. In these
cases the binding energy co~ L is very small, e.g. ,
cos L /2A & 0. 1 if the dimensionless BCS coupling
pog'=0. 2. For pog *=0.1 the binding energy can be
even much smaller.

If the bound state has a finite lifetime, then a resonance
is formed. If the inverse lifetime or the experimental
resolution is larger than the binding energy then the reso-
nance does not split off the continuum. The peak in the
spectrum can be below or above 2A. In the spectra mea-
sured by Hackl or Nb3Sn, there is a very sharp peak,
which may be interpreted as a strong resonance. A close
analogy has been established between the present bound
states and the two-roton bound states' ' in liquid He
superfluid. In the latter case even for very low tempera-
tures where the roton lifetime is practically infinite, the
bound state is not separated from the continuum. As it
has been shown, the two-roton resonance has a finite in-
trinsic lifetime' as two rotons with zero total momentum
can always decay into a two-phonon state. Similar situ-
ations can occur in this case when the excited pair recom-
bines into a Cooper pair (e.g. , from state 1 = 1 to I =0) by
infrared or two-phonon emission. In Fig. 6 the spectrum
measured in V3Si (Ref. 21) with polarization direction Eg
is compared with the curve calculated on the basis of the
theoretical formula (4.2) using the parameter values
o.'L =0.5X10, 5=41 cm ', and the Lorentzian width
I /5 =0.17 is used to make convolution with the theoret-
ical curve. In this case 5 is also a fitting parameter as
precise tunneling data are not available.

The main difhculty with such fitting is that similar
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curves can be produced by assuming an anisotropic gap.
Polarization dependence can be expected in both cases as
in the former case the mixing ratios of different angular
momentum channels in the spectrum depend on the po-
larizations of the light (e, and e, ), while in the latter case
different Fermi surface regions are dominating.

The dependence of the calculated spectra on the
momentum transfer q is weak, but by increasing the
momentum transfer the binding energy and the weight of
the bound state in the spectrum gradually decreases. As
it is pointed out by Abrikosov and Fal'kovsky, ' ' by in-
creasing q the role of the zero-sound channel decreases
because of the appearance of the q-dependent term in the
energy denominator. An average over the momentum
transfer q results in further smearing of the spectrum. '

The excited pair with the quantum number L =0 but
finite q is coupled to the long-range Coulomb field which
then screens these excitations almost completely [see Eq.
(4.15)]. In the case of mixing of different channels the
effect of the Coulomb field can be more complicated.

Considering the high-T, material YBa2Cu307 &
the

spectrum with A
&

symmetry is very similar to the spec-
tra discussed here, ' but the existence of the low-lying
excitations well below the peak suggest a huge anisotropy
or alternatively, gapless regions (e.g., nodes). Using the
azimuthal quantum number m to characterize the pairs
in the quasi-two-dimensional case, the branch with m =0
is screened by the Coulomb field but the channel with

'cn

D0
O
C0
0

CL

m =4 shows also A
&

symmetry. The very different be-
havior for the 8, symmetry produces further puzzles,
and it has been suggested ' that the interband transi-
tions may play a role.

The role of the electron pair creation and the final-state
interaction in phonon dynamics' ' ' ' ' has already
been studied. In the case of coexistence of charge-density
wave (CDW) and superconductivity, Littlewood and Var-
ma pointed out the existence of a combined CDW and
superconducting amplitude mode that is electrically neu-
tral; thus it does not couple to the Coulomb field. That
mode shows up in the Raman spectra by hybridizing with
phonons.

In a recent paper by Zeyher and Zwicknagel studying
the electron-phonon interaction in superconductors it is
shown that the phonon spectra contains a bound state
that is due to the phonon mediated electron-electron in-
teraction in the zero-sound channel; thus it must have ex-
citonic character.

Overdamped excitations in the zero-sound channel
may exist in nonsuperconducting solids also, when the
electron distribution is rearranged in the momentum
space and the long-range charge neutrality is maintained.
Such a situation may occur, e.g. , in multivalley semicon-
ductors ' and, in principle, in metals also. The over-
damped nature may be due to impurity scattering and, in
the former case, due to intervalley phonon scattering
also. The effect of impurities on the Raman spectra has
recently also been discused by Fal'kovsky ' but only the
channel L =0 is treated in detail.

In the study of superfluid He, collective excitations
have been measured by ultrasound absorption. Unfor-
tunately, these studies give detailed information on the
collective amplitude modes but up to now much less in-
formation is obtained on the continuum.

