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VVe report the results of large-scale Monte Carlo and transfer-matrix studies of a model lattice-
gas Hamiltonian that has previously been introduced to study the oxygen ordering responsible
for the orthorhombic-to-tetragonal transition in YBa&Cu306+ . We analyze the data using
finite-size scaling to obtain the phase diagram and critical exponents. At high temperatures
we find qualitative agreement with the cluster-variation method. However, at low temperatures
we find only second-order transitions, in disagreement with the cluster-variation method. The
critical exponents found are consistent with the universality classes of the d=2 Ising model and
the XY model with cubic anisotropy. Consequently, any experimental evidence of a first-order
transition for YBa&CusOs~ would imply that the model of Wille et al. [Phys. Rev. Lett. 60,
1065 (1988)] needs to be modified to be directly applicable to this material.

I. INTRODUCTION

With the discovery of the first high-temperature
superconductorsi and of superconductivity above liquid-
nitrogen temperatures2 in the copper-oxide based ceram-
ics RBa2CusOs+ (where R is a rare-earth element and( z & 1) possibilities of widespread commercial ap-
plications of superconductivity have emerged. s However,
before commercial uses of these materials can be devel-

oped, reliable techniques are needed for large-scale man-
ufacturing. The oxygen content is one important aspect
that must be understood before this goal can be accom-
plished.

Since the temperature at which the superconduct-
ing transition takes place depends critically on the oxy-
gen concentration, 4 7 it is important to understand the
phase diagram for the oxygen ordering that occurs in the
copper-oxide basal planes. If the oxygen content is low

(z ( 2) the material has a tetragonal phase and is not su-

p erconducting, whereas if
&
( z & 1 the superconducting

properties can depend critically on the oxygen ordering,
as well as on the oxygen stoichiometry. Thus the ceramic
with z =

2 and with yttrium as the rare earth has a te-
tragonal phase obtained by rapid quenching from high
temperatures and a superconducting temperature near
0 K, whereas the material with the same oxygen concen-
tration, but obtained with a gettering technique, has an

orthorhombic structure and a superconducting transition
of about 60 K.s At larger 0 concentrations, z 1, the
material is orthorhombic and has a superconducting tran-
sition near 90 K. The experimental evidence for both the
tetragonal and orthorhombic phases comes from x-ray
and neutron studies, as well as electron diffraction and
microscopy. ' In both the orthorhombic phases, the
basal Cu-0 planes have been found to contain parallel
chains of 0 atoms.

When oxygen chains form in the basal planes of the
RBa2CusOs+v materials, the symmetry between the two
axes of the planes is broken. For this reason theoret-
ical models for the high-temperature tetragonal to or-
thorhombic transition in RBaqCusOs+ have assumed
that the chain formation drives the transition. Most
theoretical treatments have assumed that the relevant
physics is contained solely in the basal planes, s 's al-

though Khachaturyan et al. have argued that, to
correctly describe the ordering process, the full three-
dimensional nature of the materials must be used.

Lattice gas models can be constructed that re-
produce the experimentally observed structures of
RBa2CusOs+ . These are the tetragonal phase with
z 0, the orthorhombic structure with z 1, and the
orthorhombic "double-cell" phase, which has z 2. In
addition, the nature of the transitions in the lattice-gas
model (whether the transitions are first order or contin-
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uous) should correspond to the nature of the experimen-
tally observed transitions.

In this paper we study the two-dimensional lattice-
gas Hamiltonian, which was introduced by Mille et
al. iz is zz z4 for the oxygen ordering in the basal planes
of YBa2CusOs+~. We investigate this model using both
transfer-matrix and Monte Carlo, techniques. The rele-
vance of this particular model to the physical materials
has recently been reviewed. zs zs Previous studies of this
model have used the cluster-variation method. is z How-

ever, it is important to fully understand the phase dia-

gram obtained from this model through nonperturbative
methods such as Monte Carlo and transfer-matrix tech-
niques, so that an accurate comparison to experimental
data can be made. In this paper we have concentrated on
the critical properties, both the phase diagram and crit-
ical exponents, of the model with the goal of comparing
the results obtained from transfer-matrix, Monte Carlo,
and cluster-variation methods. Recent independent work
has applied transfer-matrix methodszs and Monte Carlo
methods (without obtaining the critical exponents)z
to this model.

In Sec. II we describe the lattice-gas model and its rel-
evant ground states. In Sec. III we give the details of our
Monte Carlo simulations and the finite-size scaling used
to analyze the Monte Carlo data. Section IV contains the
details of the transfer-matrix calculations and the finite-
size scaling relations used to analyze the transfer-matrix
data. Section V contains our Monte Carlo and transfer-
matrix data, the analysis of this data, and our results for
the phase diagrams and critical exponents. Section VI
presents a discussion of our results and conclusions.

~ 8

FIG. 1. The lattice in the basal CuO planes, and the in-
teractions in the lattice-gas Harniltonian, Eq. (1), are illus-

trated. The open circles represent Cu atoms, and the num-

bered squares represent the 0 sites. The nearest-neighbor
interactions (INN) are shown as thin diagonal lines, the next-
nearest-neighbor interactions through a copper (@c„) and
through a vacancy (I v) are shown respectively as zig-zag
lines and thick solid lines. The numbering of the eight sublat-
tices that define the Monte Carlo order parameter are shown.
The arrows marked A and B show directions for the transfer
matrix. Direction A would have, for example, the layer of
sites along the diagonal numbered 7-3-6-2-7- interacting with
the layer 1-5-4-8-1-. Direction B would have, for example,
the layer of sites along a vertical zig-zag numbered 1-7-3-8-1-
interacting with the layer 2-5-4-6-2-. This lattice is rotated
by 45' with respect to those shown in Fig. 2(a).

metric formula YBazCusOs+

II. MODEL AND GROUND STATES 1 - g—) c;= —,
N ' 2' (2)

We have studied the lattice-gas model with lo-

cally anisotropic next-nearest-neighbor interactions in-

troduced by Wille et al. is to describe ordering of oxy-
gen atoms in the Cu-0 basal planes of YBazCu30s+~.
These planes consist of a square lattice of copper atoms
with lattice constant a and a basis of two oxygen sites at
(a/2, 0) and (O, a/2). The Hamiltonian is

@+a = CNN ) cia @cu ) cia
{NN} (NNNCu)

—4'~ C~ C&
—P Cg .

