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Electrochemical-potential variations across a constriction
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By means of the Keldysh-Green-function method, the electrochemical- potential variations
across a constriction are analyzed. We discuss specifically the case of a one-dimensional chain
joining two Bethe lattices of coordination four. Our results show that the total conductance of
the system and its local chemical potential variations depend dramatically on the interference be-
tween the chain transmittivity and the reflectivity at the reservoir-chain contact. We show a case
in which, with a transmittivity less than one, a zero chemical-potential drop is found along the
inner linear chain.

With the advent of mesoscopic physics, ' a lot of in-
terest has arisen in the electrical transport and the corre-
sponding resistance of small and low-dimensional systems.
The scanning tunneling microscope (STM) is an exam-
ple of one of these cases, where the contact between two
reservoirs takes place through a constriction, typically
consisting of a few atoms. The resemblance and analogy
between a low-dimensional conductor and the STM mi-
croscope can be easily understood by considering their
conductance behavior. In a one-dimensional (1D) con-
ductor, for example, with n channels for electron injection,
it is a well-known result 5 that the conductance of the
sample may be quantized in multiples of 2(e 2/h ), depend-
ing on the number of open channels contributing to the
conductance; likewise, it has been shown6 recently that in

the STM microscope the maximum conductance through
a sample tip atom is also 2(e2/h); this value increasing to
2n(e /h) for n atoms.

A long-standing debate has evolved recently about the
value of the total resistance for the case of disordered
low-dimensional systems. '2 Summarizing this debate,
we can say, referring to a 1D system, that the two main
points of view relate the conductance of a 1D channel to
either (i) the transmission coefficient of the system T, or
(ii) the factor' T/(1 —T). The realization that both re-
sults depend on the reservoir-low-dimensional-system link
has directed peoples to the assertion that "entire transit
(through the low-dimensional system) from one reservoir
to the other has to be viewed as a simple quantum-
mechanically coherent event. "

It is also of interest to comment that the effect of disor-
der or impurities in the low-dimensional system has its
counterpart in the STM microscope; in this case by
changing the tip-sample distance one can control the
transmission (the T parameter introduced above) of the
constriction.

Since it has been argued' that self-consistency may
be of primordial importance in the calculation of the con-
ductance of low-dimensional systems (or the STM micro-
scope), it could be in order to analyze the problem of how
the electrochemical potential changes across a constric-
tion. ' As we shall find in this paper, this analysis is
directly related to the conductance problem and shows in
a very intuitive and transparent way the role played by the

interference between the reservoirs and the low-dimen-
sional system.

The model we have chosen to analyze this problem is
shown in Fig. 1 and corresponds to a case simulating the
interface of a STM microscope. Here we describe the tip
and the sample (or the reservoirs) by two Bethe lattices,
and assume that a one-dimensional chain joins the tip and
the sample. A free ideal interface should be described by
both Bethe lattices joined by a hopping parameter t'; the
case of a long chain could represent the eff'ect of a long
molecule adsorbed between the tip and the sample. In or-
der to analyze how the defects of the chain may modify
the constriction conductance, we have assumed that one of
the hopping parameters associated with a chain bond (see
Fig. 1) may be t', diff'erent from all the other ones.

Our starting Hamiltonian (per spin) is the following:

N N

+Bethel+ Bethe2+ Z Eini + 2 ti j(ci cj +cj ci)
i 1 i,j 1

+ tol(CJC I +, C I CO) + tN, N+ I (CNCN+ I +CN+ ICN ) i

(1)
where E; represents the diagonal level of the single orbital
of each chain atom, t;, the hopping between nearest
neighbors, Piklh, the Hamiltonian of each Bethe lattice, "
and to I and tN Nyl the couplings between the chain and
the reservoirs. The Bethe lattice is assumed to have four-
fold coordination, with the following Hamiltonian:

A
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In our initial Hamiltonian all the levels, E; and E, , are
taken to be equal to Eo and ti p t; j t except for the sin-
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FIG. 1. Model used in the calculation of this paper. A linear
chain with N sites is joining two Bethe lattices.
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gle bond shown in Fig. 1. We are interested in obtaining
the total current and the induced electrochemical poten-
tial along each site of the system, when both reservoirs
have chemical potentials pL and jtR.

