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We present the results of Monte Carlo simulations of Josephson-junction arrays with positiona1

disorder, in magnetic fields such that the average number of flux quanta per unit cell is an integer.
Granato and Kosterlitz have predicted that such systems should exhibit novel behavior, including a

disorder-dependent critical field and a reentrant Kosterlitz-Thouless transition. We find that, for

magnetic fields above a field approximately equal to the theoretical critica1 field, the superconduct-

ing phases become essentially randomized for all temperatures, rather than becoming aligned as the

temperature decreases. Our results show no clear evidence for a reentrant phase transition in our

small (16X16) simulated system. These results are consistent with our experiments on proximity-

effect arrays with controlled positional disorder. We suggest that the theoretically proposed reen-

trance is prevented by either finite-size effects or pinning of vortices due to the disorder.

I. INTRODUCTION

Two-dimensional arrays of Josephson junctions are ex-
cellent model systems for the study of various problems
in the statistical physics of two-dimensional systems.
These problems include the Kosterlitz-Thouless transi-
tion, the effects of frustration on phase transitions,
commensurate-incommensurate transitions, and the
effects of disorder. For example, an array in zero mag-
netic field provides a realization of a pure XY magnet,
and undergoes a Kosterlitz-Thouless transition, while an
array in a finite field is a model for the uniformly frustrat-
ed XYmagnet.

Since such arrays can be designed and fabricated in a
very controlled way, through the use of photolithogra-
phy, for example, one has the capability to produce two-
dimensional systems with a wide variety of controlled
geometries. One can also introduce controlled disorder
by specifying that certain junctions should not be present
in an otherwise regular array. An array with junctions
randomly removed provides a realization of a dilute two-
dimensional magnet, whose critical behavior may be
drastically altered when the disorder becomes sufficiently
strong.

In this work we are concerned with arrays whose su-
perconducting sites are given random displacements from
the sites of a uniform square lattice. This results in a
realization of the XY magnet with disorder and frustra-
tion, which theory suggests may show novel behavior, in-
cluding a critical value of the disorder, and a reentrant
phase transition.

A Josephson-junction array consists of superconduct-
ing islands, each characterized by a complex order pa-
rameter with phase Oj, connected by Josephson junctions.
The Hamiltonian of a uniform array is

H= —g J(T)cos(8, —8, —
g;, ),

(i,j)

(2)

where J(T)=trii, (T)/2e is the Josephson energy, i, (T) is
the critical current of a junction, A is the magnetic vec-
tor potential, 4&=bc/2e is the superconducting flux

quantum, and the f; 's satisfy the constraint

Q g; =2sr(m +f) rn =0, +1,+2, . . . ,
l,J

(3)

where the summation is around any plaquette. This is
the Hamiltonian of a uniformly frustrated XY magnet,
with tunable frustration parametrized by f =Bs /4o, the
number of flux quanta per plaquette, with 8 the magnetic
field and s the lattice parameter. The ground-state energy
and transition temperature of this system have been
shown to be extremely complicated discontinuous func-
tions of f. Measurements of T„resistance, and ap-
parent critical current, as a function of field, in both ar-
rays of junctions and wire networks' have shown this
behavior, albeit somewhat smeared out by sample imper-
fections. (By "apparent critical current" we mean the
current at which the sample voltage exceeds some fixed
threshold, usually limited by the sensitivity of the voltme-
ter. The theoretical zero-voltage critical current is zero
in two dimensions at finite temperatures because there is
no long-range order}.

There are several ways in which samples can be disor-
dered. Consider, for example, a slight generalization of
(1},where we allow the Josephson energy J to vary from
junction to junction. We refer to this as bond disorder be-
cause the strengths of the bonds (the junctions) between
sites (the superconducting islands) vary. This kind of dis-
order is inevitable in any real array since it is impossible
to fabricate samples with all junctions identical. It can
been shown theoretically that "weak" bond disorder is ir-
relevant, and does not affect the critical behavior of the
system, while strong enough disorder can affect critical
exponents. " The critical amount of disorder is not
known for this system.