(NNNvI

Here the c; are the site-occupation variables for the 0
atoms; c; = 1 if site i is occupied, and c; = 0 if site i
is empty. O'NN is the nearest-neighbor (NN) interaction
energy, and C~„and 4~ are the next-nearest-neighbor
(NNN) interaction energies, with and without a Cu atom
between the 0 sites, respectively. The sums run over all
the indicated pairs of sites. The oxygen chemical poten-
tial is p, and N~ is the total number of 0 atoms. The
basal-plane lattice and the interactions in the Hamilto-
nian are shown in Fig. 1. The oxygen concentration in
the basal planes, 0, is twice the factor z in the stoichio-

where N is the total number of 0 sites.
As discussed in Sec. I, the experimentally observed

phases are the tetragonal phase with 0 0, the "double-
cell" orthorhombic phase with 0 4, and the or-
thorhombic phase with 0 z. For brevity we shall refer
to these phases as tetra-0, ortho-4, and ortho-&, respec-
tively. The corresponding orthorhombic ground states
are depicted in Fig. 2(a). Both of these states are char-
acterized by parallel chains of 0 atoms connected by Cu
atoms. These ordered states can be described by decom-
posing the original lattice of 0 sites into eight interpene-
trating sublattices, as shown in Fig. 1. The ordered state
ortho-& corresponds to four Riled sublattices and four
empty ones. This "antiferromagnetic" state is twofold
degenerate. The ordered state ortho-4 corresponds to
two filled sublattices and six empty ones. There are four
equivalent pairs of sublattices that can be filled, mak-
ing this state fourfold degenerate. This decomposition
is used in defining Monte Carlo order parameters, as de-
scribed in Sec. III A below.

The Hamiltonian and the interaction constants, Eq.
(I), must be chosen to reproduce the observed phases.
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This was achieved through a Landau-Lifshitz group-
theoretical analysissi ~ for this model, which identifies
those ordered states compatible with the symmetry of the
model that can be reached from a disordered state by a
second-order (continuous) phase transition. Our analy-
sis is similar to that of de Fontaine et al. ;i however, we

exactly obtain the ground-state diagram in terms of the
oxygen chemical potential y, . Depending on the values of
the interaction constants, a number of different ground-
state diagrams may result. The one that corresponds to
the experimentally observed phases is shown in Fig. 2(b).
It acts as a guide to the low-temperature behavior for
the Monte Carlo and transfer-matrix calculations. This
ground-state diagram is realized only for repulsive NN in-

teractions, 4NN & 0, with NNN interactions in the ranges
C'c„) 0 (attractive), and —1 & C't /~4NN~ & 0 (weakly
repulsive). In the following we shall use dimensionless
units such that O'NN = —1. The calculation also shows
that an infinite number of states with parallel oxygen

chains and 0 & 4 are degenerate with the ortho-4 and
tetra-0 states exactly at their disorder-order transition.
Consistent with these results we have chosen the NNN in-

teractions 4C„——0.5 and CI~ ———0.5, in agreement with
Wille et a/. Preliminary finite-temperature transfer-
matrix data support the expectation that, within the
range of interactions consistent with the observed phases,
the qualitative features of the phase diagrams do not de-

pend on the particular values of the constants. These re-
sults and the ground-state diagrams for different values
of the interaction constants will be given in a forthcoming
paper. 35

A Ginzburg-Landau effective free-energy calcu-
lations'sz indicates that, if continuous, the disorder-
order transition tetra-0 to ortho-& and the order-order
transition ortho-~ to ortho-z both should belong to the
Ising universality class. zs A similar calculation indicates
that the disorder-order transition tetra-0 to ortho-4i most
likely belongs to the universality class of the XY model
with cubic anisotropy. ~s The phase diagram is similar to
that of the Ashkin-Teller model. 8 These results are
supported by our scaling analyses, presented in Sec. V.
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FIG. 2. (a) The ground-state configurations in the basal
Cu-0 planes, corresponding to the experimentally observed
phases ortho-- and ortho-- are shown. Cu atoms are denoted

2
by small open circles, 0 atoms by solid squares, and empty 0
sites by open squares. For each state the corresponding unit
cell on the Cu lattice is drawn, and the energy per 0 site is

given. Notice the characteristic chains of alternating 0 and
Cu atoms. (b) Ground-state diagram showing the transition
values of the chemical potential, p, for the ground states when

4c„) 0 and —1 & 4v & 0 (with 4NN = —1). The transi-
tion values of p, are given as functions of 4C and 4~. The
ortho-- state is similar to the ortho-~~ state except that the
0 vacancies and atoms are interchanged. The tetra-1 state
corresponds to the completely %lied lattice, just as the tetra-
0 state corresponds to the completely empty lattice. The
tetra-1 and ortho-- states are not experimentally observed in

YBaqCuq06+ .

III. MONTE CARLO CALCULATIONS

A. Simulations

In our Monte Carlo calculations we have made use
of standard importance sampling methods. s Most
of the calculations were performed using single-spin-fiip
Glauber dynamics, where the oxygen concentration 0 is
a function of T and p. We have also performed some
Monte Carlo calculations using Kawasaki dynamics, i.e. ,

with 0 kept constant during the simulation. This was
done by only allowing the oxygen atoms to jump to va-

cant nearest- and next-nearest-neighbor sites on the lat-
tice, while keeping their total number fixed. We have
studied lattices with periodic boundary conditions for
4 & L & 128. L is defined along the unit vectors of the
Cu unit cell and measured in units of its lattice constant
a, which is the next-nearest neighbor distance between
oxygen sites. Thus, the total number of oxygen sites is

N = 2I.~.

The parallel chains of 0 atoms, discussed in Sec. II,
are prominent features of the observed configurations.
Even in the disordered state, rather long fragments of
such chains are seen. (At low temperatures, kgb T & 0.05,
these chains may span the whole lattice, even for the
largest systems we have studied, L = 128.) Because of
these long chain fragments, long runs are needed to get
good statistics in the critical regions. Data were obtained
with 5 x 10 to 5 x 10 Monte Carlo steps per oxygen site
(MCSS), using every tenth generated configuration for
calculating averages. For the transition from the disor-
dered phase tetra-0 to the ordered phase ortho-4, we have
also done some calculations using the block-distribution
(cumulant) method42 4s [see Eq. ( 9)] for analysis of the
critical point. For this analysis we used much longer runs:
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2 x 10 MCSS for L & 32.
In the Monte Carlo simulations the internal energy, U,

the specific heat, C, the oxygen concentration, 0, and the
sublattice concentrations, 8~, (all quantities normalized

per 0 site) are given by

8 = L-«"f( ) - ti' asL~oo, t$0, (10)

Near T, one can write finite-size scaling relations for suf-
ficiently large I,

U = —('M),
1

N
C= „,((U') —(U)'),

L~g g(~)
L " for t =0,-t ~ as I ~oo, t$0,

(4)

L~/ph( )
L " fol t = 0,

as L~oo, t$0,

n = 1, 2, . . . , 8.

