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Theory of the incommensurate-to-commensurate transition
in long-period superlattices of A 3B-type alloys
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A Ginzburg-Landau theory, in which a normal phase and an order parameter are, respectively,
the L 1& structure and the charge-density wave, is proposed to explain features of the incommensu-

rate to M =2 commensurate transition in long-period superlattices of A38-type alloys. Predicted
features are found to be consistent with those obtained experimentally.
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Long-period superlattices (LPSL's) have been found in
A 3B-type alloys with the L 1z structure, such as Ag-Mg
and Au-Zn. ' As is known, LPSL's are composed of the
periodic antiphase domains and their periods are ex-
pressed by the number M of unit cells involved in one an-
tiphase boundary. Sato and Toth experimentally found
that the period is determined by the size of the Fermi sur-
face along the ( 110) directions, where the surface has
flat portions. This seems to suggest that the LPSL is due
to the appearance of charge-density waves (CDW's), al-
though the CDW state in the three-dimensional system
has not been accepted. Note that the striped-type super-
structure in the y-brass alloys has been recently pointed
out to be regarded as a CDW state in the three-
dimensional system.

The period determined by the size of the Fermi surface
is generally incommensurate. According to the McMil-
lan theory on transition-metal dichalcogenides, the
phase of the purely incommensurate wave at lower tem-
peratures is effectively modulated by waves derived from
higher-order harmonics via the umklapp process. The
phase modulation leads to a discommensurate structure
which consists of the in-phase and phase-slip regions.
The phase-slip region is called the discommensuration.
On the other hand, the (2 1)-type and (2 3)-type struc-
tures have been found in the LPSL in the vicinity of
M=2 in the A3B-type alloys such as Ag-Mg and Au-
Zn. A unit cell of the (2jl )-type structure is, for in-
stance, characterized by j antiphase domains with M =2
and one domain with M =1. The (2'1)-type and (2'3)-
type structures can be regarded as incommensurate struc-
tures, although de Fontaine and Kulik pointed out that
both are commensurate structures. Because the M=2
domain region is a commensurate region, the M =1
domain should be the discommensuration in the (2tl)-
type structure. However, this has not been confirmed
theoretically and is just a supposition.

The incommensurate-to-commensurate transition in
the LPSL—that is, the transition from the (2~1)-type
structure to the M=2 commensurate structure —has

been found in the Ag-Mg alloys. ' The in situ observa-
tion of the transition was then carried out in order to ex-
amine the details of the transition. Characteristic pat-
terns consisting of four M = 1 domains play an important
role in the transition. In the incommensurate phase, fur-
ther, the period was found to approach M=2 with de-
creasing temperatures.

In this paper we present a theory to explain features of
the incommensurate-to-commensurate transition in terms
of the Ginzburg-Landau theory with CDW's as an order
parameter, which is analogous to that of McMillan for
the dichalcogenides. The present work is, in particular,
focused on the one-dimensional LPSL s in the vicinity of
M =2 in the A 3B-type alloys, where the in-

commensurate-to-commensurate transition was observed
in the Ag-Mg alloys.

Although LPSL's appear from a disordered phase upon
cooling, the normal phase is not the disordered phase, but
the ordered phase; that is, the L lz-ordered structure in

the A3B-type alloys. The transition from the disordered
phase to the LPSL phase actually involves two processes.
One is the ordering process from the disordered structure
to the L 1z-ordered structure, and the other is the intro-
duction of the periodic array of the antiphase boundaries
in the ordered structure. The latter is assumed to be due
to the appearance of the CDW's in the present theory.
From this viewpoint, the transition should be a two-step
transition: the disordered phase~the L 1z-ordered
phase~the LPSL upon cooling. Kikuchi and Sato" ex-
amined the disordered-to-ordered transition on the basis
of the cluster-variation method in the tetrahedron ap-
proximation. They found that the transition is of first or-
der and is suppressed largely with respect to temperature
because of the frustration in the L lz-ordered structure.
This means that the transition temperature can be
lowered below that between the ordered and LPSL
phases. Because of the experimental fact that LPSL's ap-
pear directly from the disordered phase, this possibility
must be realized. The free-energy curve of the disordered
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phase should be intersected by that of the LPSL, as will

be shown in Fig. 2. In the present case, therefore, it is as-
sumed that the normal phase is the L12-ordered phase
and transforms into the LPSL upon cooling, due to the
formation of the CDW's.