Another type of disorder is site or bond dilution, where
superconducting islands or junctions are removed at ran-
dom from the lattice. The case of site dilution has been
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placed from their lattice positions r by a random amount
u„(expressed as a fraction of the lattice parameter) given

by a Gaussian probability density per unit area,

1P(u„)= exp
2m'

—IU, I'

2h

~i+ir

FIG. 1. Schematic diagram of a junction array with position-
al disorder. Crosses mark the undisplaced positions and solid
circles the actual positions of the superconducting islands.

studied theoretically by John and Lubensky, ' and it has
been shown that weak dilution, where only a few percent
of the sites are removed, is irrelevant to the critical be-
havior. On the other hand, these authors showed that
strong dilution, where the sample approaches the per-
colation threshold, can have a dramatic effect, possibly
leading to glassy behavior, characterized by extremely
slow relaxation to equilibrium.

The third type of disorder one can introduce into the
Hamiltonian (1) is randomness in the f; 's The na.tural
way to achieve this is to randomize the positions of the
superconducting sites, as illustrated in Fig. 1. Clearly
this leads to randomness in the plaquette areas (with
correlations up to second-nearest-neighbor plaquettes)
and therefore to randomness in the frustration f, giving
an XY model with nonuniform frustration. This kind of
disorder is called positional disorder and is the topic of
this work.

We have previously reported the results of both experi-
ments' ' and mean-field calculations' for such systems.
In this paper we present results of extensive Monte Carlo
simulations and renormalization-group calculations for
arrays with positional disorder, in magnetic fields such
that the average number of fiux quanta per plaquette, fo,
is an integer.

The remainder of this paper is organized as follows. In
Sec. II we review the predictions of renormalization-
group (RG) analysis for arrays with positional disorder.
In Sec. III we present the results of our numerical solu-
tion of the RG equations. The principal result of this is
the detailed shape of the superconducting-normal phase
boundary in finite and infinite samples. Section IV
presents the results of our Monte Carlo simulations to
calculate the specific heat C, magnetization modulus g,
and helicity modulus Y in such arrays. Finally, Sec. V
presents our conclusions.

II. REVIEW OF RKNORMALIZATION-GROUP
EQUATIONS

where the parameter 5 thus defined quantifies the
amount of positional disorder. They showed that the
Hamiltonian (1) then describes a gas of fractional
charges, interacting with a quenched random distribution
of dipoles p„~fOu„

For the case of fo an integer one has a gas of integral
charges (vortices) perturbed by a random dipole distribu-
tion. The nature of these quenched dipoles can be under-
stood by considering a pair of neighboring plaquettes
where one bond has been moved a distance 5 to the right.
This produces an area increase (decrease) in the left
(right) plaquette proportional to 5, and thus, in the
Coulomb gas analogy, a pair of charges +f05/s, consti-
tuting an electric dipole of strength f&5 (to lowest order
in 5).

The problem of a Coulomb gas of integral charges per-
turbed by a random background of dipoles has been stud-
ied in another context by Rubinstein, Shraiman, and Nel-
son. ' They have derived the recursion relations describ-
ing the renormalization of the interaction between a pair
of vortices of separation r, due to both the other vortex
pairs and the quenched dipoles. Their results were ex-
pressed by Granato and Kosterlitz in terms of arrays
with positional disorder as'

dK '(1)
4 3 2(1)3' (5a)

=y(l)[2 —nK(l)+4m f, b, K2(l)],y (1)
dl

(5b)

where 1=1n(r/s) and b, is the disorder parameter defined

by (4). The stiffness K(1) is related to the energy E(l) of
a vortex pair of separation r =s e' by the relation
E(1)=mk&TK(1)ln(r/s), while y(l), the vortex fugacity,
is related to the density of such vortex pairs. ' The quan-
tity f,b is effectively the measure of disorder, so that for
a sample with fixed b one can tune the effective disorder
by adjusting the magnetic field. When fv=0, Eq. (5)
reduces to the result for the pure case derived by Koster-
litz and Thouless. '

The initial conditions from which the renormalization
in (5) begins are given by'

K, =K(1 =0)=J/ke T,
y, =y (1 =0)=exp( —mgK, ),

(6a)

(6b)

with g =(—',in2+y)=1. 62 and y=0. 577. . . is Euler's
constant, as for the pure case. (Henceforth we set ke =1,
so that temperatures and energies have the same units).