The sublattices n are indicated in Fig. 1.
In terms of the sublattice concentrations 8 we have

defined the two order parameters

where Co is the nondivergent contribution to the specific
heat. The critical behavior can also be determined by
comparing cumulants and moments for lattices of size L
with lattices of size L' = bL At T.„where U = U', one

42, 43

UL, = Ubr, =U',

8i]z ——
4 8i+8z+03+04 85 Os 87 Os

and
and

ln(OUi, L, /OUI, )U.
P )lnb

(14)

8i(» = —,
' (8i+8z) —(8s+84)+(8s+8s) —(o-7+o-s),

(7)

where the subscript z stands for the ortho-z phase, and
the subscript 1/4 for the ortho-4i phase. The order pa-
rameter 8i~z is unity in the ortho-z phase, zero in the

disordered phase tetra-0, and 0.5 in the ortho-4 phase.
On the other hand, 8i~q is unity in ortho-& and zero in

both tetra-0 and ortho-z. In this sense, 8i~4 is a "good"

order parameter for the ortho-4 phase. The susceptibil-
ity conjugate to 8i~4 is

N

B
(8)

where Oi~4 is given by Eq. (7) without the absolute val-
ues. An analogous definition for gq~2 is also used. Fol-
lowing Binder, we have also used the cumulants

(o-')~
3(0')'

for the diA'erent order parameters to obtain the critical
exponents v and P [Eq. ( 14) and (15)j. UL, has previously
been used with good results for a similar model. 44

B. Finite-size scaling relations

The behavior of finite systems near the critical tem-
perature T, of the corresponding infinite system can be
analyzed by finite-size scaling. ' If the infinite
system has the critical exponents, as usually defined, the
behavior of the finite system is expressed in terms of
a scaled temperature z = tL ~" where t = ~1 —T/T,

~

= —ln ((8')i,L, /(8')I, )/ln b. (15)

Because of correction terms to finite-size scaling, it is nec-
essary to extrapolate the results to the limit (ln b)

i ~ 0.

IV. TRANSFER-MATRIX CALCULATIONS

A. Transfer-matrix formulation

We have performed transfer-matrix finite-size scaling
calculations to complement the Monte Carlo simulations,
and especially to determine the order of the transitions
at low temperatures. In the usual fashion, strip-shaped
systems of infinite length and finite width M were parti-
tioned into transverse layers. The results presented here
were obtained with the partitioning, labeled A in Fig. 1,
which leaves all three ground states invariant under a 90'
rotation of the lattice. (For partitioning, B oxygen chains
parallel and perpendicular to the strip direction have dif-
ferent energies, leading to large finite-size eÃects. )

The full transfer matrix T, which is nonsymmetric, was
block diagonalized utilizing the invariance of the Hamil-
tonian under two-step translations in the transverse di-
rection. The symmetric block Ts and the antisyrrmnetric

block TA, the only two blocks whose symmetries corre-
spond to the ordered phases ortho-~2 and ortho-4, were
diagonalized with the NAG library subroutines F02AFF
and F02AG F. Four of the eigenvalues are of particular
interest. The largest eigenvalue of T, and of the full
transfer matrix itself, is A~~. By virtue of the Perron-
Frobenius theorem it is positive and nondegenerate. The
other three are A& and A3, second and third largest eigen-

values of T, respectively, and A+~, the largest eigenvalue
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of T . The two eigenvalues A& and A& alternate as the
second largest eigenvalue of T. These four eigenvalues
define the following three length scales.

(16)

is the largest length corresponding to T . It diverges
exponentially with M in both the ortho-4 and ortho-z
ordered phases.

ps
(z ——

I ln

is the second largest length corresponding to TS. It re-
mains small and independent of M in both the ordered
phases, but peaks near the transitions involving the or-
dered ortho-4 phase.

is the largest length corresponding to T . It uniquely
characterizes the ortho-& phase, where it diverges expo-
nentially with M, whereas it remains small and indepen-
dent of M in the ortho-&~ ordered phase, as well as in

the disordered tetra-0 phase. At the tetra-0 to ortho-&
transition (i is the overall dominant length scale. At
the tetra-0 to ortho-& transition (P and (is are of the
same order of magnitude, with /+i generally dominant.
(However, at temperatures below k~T=0. 1, (is becomes
dominant for M=12.)

For the largest system size, M = 16, an entire block of
the transfer matrix could not be stored in the available
computers, so an alternative numerical method was im-

plemented. By using the structure of the full transfer ma-

trix as given by generalized direct matrix products, 4s ~s it
was efficiently constructed when needed using scatter and
gather operations on the Cyber 205 and ETA-10 comput-
ers. The transfer matrix was repeatedly multiplied by a
random starting vector to obtain the largest eigenvalue
and the associated left and right eigenvectors. The next
largest eigenvalue was constructed in a similar fashion.
This procedure gave the largest length scale and 0, and
their derivatives were taken numerically. (This method
does not directly provide information about the symme-
try of the eigenvectors, but the results for M = 8 and 12
compared very well with those obtained with the method
described above. )

B. Finite-size sealing relations

In the finite-size scaling theory for critical phenomena
a second-order phase transition is signaled by the linear
divergence with strip width M of the appropriate dom-
inant length scale, g(M). A finite-size estimate for the
critical values of the nonordering fields is given by the

yz + 1
/

ln , / /
ln

( v VK((M) ) t' M i
(2o)

The notation v denotes the scalar product with a unit
vector v in K space. In the asymptotic limit the gradi-
ents for M and M' become parallel, so that the estimate
obtained from Eq. (20) is the same for all v that are not
strictly orthogonal to the gradient. (In other words, yT
is invariant under independent rescalings of the fields. )
However, for finite systems the estimate depends on the
direction of v.ss We have chosen v to minimize this de-
pendence. The resulting vectors v are, in fact, finite-size
estimates of the relevant scaling field at each point on
the transition line. (This estimation method differs from
that described by Barber, s but for these relatively small
systems we find our estimate more robust. ) To avoid nu-

merical differentiation for M & 12, we have related the
field derivatives of ( to matrix elements of certain opera-
tors, as described in the Appendix, Eq. (28). For M = 16
we used numerical differentiation, since the blocks of the
transfer matrix were too large to store in the available
computers.

First-order transitions to the ortho-4 phase have been
sought by two difFerent scaling methods. First, the max-

imum of the second largest syrninetric length scale, (~,
which peaks near the transition, was monitored for lin-

ear divergence with M to detect a possible tricritical
point. This method is quite accurate for systems with

a relatively simple eigenvalue spectrum. s 5 However,

in complicated systems, such as the present one, degen-
eracies and large finite-size effects may obscure the choice
of the proper secondary length scale.

Since a first-order transition corresponds to a discon-
tinuity in 0, it is signaled by an exponential divergence
with M in the maximum value, yo ", of the nonordering
susceptibility. Finite-size scaling of y& therefore con-
stitutes an alternative method to identify a first-order
transition. Since the nonordering susceptibility contains
contributions from a large number of microscopic lengths
in addition to the proper secondary length scale, this
method is less sensitive than the direct finite-size scaling
of the secondary length. However, it is more robust in the
sense that it does not require unambiguous identification
of the appropriate length scale. For systems to which

both methods have been applied, they yield consistent

Nightingale criterion,

((M) g(M')
M M'

For each of the three different transition lines in the
present model g represents the appropriate characteristic
length scale, as discussed in Sec. IVA above.