In order to get the total intensity I and the local charge
in each atom p; from Hamiltonian (1), and the chemical
potentials jtL and jtR (see Fig. 1), we follow the Keldysh-
Green's-function method. ' Our starting point is afforded

by the two following matrix equations

G+' (I+G"Z")Gp ' (I+X"6"), (2a)

GR ~ GR ~+GR ~f R ~GR" (2b)

where the 6+', G, and G" are the Keldish» retarded,
and advanced Green's functions, respectively; Gp refers to
the uncoupled system with t' 0. In this case we have lo-
cal equilibrium, and we get the corresponding Green's
functions using the well-known techniques for equilibrium
systems. " Equations (2) yield the nonequilibrium
Green's functions, G G", and G ' by introducing the
self-energy Z" Z" defined by the hopping parameter t'

Once we calculate the different 6+' Green's function,
we obtain the total current and the local charges p; using
the following equations

I 2— dto[tj j+~G&+,~'+~ (to) —tj+I,jGj+Ij (to)] ~

(3a)

condition at site i:

e de 6;+; (co) -p,P, (4)
zi "—

p,. being the neutral charge of the ith atom. In practice,
these perturbations V; extend to the whole 1D chain and
only to three or four atoms inside the Bethe lattice (or the
reservoirs). Notice that the reservoirs play the role of tak-
ing the current crossing the chain to the infinities; in prac-
tice, what is relevant is that the local intensity in the reser-
voirs decreases exponentially as we move inside, due to the
four coordination of the Bethe lattice.

It is worth mentioning that within a linear-response
theory, the above condition [Eq. (4)] implies

where &jt; defines the electrochemical potential of an i
site.

Next, we discuss the results of our calculation. Let us
consider, first of all, the total current I given by Eq. (3a).
The first point to notice is that, in this case, the total
current is independent of the final consistency in the
charges or, in other words, of the local potentials V;.
Indeed, 6 ' depends on jtL —jtR and V;, but the effect
of V; within linear theory is to induce charges in the atoms
but no current through the chain, as can be understood by
realizing that

f oo

p; - —. dro G;+ (e),
Xi 4— (3b) aG+ — aG+-

bG+ [(jtL —jt R), V;1= (pL —jtR)+ V;
jt V;

where j and j+1 refer to the atoms being connected by
the hopping t'(tj, j+~ t') In our c. alculation we intro-
duce potential self-consistency; this is achieved by allow-
ing the level at site i, F;, to change by a diagonal perturba-
tion V;, in order to fulfill the following charge-neutrality

I

(5)

and that 86+ /8V; is calculated for jtL =pR.
Then, the intensity can be obtained as explained in Ref.

6, yielding the following result (for jtL jtR small):

t 'Im[Gp, ,(EF)]Im[Gp,,+ ),,+ i (EF)l

i 1 —t'1m[6|!;,, (EF)]1m[6',+i,,+i(EF)] i'

Figure 2 shows the total conductance of the chain for t' t
in units of 2(e /It), as a function of the Fermi-level posi-
tion and the different number of chain atoms. The con-
ductance has a maximum value of 2(e 2/It ) due to the two
channels for transport (one per spin), and shows oscilla-
tions depending on the numbers of atoms in the chain.
These oscillations obviously reflect the interference be-
tween the standing waves of the chain and the reflection at
the reservoir contacts. It is also worth mentioning that
there is a common envelope for the minimum conductance
of the different N-atom cases (see Fig. 2), which in the
particular case considered in this paper takes the value 4

for co 0 (in this case the Fermi energy is located at the
midband of the 1D chain). This means that for the ideal
chain, N even and the Fermi energy at the middle of the
chain band, the conductance is 2 (e /It).

We now discuss the more interesting case of how the
electrochemical-potential changes along the Bethe lattices
and the 1D chain; let us comment that, as shown by Eq.
(5), we define the electrochemical potential at each site by

the local external potential V; induced at each point in or-
der to have local neutral conditions. Figure 3 shows the
electrochemical potential along the chain for different
chain lengths and different hopping parameters t' The.
main results that come out of our calculation are the fol-
lowing:

(i) In all the cases, for t' very small, the total potential
drop appears between the atoms limiting the t' bond.