Following Refs. 16 and 17 we note that there are two
special points K+ where the right-hand side of (5b) van-
ishes,

Granato and Kosterlitz (GK)' have considered the
case where the superconducting sites of an array are dis-

K~' =—[1+(1—32m.foh )'i ],4
(7)
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1 1 010
&32m &

(8)

For fields fo
&f, the ordered region (inside the solid dark

line in Fig. 2) shrinks to zero, and QLRC is destroyed at
all temperatures. From Fig. 2 it is also clear that the
fully-renormalized stiffness, E, approaches E+ at both
transitions. In contrast to the uniform case this value is
not universal, since it depends on the magnetic field, fp.

and which divide the solutions of (5) into three regimes.
The Hamiltonian flows are sketched in Fig. 2, along with
the line of initial conditions y =exp( —mgKo) (dotted
line). The solid line shows a special trajectory which
leaves the y=0 fixed line at Eo ' and terminates exactly
at E+ '. The flows inside this boundary iterate to
y (I = &x ) =0, and K '(I = ae ) finite, so that there are no
free vortices and the stiffness is finite, just as for T & T, in
the ordered array. This region is characterized by alge-
braic decay of correlations, or "quasi-long-range coher-
ence" (QLRC). Outside this region all flows lead to
y =~ and E =~ as l~~, so that vortices are un-

—1

bound and the fully renormalized stiffness K"=K (I = ae )

is zero.
Evidently there are now two transition temperatures,

T, (fo ) and T,+ (fo ), as indicated in Fig. 2, at the two
points where the locus of initial conditions intersects the
critical trajectory (the dark line in Fig. 2). Below T, (f o )
the quenched dipoles weaken the interaction between the
mobile vortices, so that some of the vortices are unbound,
and there is no QLRC. This region has no analog
in the uniform case where there are no quenched
dipoles to weaken the vortex-vortex interaction. For
T, (f, ) & T & T,+(f, ), the increased density of mobile
vortices is sufficient to screen the quenched dipoles, so
that all the mobile vortices are bound into pairs. Finally,
for T ) T,+(fo), the vortex pairs are thermally unbound,
as in a uniform array.

From (7) it is also evident that, for a sample with fixed
6, the special values K+ ' merge when fo reaches a criti-
cal value f, given by

For fo=0, one has K+ =2/m, as for the uniform case,
while for fo~f„K+ approaches the value 4/m.

Examination of the Hamiltonian flows of Fig. 2 also il-
luminates the importance of finite-size effects. If the in-
tegration of Eq. (5) is terminated at a finite value of I,
then the stiffness E may remain finite even outside the
solid line in Fig. 2. This means that in a finite sample the
transitions will be smeared out, with the two measured
transition temperatures (between which K is measured to
be finite) becoming further apart. This will be demon-
strated explicitly in Sec. III.

III. NUMERICAL SOLUTION OF THE
RENORMALIZATION-GROUP EQUATIONS

To gain further insight into the theoretical predictions
reviewed above we have numerically solved the
renormalization-group equations (5). This enables us to
determine the expected shape of the superconducting-
normal phase boundary, as well as the behavior of the
stiffness, E, or equivalently the effective superfluid densi-
ty, as a function of temperature.

We used a fourth-order Runge-Kutta method to in-
tegrate (5), starting from the initial conditions (6), to a
finite but very large value of I, If, using a step size Al typi-
cally 10 or 10 . We also explored the effects of finite
sample size by stopping the integration at various small
values of I. To determine T,+(f )oand T, (fo) for the
infinite sample we integrated (5) to a large enough value
of I to determine whether a given trajectory (correspond-
ing to a temperature T) converged to the fixed line y=0
or diverged to y = ~. For temperatures T far enough
from both T, (fo) and T, (fo) it was often sufficient to
take If=10. To determine T, (fo) to a pre—cision of
0.005J it was sufficient to use hl =10 and values of If
no larger than 2000.