The thermal eigenvalue, yz = v i, is related to the
asymptotic scaling at the critical point of the gradi-
ent 7'K((M) of the dominant correlation length with
respect to the nonordering fields, K = (P, Pp), where

P = I/kIiT, as
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results. A detailed discussion and comparison is given
by Rikvold, s I where the following scaling relation is
obtained:

&o (M)
M

A~exp ~ Trr(Tp)), , T(TM
Xe H

+ A M ", T=T
, A&(M), T&T

Here y&s is the regular part of ye, o(T, p) is a surface
tension associated with phase coexistence below the mul-
ticritical temperature T~, and g = 2 —2/v~ + d is the
correlation-length exponent for a d-dimensional system,
corresponding to an approach to the multicritical point
parallel to the line of critical points. The factor Az may
depend logarithmically on M, due to coupling to the spe-
cific heat. For non-Ising like systems its M dependence
might be even stronger, although we see no signs of this
for the present system. To avoid numerical differentia-
tion for M ( 12, we expand ge in matrix elements of
the concentration operator e.s The explicit expression
is shown in the Appendix, Eq. (29). For M = 16 the
derivatives were taken numerically, as discussed above.

V. RESULTS

A. Phase diagrams

Our phase diagrams, obtained by finite-size scaling
analysis of data from Monte Carlo and transfer-matrix
calculations, are shown in Fig. 3 and Fig. 4: projections
onto the O, T plane in Fig. 3 and onto the p, T plane
in Fig. 4. The Monte Carlo simulations were performed
with both Glauber and Kawasaki dynamics on systems
with L between 8 and 128. Transfer-matrix calculations
were performed with strip widths M/M' = 4/8 and 8/12,
and two points with 12/16. (Only data for M/M' = 8/12
and 12/16 are shown in Fig. 3 and Fig. 4.) For compar-
ison, Fig. 3 also includes results from a cluster-variation
calculation. is Experimental data from Specht et al swere.
used to establish an estimated temperature scale along
the right-hand vertical axes. To emphasize the consis-
tency of the experimental data and the model, two inde-
pendent data points from McKinnon et al. were also in-
cluded, without any further parameter adjustment. The
Monte Carlo and transfer-matrix results are in excel-
lent agreement with each other, and with the experimen-
tal data. Three lines of second-order phase transitions,
merging at a multicritical point, separate the disordered
tetra-0 phase and the two ordered phases, ortho-- and

1
)

ortho--.2'
Also shown in the phase diagrams are the locations of

the non-scaling peaks in the Monte Carlo specific heat,
which correspond to disorder lines in the model. The
half-width at half maximum of the nonscaling specific
heat peak is also shown in Fig. 3 and Fig. 4. The dis-
order line in the disordered phase is that observed by
de Fontaine et al. , but they did not show the loca-

tions of the disorder lines in the phase diagram. Indica-
tions of a disorder line have also been seen in thermo-
dynamic experiments. %e have been able to determine
that these disorder lines are due to the formation of long
chains of 0 atoms, and have obtained excellent agree-
ment between the Monte Carlo results for the disorder
lines and a treatment combining the methods of mean-
field and one-dimensional systems for this model. s~ This
provides further evidence that the disorder lines are due
to the formation of chains, and that these chains order
on the critical curve.

Finite-size effects are quite small for both the transfer-
matrix and Monte Carlo results in the p, T plane, except
near the multicritical point where the three transition
lines meet. In the O, T diagram the finite-size effects
are considerable at low temperatures. In the transfer-
matrix results this is due to the very large nonordering
susceptibility, ge. In the Monte Carlo calculations the
large finite-size effects at low temperatures are due to the
formation of oxygen chains that span the entire lattice,
even for the largest systems studied, L = 128. At these
low temperatures, once the chains are forined, there is
only a very small probability that there will be sizable
fluctuations from this state; i.e., the relaxation times
are very long. At temperatures down to k~T 0.15
the results from Kawasaki dynamics agree with the re-
sults from Glauber dynamics for the disorder-order tran-
sitions. However, with Kawasaki dynamics we are un-
able to obtain the order-order transition, due to the large
finite-size effects and the long relaxation times. To search
for first-order coexistence lines, we also performed runs
at low temperatures using Kawasaki dynamics. How-
ever, once the system has arranged itself with chains go-
ing through the whole sample, the probability for a single
oxygen atom to jump is very small, thus the system seems
frozen in. With Glauber dynamics, we also find that the
chains can span the whole sample at kgyT 0.1. How-
ever, the nonconservation of 0 in this dynamics allows
larger fluctuations in the chain length. The long relax-
ation times at low temperatures could be misinterpreted
as metastability associated with a first-order transition.
(Bear in mind that for a finite system there is no phase
transition, and therefore no real critical behavior. ) Con-
sequently, whenever the relaxation time is large, finite-
size scaling of the Monte Carlo datass or use of the Monte
Carlo renormalization group methods4 is required to un-
ambiguously identify the order of the transition.

Qualitatively, the phase boundaries are consistent with
those obtained by Wille et al. s and Kikuchi and Choi,
using the cluster-variation method (CVM). The differ-
ences between the CVM critical temperatures and our
nonperturbative results are concentration dependent and
range from 5% to 21% for the transition between the dis-
ordered tetra-0 and the ordered ortho-& phases. Con-
sequently, in order to adjust the interaction constants
to compare with experimental values, one should use
Monte Carlo or transfer-matrix data rather than CVM
calculations. 24 The CVM results indicate that both the
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FIG. 3. The phase diagram in the 0, T plane for interactions O'NN = —1, 4c = 0.5, and C ~ = —0.5 is shown.
'

Three second-
order lines, separating one disordered phase (tetra-0) and two ordered phases (ortho-~ and ortho-~), meet at a multicritical
point. Also shown are experimental points due to Specht et al. (solid circles), which are used to establish an estimated
temperature scale along the right-hand vertical axis. Two experimental points from McKinnon et aL (Ref. 60) (open circles)
were also included without further parameter adjustments. The relative error in the concentration determination for these
latter points is of the order of +0.005, approximately equal to the symbol size (Ref. 60). Monte Carlo results are presented
from finite-size scaling analysis of data, using both Glauber dynamics (x) and Kawasaki dynamics (0). The location (e) and
half-width at half maximum for the nonscaling specific heat peak from Monte Carlo data is shown, giving the location of the
disorder lines. The solid line is the transfer-matrix results from 8/12 scaling. Two data points for 12/16 scaling are also shown

(roman crosses). The dotted lines are CVM results of Wille et al. (Ref. 18) for exactly the same interactions.
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tetra-0 to ortho- I (Refs. 18 and 27) and ortho-4 to ortho-