In summary, a detailed theory of the Raman spectrum
is presented for small but finite momentum transfer and
for the complete energy interval. The role of the final-
state interaction is discussed in great detail. In order to
clarify the role of final-state interaction, further careful
experimental study of the polarization dependence of the
Raman spectra is required and independent measurement
of the gap would also be very helpful.

Note added in proof. A fit similar to the one given in
Fig. 6 has been made for the V3Si data of Ref. 21 but for
a polarization direction exhibiting A

&
+E symmetry.

The parameters 26=42 cm ' and I /b =0.15 are similar
but e= 10 is much smaller. That difference is
reflecting the different intensities at co~36. This polar-
ization dependence of a can be regarded as a direct evi-
dence for the importance of the anal state interaction-

l I

30 40
I I I ) ~

5Q 60 70 80 90 100
Roman Shift (cm )

FIG. 6. The experimental Raman intensity measured on V3Si
(Ref. 21) in the Eg symmetry is fitted with theoretical Rarnan in-
tensity (4.2). The momentum transfer of the light is neglected
(vFq -0). The value for the superconducting gap is 2b =41
cm ', the broadening is r /6=0. 17, and strength of the final-
state interaction a =0.005.
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APPENDIX A: CALCULATION OF THE SINGLE LOOPS

E++E b, g—g++E E+
A —+-

2E+E— co„+(E++E )z

E+ +EB~
2E+E co—„+(E+ +E )

iconE++(E +E+ )g+e
&2E E co„+(E +E )

(A4)

(A5}

(A6)

where

—(g2+g2 )1/2 (Al)

gg=sg+ /2=ghvp q/2 . (A2)

The integrals over the k spaces are transformed to en-

ergy integrals as follows:

', fd'l=p, fdgf" (A3)

The Fourier transform of the matrix elements A, B, C,
and D are needed in the detailed calculation. The
definitions are given by Eqs. (3.9) and (3.10}. The Green's
functions are given by Eqs. (2.20) and (2.24). The calcula-
tion of the simple loop contains one summation over co„.
The following notation is used:

E+ +E E+E +g+g
2E+E co—„+(E+ +E )

(A7)

(q'vF)
F(q, ro) =Fo(co)+ poIi2(q, co)+0 (q )

Q2
(81)

for F= A, B,C,D. The q =0 limit can be expressed in
terms of the integral Io defined by Eq. (4.1) and the gap
integral (2.25). The results are

APPENDIX B: INTKGRALS IN q =0 LIMIT

In the quantities A, B, C, and D the analytical calcula-
tion is made to the real axis i~„~co+i5 Th. e calcula-
tion of the integral for finite q is discussed in Appendix C.
The results can be expanded as

where a spherical or cylindrical Fermi surface is as-
sumed. In the general case the integral is taken over the
weighted Fermi surface element dS/v~. In this case v~ is
constant and So is the area of the Fermi surface. (The
difficulty in the calculation is that the product vz q varies
over the Fermi surface. )

The single-loop calculation contains an integral of type
(A3), and we list the integrands for A, 8, C, and D. Only
the even terms in q are kept because the odd terms drop
out in the integration. All the thermal factors are given
in the zero-temperature limit.

Ao = —
—,'poIo(z),

&o = ,'poIo(z»-
1 co

Co = — poIo(z),
4 2&

(82)

(83)

(84)

D = +— —1 poI(z),1 1 N

4 p 0 (85)

where z =1—co /4h . The function I0 defined by Eq.
(4.1) has the following analytical forms:

2 arcsin&1 —z, 0 ~ z ~ 1
&z (1—z)

l&arcsin& —z+, z (0 .
&—z(1 —z)

'

2
Io(z) = arcsin+z —1, 1 & z

&z(z —1)
2

&—z(1 —z)

(86a)

(86b)

(86c)

APPENDIX C: CALCULATION OF FUNCTIONS
A, B, C, AND DFOR SMALLq

In the following calculations integrals of type
and

I, (z) = [ 2+Io(z)]—1

1 —z
(C2a)

I„(z)= dx
QO 1 1

2)n+1/2 + 2 (C 1) I2(z) = 1

1 —z
4 2 1+ Io(z)
3 1 —z 1 —z

(C2b)

appear. The integral Io(z) has already been given by Eq.
(4.1} and expressed by Eqs. (86a)—(86c}. The integrands
of the integrals with n =1,2 can be expressed by the
function Io(z}due to recursion equations as

The functions A (q, co}, B(q,~}, C(q, cu), and D(q, co)
can be obtained by the analytical continuation of expres-
sions (A4) —(A7) by replacing co„—+ —co2, thus, for exam-
ple, the function 3 (q, co) is
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dS E++E S2—( g++E+E
so 2E+E (E +E

4

J =
—,
' [Io(z) I—o(z')],2h

(C14)

where the notations given by Eqs. (Al) —(A3) are intro-
duced.