The resulting phase boundary is shown in Fig. 3. In-
side the boundary all vortices are bound in pairs, the fully
renormalized fugacity y

"=y ( I ~ ae ) is zero, and the
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FIG. 2. Renormalization group Rows for an array with posi-

tional disorder. Flows inside the critical trajectory (solid line)
terminate on the critical line y=0, where there are no free vor-
tices, while those outside diverge towards y = ao. There are two
vortex-unbinding transitions, T, and T, , at the two points
where the critical trajectory intersects the line of initial condi-
tions (dashed line).

fo/fc

FIG. 3. Theoretical phase boundary, calculated by numeri-

cally integrating the renormalization-group equations (5), show-

ing the two transition temperatures T,+(fo). Inside the phase—

boundary all vortices are bound, while outside some are un-

bound.
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FIG. 4. Results of a numerical calculation of the vortex
stiffness, K{T), obtained by integrating (5) to length scales of
1=2.77 {corresponding to the Monte Carlo simulated samples)
and 1=500 (approximating the infinite sample). For the infinite
sample K drops discontinuously to zero at both transition tem-
peratures, as vortex pairs of separation r =s.e' unbind. In the
finite sample both transitions become broadened.

stiffness K"=K(l~~) nonzero. As discussed by Ru-
binstein, Shraiman, and Nelson, ' this region is charac-
terized by algebraic decay of spin-spin correlations, or
quasi-long-range coherence. The region outside the
boundary has y")0 and K"=0 and is characterized by
exponential decay of correlations.

The temperature dependence of the stiffness at a very
large length scale, K(1=500), is shown in Fig. 4, for
fo/f, =0.98. Here one directly sees the two transitions
at T, (fo)/J=0. 5296 and T,+(fo)=0.9156 at which K
falls to zero. Between the two transitions the RG equa-
tions predict that KT/J approaches a value of one.
However, spin waves, which are not incorporated in the
RG analysis, which explicitly considers only the vortex
part of the Hamiltonian, will cause a decrease of this
value with increasing temperature. For the pure XY
model the leading-order spin-wave correction has been
shown to be K(T)=K(0)(1—T/4J). ' The same correc-
tion presumably applies in the presence of disorder.

Figure 4 also shows the result of terminating the in-
tegration at 1 =ln(16) =2.77, corresponding to the sam-

ple size for the Monte Carlo simulations of Sec. IV. As
discussed in Sec. II, this has the effect of smearing the
two transitions, and broadening the region in which E is
nonzero.

In summary, there are two striking predictions for the
behavior of an infinite Josephson-junction array with po-
sitional disorder, in a magnetic field such that the average
number of flux quanta per plaquette, fo, is an integer.
First, there should be two vortex-unbinding transitions,
at T, (fo) and T, (fo), with the system exhibiting

QLRC only for T, (fo) & T & T,+(fo). Second, for fields

fo greater than a critical value f„given by (8), the two
transitions merge, and there is no QLRC at any tempera-
ture. In addition, the magnitude of the superfluid jump
at both transitions is nonuniversa1, depending on the
magnetic field fo. These predictions still hold for finite

arrays, but with the transitions somewhat broadened by
finite-size effects.

Experiments on 50X50 proximity-effect arrays have
yielded strong support for the critical field (8), but have
shown no evidence for reentrant superconductivity. ' '
However, through Monte Carlo simulation one is able to
consider arbitrarily small amounts of positional disorder,
and thus large critical fields (8) and thereby investigate
integer fields arbitrarily close the critical field where the
transition temperature T, ( f 0) should be a maximum.

IV. MONTE CARLO SIMULATIONS

fo (x;+x, )
g; =2m '

(yj
—y;),

S
(10)

Where the coordinates of the ith spin, or center of the ith
superconducting island, are (x;,y; ).

To calculate quantities as a function of temperature we
have followed an annealing schedule in which we started
at high temperature, T/J=2, and then gradually "cooled
down" in 20-25 temperature decrements. At the highest
temperature we used a random spin configuration as ini-
tial condition, while for each successive lower tempera-
ture we used the final configuration from the previous
higher temperature as input.

At each temperature we executed 5000 Monte Carlo
Steps per Spin (MCSS) for equilibration, and 10000
MCSS for averaging. Although it is impossible to know
a priori how long an equilibration is necessary, we note
that Fernandez et al. have found from their simula-
tions that the pure XY model appears to exhibit a size-
dependent relaxation time ~L, which follows the form

rr (MCSS) =2L . For our simulations, with L= 16, this
gives ~L =500 MCSS, so that our equilibration times are
approximately 10'. The presence of disorder will un-

doubtedly increase this relaxation time, or possibly even
lead to a nonexponential approach to equilibrium. we
have found in limited trials, however, that increasing
equilibration and averaging times to 50000 and 100000
MCSS, respectively, does not have an appreciable effect
on the results. Extensive checks of this kind are imprac-
tical due to the large amount of computing time required.