&
(Ref. 27) transitions are of second order, in agreement

with our results (as discussed in Sec. V B).However, they
predict that the transition from tetra-0 to ortho-4 is first
order. In contrast, our detailed scaling analysis of
the Monte Carlo and transfer-matrix data indicates that
all three transitions are of second order, at least down to
k~T 0.025 (corresponding to approximately 90 I& on
the estimated temperature scale). The quantity

g,'(M + 4) (,'(M)
M+4 M (22)

B. Transitions involving the ortho--' phase

Transfer-matrix data for the critical exponent, v =
yT, [Eq. (28)], obtained with strip widths M/M = 4/8

which indicates the scaling behavior of the second largest
symmetric length scale, is shown versus T in Fig. 5.
For a first-order transition, 6(z is large and positive as
M -+ oo, as discussed in Sec. IVB. We find that b,(z
is negative for low T, and that the small positive values
near the multicritical point at knT 0.22 decrease with
increasing M. This is initial evidence that all the transi-
tions in this system remain second order, even at low T.
Further details of the scaling analysis and the orders of
the transitions are presented below.

and 8/12, are shown in Fig. 6 for the two transitions
that involve the ortho-~& phase. At the disorder-order
tetra-0 to ortho-& transition v rapidly approaches unity
as the strip size increases. At the order-order ortho-4 to
ortho-I transition the finite-size effects are rather large,
but there too, v seems to approach unity as M increases.
These results are consistent with the symmetry consider-
ations in Sec. II, which indicate that, if continuous, both
transitions should belong to the Ising universality class,
for which v = 1. No changes in v that might indicate
multicriticality or first-order transitions are seen, except
near the known multicritical point where the three tran-
sition lines meet. Our scaling estimate for the location of
this point, based on the equality of (i (12) and (i (12), is
k~T = 0.222' 0.001, p = +0.23 6 0.02. This po~~t is be-
lieved to belong to the universality class of the four-state
Potts model, zs ss for which both the critical and tricrit-
ical values of v are &s.

ss The minimum value of the 8/12
scaling estimates for v from gi occurs near this multi-
critical point, and is v~;„0.740 . In view of the large
finite-size effects, this result is not inconsistent with the
expected value of &s.

At the tetra-0 to ortho-& transition the Monte Carlo
data give good finite-size scaling with Ising critical ex-
ponents for the order parameter Oi~z and susceptibility
yi~z. To illustrate this, in Fig. 7 we show the scaling re-
lation for the maximum in gi's for p = 2.0. We also per-
formed finite-size scaling analyses similar to those shown
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FIG. 5. The quantity Q6 defined in Eq. (22) is shown. As M ~ oo negative values indicate a second-order transition, aud
positive values a first-order transition. Lines correspond to 4/8 scaling, data points to 8/12 scaling. The different transitions
are tetra-0 to ortho-- (dashed line aud x), ortho--' to ortho--' (dot-dashed line and +), and tetra-0 to ortho-- (solid line aud
0).
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FIG. 7. The finite-size scaling of Monte Carlo data for the maximum of the susceptibility, y~g [Eq. (11)j, at the highest
temperature on the tetra-0 to ortho-& transition line is shown. The transition, which belongs to the Ising universality class,
occurs at p, = 2.000, T, = 0.544. The straight line has a slope of 1.75, which is the value of p/v for the 2d Ising model, as well
as for all other models that obey Suzuki weak universality.
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in Fig. 12 using d = 2 Ising exponents, and obtained
good scaling. Similar scaling relations were obtained for
the scaling of the Monte Carlo data for the other points
along this transition line. Thus both the Monte Carlo
and the transfer-matrix results for the critical exponents
show that this transition belongs to the Ising universality
class.

At the order-order transition, ortho-& to ortho-z, the
Monte Carlo data could again be fit to the scaling forms
given by Eqs. (10)—(12) with Ising exponents. In the
Monte Carlo runs at kgT = 0.15, p was varied at
fixed temperature, so in the scaling expressions we have
used the scaled chemical potential, y = [I —p/p, (L ~",
instead of the scaled temperature, z. We found p,
= 0.452 6 0.001. (For other temperatures, the transition
was approached along a direction that was "perpendicu-
lar" to the phase boundary determined from Monte Carlo
simulations. ) Fig. 8 shows an example of this scaling for
pi~4. Two difficulties can be seen in Fig. 8. The first
is that the scaling function reaches its asymptotic value
only for large values of y, which means that large sys-
tems must be simulated to reach the asymptotic region.
The other difficulty is that near the critical point (small
y) there are noticeable statistical fluctuations due to the
fact that the chains have only very small fluctuations so
the Monte Carlo dynamics is extremely slow. In spite of
these difficulties, the Monte Carlo data illustrate that the
transition at temperatures down to k~T = 0.15 is second
order and belongs to the Ising universality class. This is
consistent with the transfer-matrix results (Figs. 5 and 6)
for this transition.

We attempted to identify possible first-order behavior
at low temperatures by observing hysteresis. We started
from the two dift'erent ground states, corresponding to
the ortho-4 and ortho-~z phases, and scanned p at fixed
temperature. With 2 x 10s MCSS we found large hys-
teresis for kIiT ( 0.05. However, at these low tempera-
tures the oxygen chains span the entire lattice, even for
I, = 128. Also, the hysteresis becomes less pronounced
as the number of Monte Carlo steps is increased. These
observations indicate that the apparent hysteresis most
likely is due to large finite-size effects and strong critical
slowing down at a second-order transition, rather than
to true metastability associated with a first-order transi-
tion. At lower temperatures the relaxation is extremely
slow, and we are unable to explore the phase transition in
a satisfactory manner with our Monte Carlo algorithms.

The transfer-matrix programs used in this study re-
main effective down to lower temperatures than the
Monte Carlo algorithm. In a further attempt at locating
a possible low-temperature tricritical point below which
the order-order transition might become first-order, we

performed a transfer-matrix study of the scaling behav-
ior of the maximum of the nonordering susceptibility,

porn~, as discussed in Sec. IVB above. The results for
strip widths M = 4, 8, and 12 at temperatures down to
k~T = 0.025 are displayed in Fig. 9. No indication of
the characteristic exponential growth with M that sig-
nals a first-order transition [Eq. (21)j is seen. It can-
not be entirely ruled out that this is due to a very large
regular part, ge, but in conjunction with the transfer-
matrix and Monte Carlo evidence cited above, it indicates
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FIG 8 Finite-size scaling of the Monte Carlo data for Xilq [Eq. (11)]st the ortho-i to ortho-i transition line is shown.
The transition, which belongs to the Ising universality class, v = 1, occurs at p, = 0.4517, k&T, = 0.150. The straight line has
a slope of —1.75, which is the value of —7 for the 2D Ising model. The nonscaling data tails provide an estimate for the size
of the asymptotic critical region.