The electronic charge density of an LPSL is written as
p(r) =po(r)[1+q(r)], where po(r) is the charge density of
the normal L lz-ordered structure and rl(r) is a real order
parameter due to the formation of the CDW's. The real
order parameter is expressed as a real part of the complex
order parameter %(r), and %(r) includes the contribution
of higher-order harmonics. Note that wave vectors of the
complex order parameter for the first-order wave are
nesting vectors. The vectors actually deviate from those
determined by the size of the Fermi surface as a result of
the phase modulation by waves related to the higher-
order harmonics through the umklapp process.

When one-dimensional LPSL's are formed along the
[010]direction, nesting vectors in the A &8-type alloys are
understood to be Q, =(l, I+6,o, 0), Q2=( —1, 1+6,o, 0),
Q3=(0, 1, +ho, 1), and Qz=(0, 1+60, —1), on the basis
of the relation between the Fermi surface and the Bril-
louin zones of the A3B-type alloys where 60 represents a
deviation of the first-order diffraction spots from
110—type ordered spots along the [010] direction and is
equal to 1/2M. The complex order parameter for the
first-order wave is then calculated as a sum of four plane
waves with the wave vectors Q, , Q2, Q3, and Q4, respec-
tively, and is given as $0=@oexp[i(1+60)G«»0)'r],
where 4O is a complex amplitude of the first-order wave
and 6 a reciprocal-lattice vector of the L12-ordered
structure. Note that the complex amplitude includes the
periodicity along the [100] and [001] directions perpen-
dicular to the modulation direction, and the periods of
both directions coincide with those of the normal struc-
ture. Because of this, we neglect the position dependence
of 40 in the present calculation for convenience. More-
over, odd-order harmonics are observed around
1 —,'0-type positions in electron-diffraction patterns, as
schematically shown in Fig. 1. These positions corre-
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FIG. 1. Schematic representation of odd-order harmonics
around the first-order spot in the case of 1.5 ~MD ~ 3.0. The
distance between the first-order spot and the —' position is

defined to be co. The period M is related to co in the relation of
M =2/(4a)+ 1 j.

spond to that of M =2. The complex order parameter in-

cluding the higher-order harmonics can be expressed as

4(r)= g QJ
= g 4J exp[iqjG(o)0& r],

J j
where qj

= 1+5 =
—,'+ (4j + 1)co, as understood from

Fig. 1, and values of j for the first-, third-, fifth-, and
seventh-order harmonics are 0, —1, 1, and —2, respec-
tively. Note that the complex order parameter given by
Eq. (1) can be used for the LPSL with 1.5—=M-=3.0. A
difference between two cases of 1.5 =—M & 2.0 and
2.0(M =—3.0 is only a sign of co.

In the present theory we adopt the following
Ginzburg-Landau free energy,

F= J drIE~(V —iqoG(o, o))%(r)~

+a [rl(r)] +b [q(r)] +c [q(r)] I, (2)

where po =1+1/2MO and Mo is a period determined by
the size of the Fermi surface. Because of the invariance
of the free energy with respect to the translation symme-
try of the normal L12-ordered structure, the coeScients
are given as, for instance, c =co
+g c exp( i G r—). The temperature dependence is
assumed to be ao =a'( T —

TD ). By substituting Eq. (1)
into (2), the free energy becomes, in a general form,

F =g g K@J4 '(q —
q&) )(q —

qo )G &00&5(q
—

q, )+—,
' g g a% 4 5(q +q~') + —,

' g g g b 4 4,'4,' 5(q +q +q, ~ )

+ —,', g g g g c4~4&J 4, 4~' 5(q, +qj +qj +q~' ),
J J J J

(3)

where 5(q ) =1 for q G«»0& =0 or G, and 5(q, ) =0 oth-
erwise. In Eq. (3), the coeScients are treated as follows;
for instance, c =co for (q, +q'+qj'+q~'-)G&o, o&

=0 and
c =c for (q, +q, +q,'+q,',.)G&o,o&=G . Moreover,
Eq. (1) can be changed into

4(r) = A exp[i( —,'G(0,0).r+8)], (4)

where an amplitude and a phase are, respectively, given
as A =[a(r) +b(r) )'~ and 0= tan '[b(r)/a(r)] by
using

a (r)= g 4, cos(4j+1)coG(o,o& r
J

and

b (r) = g 4, sin(4j + 1)coG&0,0& r .
J

Hence, the phase and amplitude modulations can be ob-
tained as the position dependence of 3 and 0, which are
calculated from the amplitudes obtained by minimizing
the free energy.