To gain further insight into the problem of Josephson-
junction arrays with positional disorder, we have per-
formed Monte Carlo simulations of the Hamiltonian (1)
(Ref. 20), preliminary results of which have been present-
ed previously. ' We have examined the field region close
to the theoretical phase boundary more closely than pre-
vious simulations ' by considering very small values of
the disorder parameter b„and thus large values of the
theoretical critical field (8).

The summation in the Hamiltonian (1) is now con-
sidered to be over nearest neighbors on an L XL square
lattice, with periodic boundary conditions. Our gauge
choice is the Landau gauge,

OofoA=Boxy= xy .
S

In this gauge choice (2) becomes
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A. Specific heat, C

B. Magnetization modulus, g

A quantity which gives information about the behavior
of the phases, or spin angles, 8, , is the magnetization
modulus, ri (Ref. 25):

1
N

g exp(i8 )
N

1

(12)

We have calculated the specific heat of our L XL spin
systems using the relation

&~') —«)'
(11)

NT

where C is the specific heat per spin, E is the total energy
of the system calculated from (1), N =I. is the number
of spins, and ( ) denotes a combined thermal and
configuration average.

The behavior of C is actually rather uninteresting in
the KT transition, showing only a broad, size-
independent peak, at a temperature just above T„with
no divergence or cusp. Figure 5 shows results for a value
of the Gaussian disorder parameter 5=9.9974X 10, so
that the theoretical critical field (9) is 100.

The results for fo =0 show a peak at T/J =1.1, of
height C=1.5, consistent with the simulation results of
Tobochnik and Chester. One sees that, as the field is in-
creased, the peak position shifts to lower temperatures
and the amplitude decreases, indicating a depression of
T, by the field. There is however no novel behavior for
fields fo ~ f„and no evidence of a second peak associated
with a second vortex unbind-ing transition As sh. own in
the inset in Fig. 5, the position of the peak, Tp k simply
decreases linearly with field, extrapolating to T=O at
fo=5 2f'

When all the phases are aligned at T=O, then q = 1, while
at high temperatures, where the phases are randomized,
g=1/&N, a finite-size-limited value. For the pure XY
model, in zero field, this quantity is considered a reliable
measure of long-range order. However, in a finite mag-
netic field, it is not gauge inuariant, and therefore is not a
measurable quantity. Despite this fact, g turns out to be
interesting in its own right.

For a large 2D XF system, with no disorder, ri(T)
shows a gradual decrease with increasing temperature,
and then a sharp drop to zero at T = T, . The behavior
for our 16X 16 system is shown in Fig. 6, where the upper
curve is for fo =0, equivalent to the pure XF model, and
shows a finite-size broadened decay in t)( T) in the vicinity
of T, -J.

The other data in Fig. 6 are again for a value of b such
that f, =100. One sees a trend that t) is depressed more
and more, at all temperatures, as fo approaches f, . For
fc=f, =100, ri(T) becomes essentially flat, so that there
is no development of phase ordering as temperature de-
creases. This behavior also seems to persist for fields

fo) f, and is further illustrated by Fig. 7, which shows

ri(fo) at a fixed temperature T/J=0. 5, with ri decaying
to 1/~N =1/16=0.063 at fo =f, =100.

Our interpretation is simply that, as fo~f„the g,, 's

is the Hamiltonian (4.6) essentially all become large com-
pared to 2', so that f;,mod2rr become essentially uni-
formly distributed random variables on the interval
[0,2m] or [ m, rr]. Th—e spin-spin coupling, which wants
to minimize the gauge-invariant phase differences,
8;—8, —g;J, then orients the phase 8, at random angles,
so that r) retains its high-temperature, finite-size limited
value 1/~N at all temperatures. However, this quantity
provides no evidence for the theoretically predicted reen-
trance phase transition.
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FIG. 5. Specific heat per spin, for a 16X16 array, with 5
such that f, =100. Inset shows position of the specific heat
peak vs magnetic field, showing a linear depression of the peak
position. Results are averaged over at least five disorder realiza-
tions.