(ii) As t' grows, the total potential drop is redistributed
along the atoms of the linear chain and the contacts of the
two reservoirs. For t' substantially smaller than t (say,
less than 0.3t-0.4t) the potential drop is concentrated in
the four central atoms distributed around the t' bond. For
larger values of t', the potential drop starts to concentrate
in the reservoir contacts.

(iii) As far as t' varies between t/ J3 and t J3, we find
several facts depending on the number N of chain atoms.
Thus, for N odd (say 5 in Fig. 3) and t' t, all potential
drop is localized across the reservoir's contact (a kind of
Sharvin's resistance' ), in such a way that the potential
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drop along the chain is zero, with the electrochemical po-
tential constant; for this case, we find that the total con-
ductance is 2(e 2/h), the maximum one.

For an even number of atoms (say, N 4 or 6 in Fig. 3)
and t' t, although we also find that the total potential
drop is mainly localized in the reservoir contacts, the elec-

FIG. 2. Total conductance G of the chain in units of 2(e2/h)
as a function of the Fermi-level position. The zero of energy
represents the middle of the one-dimensional conduction band of
the chain.

trochemical potential along the chain oscillates around a
zero mean value. This is related to the interference be-
tween the chain standing waves and the reflections at the
reservoir contacts; due to this fact, the chain conductance
is smaller than 2(e2/h), namely —', (e /h). Moreover, for
N even we find different results depending on whether the
number N/2 is either even or odd. For N/2 even we find
that if t' J3t, the total conductance is 2(e /h) and,
then, the potential drop along the chain is zero with a con-
stant electrochemical potential in the chain atoms; the to-
tal potential drop is then localized around the reservoir
contacts. We find similar results for N/2 odd, if we take

t/J3 instead of J3t
We should mention that the qualitative results found in

this paper are independent of the reservoir-contact details.
Although we have used two Bethe lattice as reservoirs, lit-
tle differences appear if we assume to have a cubic lattice
or some other appropriate reservoirs that play the role of
taking the chain intensity along many different channels
to infinity. For other reservoirs and n even, the value of t'
givin the maximum conductance is different from t/ J3
or 3t, otherwise the results of this paper are the same.

The main conclusion coming out of the results shown in

Fig. 3 is that the interference between the chain transmit-
tivity and the reflection of the reservoirs is of primordial
importance to define the total conductance of the system.
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FIG. 3. Electrochemical-potential values along the Bethe lattices and the chain sites in units of pL —pii for different numbers of
chain atoms a lV 0, (b) N 4, (c) N 5, and (d) % 6. It has been assumed for the sake of simplicity that pL —pa.
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In particular, we find two very interesting results:
(a) For a perfect ID chain (transmittivity equal to

one), the electrochemical potential oscillates around a
zero mean value along the chain, with a wavelength relat-
ed to the Fermi wavelength of the conducting electrons'
(in the particular case considered in Fig. 3, two chain
atoms define the wavelength).

(b) A nonperfect 1D chain (with transmittivity less

than one) can show a constant electrochemical potential.
In this case the interference between the chain transmit-
tivity and the reflection of the resevoir contacts can yield a
zero chain resistance, with the potential drop localized
around the reservoir contacts.

It is worth mentioning at this point that these results
also show that the total chain conductance is not neces-
sarily proportional to either T (its transmittivity) or
T/(1 —T). These results depend on the particular condi-
tions taken for the reservoir-chain contacts: only if the
reservoir is assumed to give no reflected wave into the
chain (for the waves outgoing from the chain itself) can
one relate the chain conductance to T or T/(1 —T) (these

two different results only depend on taking the total volt-

age drop either across the total system including the reser-
voirs or the individual chain). As mentioned above, these
single results for the 1D conductance have to be modified
when the transit process is viewed as a single quantum-
mechanically coherent event between the reservoirs and
the chain. '

The cases discussed in this paper show that the conduc-
tance of one-dimensional systems can be very much
dependent on the reservoir-chain contacts. In particular,
when the contact is such that the total conductance coin-
cides with the maximum value associated with the number
of open channels, one can expect that the voltage drop
along the chain is zero and that the total voltage drop is
localized at the reservoir contacts.
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