The next step is the expansion in (vzq)/b, that leads to

1

(E +E )2 —~2

—+
CO

1

b, +g +(vz q) b /co —co /4

(vF q) 6 1

co b +g (v~ q) b, —/co

E-+E+ 1 1 (vF q)' 3 (vF q)'~'
2E E+ E 4 E3 8 E5

(C3)

(C4)

and

+
3 (vz'q) 8, (vF'q)

1 1 1

4E 'E (C5)

where the terms odd in g are not written out, because
they will drop out in the integration; furthermore,

0+4 =k' ,'(v F-q)' ~—— (C6)

Q2 2

E+E =E 1+—,'(vzq)
E

(C7)

Q2
E++E =2E+ —,'(vzq)

E
(CS)

F(q, co)= J F(q, a))=F0(co)
dS
So

ds (q vF)
+Po F2(q, co) .

So
(C9)

The integrals with respect to g can be expressed in
terms of the functions I„(n =0, 1,2). By taking the aver-

age over the Fermi surface of the expansion given by Eq.
(Bl) for function F= A, B,C,D the following form is ob-
tained:

where z =1+s p —co /4b, and z'=(1 —s p ) with
the notations p=(vz q)/(uq) and s '=vzq/co. The gap
integral is expressed by the coupling g' [see Eq. (2.25)].

Abrikosov and Fal'kovskii studied the region
2b, &co«26 [1+(qual) ]' [case (i)] with special care.
The functions Io with variable z' have regular behavior
for u~q/co=s '@&&1 as the function Io given by Eq.
(B6a) is regular at z'= 1.

In the functions I„with variable z, however, there are
singularities because the integrals that define these func-
tions are taken over a singular expression [see the discus-
sion following Eq. (4.7)]. The singular behavior occurs
around z =0 or co =46, [1+(q vz) /co ], and because of
Eqs. (C2a) and (C3b) the strengths of the singularities are
determined by function Io(z). In the region studied by
Abrikosov and Fal'kovskii 4 the pole occurs for p ((1.
For larger p values the argument of the function Io can
be approximated by

s p, -(u~q) p /(4b. ) &&1 .

According to Eq. (B6a) there is a singularity like (qp)
in function Io. In dimension d =3 with spherical Fermi
surface, the integral with respect to d p results in a loga-
rithmic term ln(u~qp)/v~q. As the preceding approxi-
mation is not valid for small p, therefore, a lower cutoff
must be applied in the energy range v~q p, —[co /
(4b, ) —1]' . The upper limit of the integral is @=1,
thus the contribution is proportional

Upq
1

2 $
&& 1

q (~2/4+2 1 )I/2

which is not singular in q for small ~, as the very small q
values are excluded from the region studied. That result
holds for the real part.

The imaginary part, however, is restricted to the small

p values where Eq. (B6c) holds. In this case the argu-
ment of function Io can be approximated by
(co /4b, 1). The interval of t—he integration with respect
to p is proportional to (co /4b 1)'i (vzq), thus the —re-
sult is proportional to b, /(u~q)))1. Furthermore, the
most singular part of the final expression of the imagi-
nary part of the function ~ is proportional to the imagi-
nary part and the inverse of the square of the real part of
Ip. That is the origin of the

The result of a straightforward algebra is

A2(q, co) = —
—,'I, (z)+ ,

', I2(z) J, ——
B2(q, co) = —,'Io(z) ——', I2(z ) —2J,

C2(q, co) = — [—,'I, (z) —
—,', I2(z)+J],2v'2

D2(q, co) = —,
' A2(q, co),

(C10)

(C12)

(C13)

(u~q )

q ln
co /(4&') —1

'
1 j2

behavior. In the channel L =0 with the additional q
term the result given in Eq. (17) in Ref. 24 can be ob-
tained. It must be emphasized that in Ref. 24 the
Coulomb field is not treated.

Finally, it is worthwhile to point out that in region III
the q~0 limit can be taken as the variable z remains
finite.
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