8782 AUKRUST, NOVOTNY, RIKVOLD, AND LANDAU 41

io4

lO

iOi

i00

i0

iO
I

5
I s s s I

8 7 8 9 iO

Strip width M
FIG. 9. Scaling plots for the maximum of the nonordering susceptibility, yo'", at the ortho-4 to ortho-~ transition, as

obtained from transfer-matrix data are shown. The temperatures are (from below to above in the figure) I-~T = 0.1625, 0.0875,
0.055, and 0.025. No indication of the exponential growth with M that would signal a first-order transition is seen, even at the
lowest of these temperatures.

that this transition remains second order at least down
to kgyT 0.025. This conclusion is also consistent with
the recent CVM results of I&ikuchi and Choi. z7

C. The disorder to ortho--' transition

To determine the order and universality class of the
disorder-order tetra-0 to ortho-- transition we have per-4
formed a detailed Monte Carlo and transfer-matrix finite-
size scaling analysis. This analysis confirms the initial
hypothesis, stated in Sec. IV A and based on the behav-
ior of the quantity b,(z, that this transition, too, remains
second order, at least down to k~T = 0.025.

Our Monte Carlo study for this transition was con-
centrated at k~T = 0.15, since this was the lowest tem-
perature at which reasonable Monte Carlo data could be
obtained with our algorithm. At lower temperatures pro-
hibitively long runs are needed to get good statistics in
the Monte Carlo sampling. This temperature is also low

enough so cross-over efI'ects due to the multicritical point
should be negligible.

At a critical point the maximum of the singular part
of the specific heat, C —Co, scales asymptotically
as I ~ [Eq. (12) with z = 0]. The best fit was ob-
tained for a/v = 0.82 6 0.03, where the value of Co
that gives the best fit depends on the value of o./v. To-
gether with the hyperscaling relation, dv = 2 —n, this
yields v = 0.71 + 0.02 and a = 0.59 + 0.02. Good fits

could also be obtained by neglecting the L = 8 data
(this size may be so small that C~~ falls outside the
asymptotic scaling region), which gives comparable val-
ues of e/v, but diff'erent nondivergent parts of the spe-
cific heat, Co. One such plot is shown in Fig. 10(a),
where the values of Co, v, and o, from the full finite-size
scaling presented below are used. At the critical point
the maximum of the susceptibility, pi~4, scales asymp-

totically as L&~" [Eq. (11) with z = 0]. We obtain a
best fit with y/v = 1.75 + 0.03, which, combined with
v = 0.71 + 0.02, yields p = 1.24 + 0.05. Figure 10(b)
shows that this model obeys, to within the uncertainties
in the simulation, Suzuki weak universality for which
'7/v =—7

In order to obtain an independent estimate of v we

have also calculated the cumulant Ul, , Eq. (9), for the
order parameter Oig4. In Fig. 11(a) we show Ul. versus
V8. The data are averages over two independent runs
of 2 x 10 MCSS each for L = 8, 12, 16, and 32. The
lines in Fig. 11(a) represent linear fits to the data close to
the intersection where tJ8 ——O'L, . The dependence of the
critical exponents on the scale factor fi = L'/L between
the two lattices being compared is shown in Figs. 11(b)
and (c). As seen in Fig. 11(b), the uncertainties are too
large to obtain a very accurate estimate of v. We find v
= 0.70+0.05, which is consistent with the above estimate
of v = 0.71 + 0.02. To obtain 2P/v [from Eq. (15)] we

also tried to use data for L = 4 [Fig. 11(c)]. However,
the finite-size eR'ects for L = 4 are too large to obtain
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reasonable estimates. The estimates for 2P/v from L = 8

and L = 12 agree reasonably well, to within about 5%.
The best extrapolations with 1/lnb for L = 8 and L
= 12 also approach the value 2P/v =

4 as L is increased.
This value of 2P/v is expected from the scaling relation
2P + y+ n = 2, the hyperscaling relation dv = 2 —a,

and the value y/v = 1.75 from Fig. 10(b). The crossing
of UL, for different L yields the critical chemical potential

p, = —0.4073 + 0.0002, which is consistent with the best
finite-size scaling plots, which we present below.

The best finite-size scaling plot for the specific heat in
the ordered ortho-z phase is shown in Fig. 12(a). In it
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FIG. 10. Scahng plots of Monte Carlo data at the disorder to ortho-4 transition for knT = 0.15 are shown. (a) The
maximum of the divergent part of the specific heat C —Co is shown. The value Co = —0.04 is the value obtained from the
scaling plot of Fig. 12(a). The straight line has a slope of e/v, with o and v taken from the scaling plot of Fig. 12(a). (b) The
maximum of the order-parameter susceptibility Xq~4 is shovrn The st.raight line has a. slope of 1.75, which gives p/v.
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FIG. 11. We show data for the cumulant given in Eq. (9) for Oig4 at knT = 0.15. (a) Shows the cumulant Ur, plotted vs Us

at the disorder to ortho-- transition, and the best linear fits for the data at the intersection point where Ul. —Us. (b) Shows
the data from the linear fits in (a) to obtain v from Eq. (14). The dashed lines show the best linear extrapolations to b ~ oo.
(c) Shows the extrapolation of the linear fits to obtain 2P/v from Eq. (15). The data for L = 4 have noticeable finite-size
effects. The lines are the best linear fits to the data for L = 8 and L = 12. The arrow shows the location of 2P/v = —,which
is obtained from assuming 7/v = —,the hyperscaling relation dv = 2 —o

i and the scaling relation o + 2P + p = 2.
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we use y, , = —0.4074 at k~T, = 0.15, together with Co
= —0.04 and the exponents n = 0.58 and v = 0.71. Good
finite-size scaling for g&~4 in the ortho-& phase is obtained
for this value of p, with y = 1.2425, so that 7/v = 4.
To obtain consistent values of p, and v, we found we

needed to use the scaling variable y' = ~1 —y, ,/p~L ~" for

pi~4, as is often the case for susceptibilities. Figure 12
shows that the scaling functions reach their asymptotic
region only for large values of y or y', which requires large
lattice sizes. However, for large lattices, statistical errors
due to critical slowing down give large errors, particularly
close to p, . Nevertheless, reasonable scaling for C, Bile
and pi~4 in both the tetra-0 and the ortho-4 phases is
obtained using the parameters in Fig. 12, together with

P = v/8 so that 2P/v = 4.
All the finite-size scaling results are consistent and

indicate a second-order transition in the universality
class of the XY model with cubic anisotropy, which has
variable exponents. This behavior is expected from a
Ginzburg-Landau effective free-energy calculation. Al-
though this provides a strong indication of the universal-
ity class, it does not constitute an absolute proof. It is
conceivable that one component of the Ginzburg-Landau
order parameter may act as an eA'ective field, driving an-
other mode unstable, and thus eHectively increase the
dimension of the order parameter. If this happened, the
model could be in the universality class of the four-state
Potts model. Since the critical exponents found above
are close to those of the four-state Potts model, v = ~3,

a = s, P = &z, and y = s, we have also performed
finite-size scaling for C, Oi~4, and pi~4 with these expo-

nent values. The finite-size scaling for these plots (which
we do not present here) is significantly worse than for the
scaling plots in Fig. 12. We thus conclude that the tetra-
0 to ortho-4 transition indeed belongs to the universality
class of the XY model with cubic anisotropy.