FIG. 6. Magnetization modulus, g vs temperature for vari-
ous magnetic fields approaching f, =100. Increasing the field

suppresses g towards its finite-size value, 1/&N =0.067, indi-

cating that the phases are becoming essentially completely ran-
domized, for fields fo of order f, . Results are averaged over a
least five disorder realizations.
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FIG. 7. Results of a simulation at constant temperature
T/J=0. 5, showing the field dependence of q, again showing the
depression of g towards its finite-size value for fields of order f, .

T/J =0.5, close to the numerically determined

T, (fo)/J =0.5296 for an infinite lattice. At lower tem-

peratures however, Y does not go to zero as predicted but
increases again as T decreases, as if some competing
mechanism is counteracting any reentrant tendency. For
fo=99 the dip at T/J=0. 5 is much less evident, while

for fo =97 there is no convincing evidence for such a dip.
For fields within a few percent of f, the error bars

(which represent the variance of Y over the 50 disorder
realizations) are consistently larger than T/J=0. 5, and
often near T/J=0. 3. The large error bars in this temper-
ature and field region may be a result of competing mech-
anisms, one of which causes Y to decrease and the other
Y to increase, as T decreases.

Evidently the simulation results obtained for Y do not
support the theoretical prediction illustrated in Fig. 4,
where the stiffness K goes to zero for T less than some
lower transition temperature T, (fo ). This may, howev-

C. Helicity modulus, Y

The helicity modulus, Y, of a magnetic system is an
analog of the shear modulus of a solid. If we take a 2D
XY spin system and cant the phases along one edge, while
holding those along the opposite edge fixed, then Y tells
us the increase in free energy of the system in response to
the twist induced in the system, in the limit that the wave
vector of the twist k goes to zero. In general Y is a 2 X 2
matrix (in two dimensions):

BF

In an isotropic system in equilibrium, the principal com-
ponent Yzz Yyy Y is simply related to the stiffness E,
by Y =ET. To calculate Y we used the expression

0.8

04-

0.0

D.S
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0.0
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I I

I. . . . I
I T ~ w I ~
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L

I ~ a
~ w 'I I T

fo 97

fo =98

4
~ ~

Y =—g J5x,2 ( cos( 6); —8, —
g;J ) )1

(i,j&

z J5x,, sin(8, —e, g, ) ')—,
B (i J)

0.0
I
I ~ ~ ~ ~ ~

'o =99

1+ g JSx; sin(8; —8J —P;J. ) (13)

0.0
where 5x;J =x —x;, and Y is the helicity modulus per
spin.

In the presence of disorder Y turned out to be numeri-
cally less "well behaved" than the energy, specific heat,
and magnetization modulus, exhibiting large fluctuations
with temperature for individual disorder realizations. To
the extent that constraints on computing power have al-
lowed we have averaged over many (up to 50) disorder
realizations, to average such Auctuations.

Figure 8 shows Y(T) for various values of fo in the vi-

cinity of f, = 100, averaged over 50 disorder realizations.
The results for fo

=80 and 120 (20% below and above f„
respectively) are qualitatively similar, showing a mono-
tonic increase in Y with decreasing T, but with the data
for fo

=80 showing more downward curvature than that
for fo=120. For fo=98, Yshows a sharp, narrow dip at

0.8-
120

0.4

0.0

0.0 0.5 1.0 1.5

FIG. 8. Helicity modulus F(T) for various values of fo in
the vicinity of f, =100, averaged over 50 disorder realizations,
with error bars representing standard deviation of distribution
of values of Y at each T. Although there is a tendency towards
"dips" in Y near T/J=0. 3 and 0.5 there is no clear evidence for
reentrant behavior.
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er, be explained by the small size of the simulated system.
We recall that, theoretically, the reentrant phase transi-
tion at T, should be brought about by the unbinding of
vortex pairs by the quenched random background of di-
poles. However, since these vortices are thermally ac-
tivated, there will be fewer of them present at low tem-
peratures. In a small sample it is possible that there are
actually no thermally generated vortices present, at least
for part of the time. However, for the calculated helicity
modulus to be zero there must be free vortices present at
all times to destroy the quasi-long-range order.