Transfer-matrix data for v at this transition, obtained
with strip widths M/M' = 4/8 and 8/12 at temperatures
down to k~T 0.025, are shown in Fig. 13. Included are
also two data points for M/M' = 12/16 at k~T = 0.15
and kBT 0.22. The critical line and v were determined
from the scaling behavior of g, , which is the dominant
length scale. (An exception is M=12 at temperatures
below k~T 0.1, where the dominant length is (is. This
case is further discussed below. ) The finite-size effects
are considerable. At temperatures above k~T 0.13
the estimates for v decrease with increasing M, whereas
they increase with M below this temperature. Along the
portion of the critical line between p —0.2 and the mul-

ticritical point at p +0.23 and k~T 0.222 the scaling
estimates have a wide, flat maximum that decreases with
increasing M, reaching v = 0.826 for M/M' = 12/16.
There is no indication of a rapid approach to the four-
state Potts value of v = 3 near the multicritical point, in
contrast to the behavior along the tetra-0 to ortho-- crit-

2
ical line, where the dominant length is (i (see Fig. 7).
Around k~T 0.08 the 8/12 scaling result reaches a
broad, shallow minimum of v = 0.67+0.01. No dramatic
decrease in v that might indicate a first-order transition is
seen at lower temperatures. These numerical results fur-
ther support the conclusion drawn from the Monte-Carlo
simulations described above, that the transition belongs
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to the universality class of the XY model with cubic
anisotropy. We also find that, although v depends on
temperature, as expected for this universality class, the
dependence is rather weak. At Ir~T = 0.15, the 12/16
scaling of the transfer-matrix data gives v = 0.711, com-
pared to the best fits presented in Fig. 12, which give
v = 0.71. The transfer-matrix results for v are thus con-

sistent with those of our detailed Monte Carlo study.
At temperatures below k~T 0.1, P~ becomes the

dominant length scale for M=12, whereas gP remains
dominant for M=4 and 8. In this region we also have
determined critical points and v for M/M' = 8/12 from
scaling of the overall largest length scale, i.e. , gP for
M = 8 and (ts for M = 12. Four data points resulting
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FIG. 12. Finite-size scaling of Monte Carlo data near the disorder to ortho-- transition for &AT = 0.15 are shown for (a)
the specific heat C and (b) the susceptibility gqgq in the ordered phase. The critical exponents used are v = 0.71, n = 0.58,
and 7 = 1.2425. We used p, , = —0.4074 and t 0 ———0.04. Only for very large lattice sizes is the asymptotic scaling farm of the
scaling function obtained.
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= 0.1625, 0.15,0.0875, 0.050, and 0.025. No indication of the exponential growth with M that would signal a first-order transi-
tion is seen, even at the lowest temperatures.
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from this "mixed" scaling are also shown in Fig. 13. The
marked increase in v with decreasing T is strikingly dif-

ferent from the behavior obtained from the scaling of gP.
As pointed out in the Appendix, any length scale that
contributes to the critical divergence of the susceptibil-
ity pi~4, conjugate to the order parameter Qi~4, must
be among the g . The dominance of g&~ for M = 12 at
these low temperatures is therefore rather unexpected,
and might possibly signal a low-temperature, low oxygen-
content phase. This possibility has been suggested by
Bartelt et al. , based on their independent transfer-matrix
calculation, zs and by Kikuchi and Choi, based on their
CVM calculation. z" However, it is also possible that the
transfer-matrix results are due either to subtle finite-size
effects, or to numerical errors in the matrix diagonaliza-
tions at these low temperatures, where the eigenvalues
become nearly degenerate, especially for larger M. The
CVM results are suggestive, but in light of the failure
of CVM to predict the order of the tetra-0 to ortho-

transition correctly, we find them inconclusive. At
these low temperatures our Monte Carlo algorithm does
not provide useful data, due to the existence of oxygen
chains spanning the whole system. Also, our alternative
transfer-matrix routine does not converge at low T. On
balance, we consider the present numerical evidence for a
different ordered phase in this region insufficient. A firm
conclusion must await further study.

For this transition, too, we tried to detect a possible
first-order transition at low temperatures by searching for
hysteresis. We carried out Monte Carlo runs for L = 64,
starting from the two diH'erent ground states correspond-
ing to the ortho-z and tetra-0 phases, and scanned p at
fixed temperature. With 2 x 10s MCSS we again find

large hysteresis for k~T & 0.05. However, at these low

temperatures the oxygen chains span the entire lattice.
The hysteresis becomes less pronounced as the run length
is increased. These observations indicate that the appar-
ent hysteresis most likely is due to large finite-size effects
and strong critical slowing-down at a second-order tran-
sition, rather than to true metastability associated with
a first-order transition.

Figure 14 shows the scaling behavior of the nonorder-
ing susceptibility maximum, yg ", discussed in Sec. IVB,
at this transition. The strip widths are M = 4, 8, and 12
(and M = 16 at k~T = 0.15). No indication of the expo-
nential growth with M that would indicate a first-order
transition is seen.

The result that the tetra-0 to ortho-4 transition is
second order is in agreement with independent transfer-
matrix~s and Monte Carlo29 so calculations, but contra-
dicts the CVM results. This discrepancy emphasizes
the need to study two-dimensional lattice-gas models of
this kind by nonperturbative methods.

VI. DISCUSSION AND CONCLUSIONS

We have presented a comprehensive study by Monte
Carlo and transfer-matrix numerical methods of a lattice-

gas model for oxygen ordering in the YBazCusOs+~ high-
temperature superconductors. This model was intro-
duced by Wille et al. ,

8 who also presented a phase di-
agram based on a calculation by the cluster variation
method (CVM). The model describes the formation of
oxygen chains in the CuO basal planes, thought to drive
the high-temperature tetragonal to orthorl'. o-saic phase
transition in RBazCusOs+ materials (where R is a rare-
earth element).