An alternative explanation for the lack of reentrance is
that, even if there are vortices present, they are pinned by
the disorder. If the vortices are not mobile then Y will
not go to zero, just as if there were no vortices present.
The strength of the pinning should increase with the
strength of the effective disorder f06 In .fact the
theoretical treatment reviewed in Sec. II used a continu-
um approximation which clearly ignores the pinning sites
inherent even in the uniform lattice. The behavior in
this low-temperature high-disorder regime may be
"glassy" in the sense that, if one waited long enough, vor-
tices might be thermally activated out of their pinning
sites, but in computable time scales this does not happen
and the vortices remain trapped. '

This system is formally identical to the 2D random
binary mixture of hard spheres (ball bearings) studied ex-
perimentally by Nelson, Rubinstein, and Spaepen. The
disorder in that case was due to the presence of a random
admixture of larger spheres, which disrupted translation-
al order. These authors found that when a system with a
dilute concentration of large spheres was "quenched" by
increasing the density of spheres, dislocations, analogous
to our vortices, became trapped by the large spheres.
Thus, although the shear modulus of the system should
have been zero, the fact that the dislocations were not
free to move resulted in the system having a finite shear
modulus.

It is possible that a detailed study of spin
configurations from our simulations might illuminate the
role of trapping in our system. Experimentally one could
look for evidence of hysteretic behavior, say in current-
voltage characteristics or resistance versus magnetic field,
as long as one could study a regime where pinning was
not too strong. Experiments to date have shown no evi-
dence of such hysteresis. ' '

It is clear that the theoretical work of Granato and
Kosterlitz provides an oversimplified description of the
behavior of a strongly disordered array. The importance
of pinning, and the possibility of glassy behavior, are lost
in the RG treatment. The predicted reentrance, for
which we have seen no convincing evidence in our simu-
lations, has also not been observed experimentally.

V. SUMMARY AND CONCLUSIONS

To summarize, we have performed Monte Carlo simu-
lations of 2D XY magnets with nonuniform frustration,
which are model systems for Josephson junction arrays

with positional disorder. We have focused on three quan-
tities in particular —the specific heat C, magnetization
modulus g, and helicity modulus Y.

Our results for the specific heat show that in an array
with positional disorder there is a single broad peak, simi-
lar to that found in the pure XY model. The temperature
at which this peak occurred was found to decrease linear-
ly with applied field, extrapolating to T=O at a field

fo &f, . We found no evidence for novel behavior as fo
approached the critical field f„and no evidence for a
second peak associated with a second, low-temperature,
vortex-unbinding transition.

The magnetization modulus, g( T), although not gauge
invariant, proved to be a useful measure of the degree of
ordering of the phases, or spins, in our particular gauge
choice. We found that rt(T) was depressed by the mag-
netic field, and for fields in the vicinity of f„became
essentially independent of temperature, and saturated at a
finite-size limited value = I/~N This .showed that, for
such large disorder, there was no development of phase
ordering, as measured by g, as temperature decreased.
However, g shows no evidence for a reentrant phase tran-
sition.

As for the existence of a reentrant phase transition, our
results for the helicity modulus Y, which is equal to the
effective superfluid density in an array, are inconclusive.
Upon disorder averaging, we found only marginal evi-
dence for a small "dip" in Y( T) at T=0.5 for some fields
very close to f, . The overall shape otherwise rose mono-
tonically with decreasing temperature for fields fo both
greater and less than f„with only a change in curvature
as fo exceeded f, . This lack of reentrance is also con-
sistent with the results of experiments on proximity-effect
arrays with positional disorder, which showed strong evi-
dence for a critical field, but no evidence for reen-
trance. ' '

Two possible explanations for this lack of reentrance,
and for the behavior of Y(T) for fo& f„are finite-size
effects and pinning. The finite-size argument says that
our small simulated samples may not contain any vortices
at low temperatures, so that quasi-long-range order will
not be destroyed and Y will remain finite. The pinning
argument says that although there may be free vortices
present at low temperatures, they are so well pinned by
the disorder that they cannot move around and destroy
the order. Similar arguments have been suggested by
Chakrabarti and Dasgupta, who also found no evidence
for reentrance in their Monte Carlo simulations per-
formed with a coarser magnetic field scale. '
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