The phase diagrams that we obtain are shown in Figs. 3
and 4. Three lines of continuous phase transitions sepa-
rate the disordered tetragonal phase with z 0 (corre-
sponding to an oxygen concentration in the Cu-0 basal
planes of 8 0) and two orthogonal phases. One of
these latter phases has s 0.5 (8 0.25) and is often
referred to as the "double-cell" phase, whereas the other
has z 1.0 (0 0.5). For brevity we have denoted the
three phases tetra-0, ortho-4, and ortho-z, respectively.
Our energy scale was adjusted to agree with the transi-
tion temperatures obtained by Specht et at.s from x-ray-
diffraction data. The three transition lines meet in a mul-
ticritical point at a reduced temperature of kgT 0.22
(corresponding to approximately 800 K), close to the
maximum temperature at which the ortho-~4 phase is
stable. We have also included the locations of quasi-
one-dimensional disorder lines in the phase diagrams.
These disorder lines will be dealt with in greater detail
using Monte Carlo and mean-field analysis in a future
publication. sz At high temperatures our phase diagram
agrees qualitatively with the CVM results, but at low

temperatures there are important differences. Whereas
the CVM predicts the tetra-0 to ortho-4 transition to be
first order, both the Monte Carlo and the transfer-matrix
calculations clearly indicate that both transitions are sec-
ond order (continuous), down to at least k~T 0.025,
(approximately 90 K). However, at low temperatures we

observe extremely large susceptibilities and strong criti-
cal slowing down that without careful finite-size scaling
analysis could easily be mistaken for signs of metastabil-
ity or of first-order transitions. Whether or not first-order
transitions occur in the real materials that the model
represents is a different question. If, indeed, they do, as
some experiments suggest, our results indicate that a
more realistic model of the oxygen ordering must include
additional effects, such as multi-particle or longer-range
interactions, or lattice compressibility. We are currently
investigating the phase diagrams of such modified lattice-
gas models. '8

Having established that all the phase transitions in the
present model are of second order, we have also per-
formed careful scaling analyses to determine the uni-
versality classes of these transitions. We find that
the disorder-order tetra-0 to ortho-& transition and the
order-order ortho-& to ortho-& transition both belong to
the Ising universality class (critical exponents v = 1,
P = s, y = 4). The disorder-order tetra-0 to ortho-

transition, on the other hand, belongs to the uni-

versality class of the XY model with cubic anisotropy,
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which has nonuniversal (variable) critical exponents. In
all cases we observe p/v 1.75, consistent with Suzuki's
weak universality hypothesis. These results agree with
Ginzburg-Landau efFective free-energy calculations and
recent, independent, transfer-matrix calculations. 28 For
the same temperatures studied here, the CVM calcula-
tion of Kikuchi and Choiz and the transfer-matrix cal-
culation of Bartelt e$ al. both give suggestions of an
additional orthorhombic phase, intervening between the
tetra-0 and ortho-& phases at low temperatures. Our
transfer-matrix data also show a change in the overall
dominant correlation length, from (P to (is for N = 12
at low T. We find this numerical evidence for an addi-
tional phase to be inconclusive; it may just as likely be
due to subtle finite-size effects, or to numerical difBculties
at low temperatures.

We hope that this work provides an impetus for a clear
experimental determination of the nature of the phase
transition for the tetragonal to "double-cell" structure for
YBa~CusOs+~, and, if the transition is continuous, for
the determination of the critical exponents. Such exper-
iments would provide valuable information for improved
models of oxygen ordering in YBazCusOs+~.

APPENDIX

We sketch the derivation of the differentiation-free
transfer-matrix expression for the thermal eigenvalue

yz ——1/v. To the best of our knowledge this has not been
published elsewhere. For completeness we also give the
differentiation-free expression for the nonordering suscep-
tibility ye that we are using. It is analogous to an ex-
pression for the structure factor, obtained by Bartelt and
Einstein. 5~

As is well known, ~ the moduli of the eigenvalues
define quantities, g = (k~T—/M) ln ~A ~, that resemble
'constrained' (nonequilibrium) free energies, in the sense
that gi is the equilibrium free energy, and their logarith-
mic field derivatives are related to matrix elements of
certain operators. Thus

» IA I
= R(A. lelA. ) = e... (23)M dp

where R denotes the real part of the matrix element, and
the single-layer concentration operator 0 is defined by
its matrix elements with the configurations ~X~) of the
I&th layer,
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In particular, the equilibrium oxygen concentration, 0,
is 0 = efi —(Af ~O(A f). (The largest eigenvalue, Af, is
positive, and all elements of its corresponding eigenvec-
tors can be chosen non-negative. ) Temperature differen-
tiation is expressed by

M d(k~T) k~T
(A iUiA )1

Mkgy T
&aa
kgT (25)

The operator U is the two-layer internal-energy operator
defined by its matrix elements with the configurations
(X&) and ~Yz+i) of the I&th and (I4+ l)th layers,

—1
(X~IUI&~+i) = (X~I&l&~+ ) exp

I k
(X~I(& —

S &.)I&x+i) I

B
(26)

The equilibrium entropy per site (in dimensionless units) is S = Sii, and E = Eii is the equilibrium expectation
value of the Hamiltonian, Eq. (1).

As discussed in Sec. IVB, the thermal eigenvalue, yz
——v, is related to the asymptotic scaling of the gradient

VK((M) of the dominant correlation length with respect to the nonordering fields through Eq. (20). To avoid

numerical differentiation we have used the definition ( = (ln ~Asi/A ~) i, together with Eqs. (23) —(26), to yield the

vector

TK((M) = M( (M)([E(M) —E (M)], [0 (M) —0(M)]). (27)

Eqs. (20) and (27), together with the scaling relation for g(M) at Kc, Eq. (19), yield the following differentiation-free
expression for yz'.
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( v ([E(M) -E..(M)], [e..(M) -e(M)]) ~ t'

v ([E(M') —E (M')], [0 (M') —e(M')]) M'

The value of this expression depends on the unit vector in the scaling direction, v. As discussed in Sec. IVB, v is
chosen to minimize this dependence.

For the nonordering susceptibility ye we use the following expansion in eigenstates of the transfer matrix:

xe = &Ai Ie'IAx) —&Ai lelAi)'
I

+2) ((Ai 10IA'&)&A'~I0IAi) —
&Ar 10IA.'l)(A'. 110IA1)) As,

+~) (&A', ieiA'. z)&A'. IlolAi)+ &Afl0IA'. »&A.'&10IAf)) „,, A™sA,
'

(29)

le'&, lA g) and lA I) are the real and imaginary parts of the right eigenvectors IAa) and sinu'a y
for the jeff, eigenvectors. The invariance of 0 under the two-step translation operation ensures that the only nonzero
matrix elements are those with eigenvectors lAs) of TS. The sum is performed over all eigenstates of T, regardj«s
of whether or not the associated eigenvalues belong to a complex conjugate pair.

najogous expansions for the ordering susceptibilities, y~~~ and gq~4, could be constructed. The corresponding
single-layer operators, Oi~2 and O&~4, are symmetric and antisymmetric under the two-step translation, respectively.
Therefore, the nonzero matrix elements in the expansion of grenz are of the form (Af lOq/zlA~). However, the nonz«o
matrix elements in the expansion of gqlq are of the form &AglO~l4lA~), which couples lA~ ) to the eigenvectors of the
antisymmetric block T~. The divergence of g1l4 is therefore governed by the largest of the (
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