In the Ag-Mg alloys that the present theory can be ap-
plied to, the first-, third-, fifth-, and seventh-order spots
are clearly observed in electron-diffraction patterns. Be-
cause of this, the free energy for the four waves are used
in order to calculate some physical properties in the
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incommensurate-to-commensurate transition. First of
all, the complex amplitude is written as 4, =P, exp(ia, ),
where (b and a& are, respectively, a real amplitude and a
phase of the complex amplitude. The real amplitude is

I

also assumed to be positive. %hen it is assumed that
ao=a 2=0 and a

&
=a& =m, +0=a 2=0 anda, =a&=m the free energy for the four waves can be

then written as

Ff 2 KJPj g Cl~j + g g 4CI~Jkk C2(~0~ 1+—3404 —141+340410—2 ~ —1~14—2)
k (-~j)

C3 ( 40—1'(('1+40 5 —10—2+ 400 —
I 0 1 4 —2)

with the help of new coeScients C instead of c, where
K Ko(q qo) G(ohio&+ ~a (T To) To To —(a, /
a'). The summation g is made for j= —2, —1, 0, and
1. Both P, and M were determined by minimizing the
above free energy with respect to Pj and M, and the cal-
culation was carried out by the iteration method. More-
over, the commensurate structure in the present case is
the LPSL with the M =2. From Eq. (3) a free energy of
the M =2 commensurate structure becomes

Fc =K,'P, +(C, —
—,'Cq)$, ,

where K,'=Ko( —„'
—1/2Mo) 6&o&o&+-,'-a'(T —To), and P,

is a real amplitude of the M =2 commensurate wave.

Figure 2 shows the free-energy curves of both incom-
mensurate and M =2 commensurate structures plotted
against temperature for M0= 1.80, respectively. The pre-
dicted curve of the disordered structure is also depicted.
The calculation was made by using the parameters

~0 1 ' 0 +0+(01O)=20.0 C& =0. 1 12 C2 =0. 122
and C3 =0.350. In Fig. 2 the free-energy curve of the in-
commensurate (IC) structure intersects that of the com-
mensurate one at T,c =0.73. This means that the
incommensurate-to-commensurate transition occurs at
this temperature for Mo=1.80. It should be remarked
that the curve of the incommensurate structure should be
intersected by that of the disordered one on the basis of

the experimental fact, as described earlier. In the 6gure
the intersecting temperature TDL, that is, the transition
temperature for the disordered to LPSL transition, is as-
sumed to be T =0.9, although there is no physical reason
for this assumption.

The amplitude and phase modulations at the transition
temperature of the incommensurate-to-commensurate
transition for MD=1. 80 in the case of 1.5~M &2.0 are
shown in Fig. 3. Note that features shown here are essen-
tially the same as those in 2.0&M&3.0. The phase-
versus-position curve consists of the constant-phase and
phase-slip regions. From Eq. (4) the constant-phase and
phase-slip regions are, respectively, understood to be the
M =2 commensurate region and the discommensuration.
The magnitude of the phase slip across the discommen-
suration is found to be 2m/4. In the present case the
phase slip of 2n /4 leads to the introduction of the M =1
domain in 1.5 & M & 2.0 and the M =3 domain in
2.0&M 3 0 Hen. ce. , the (2 1)-type and (2j3)-type
structures are expected on the basis of the present theory.
In addition, the characteristic pattern consisting of four
discommensur ation lines is expected because of
(2m. /4) X4=2n As desc.ribed earlier, these structures
and the pattern have been actually observed in the Ag-
Mg and Au-Zn alloys. Furthermore, the amplitude is
found to have a minimum at the discommensuration.

Figure 4 shows the temperature dependence of the
period for various Mo, which were calculated by using
the same parameters as those in Figs. 2 and 4. When the
temperature is lowered, the period tends to approach
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FIG. 2. Free-energy curves of the incommensurate and
iV =2 commensurate phases, as a function of temperature for
M0=1.80. The solid and dotted-dashed lines denote curves of
the incommensurate and commensurate phases, respectively.
The curve of the disordered phase is also shown by the dashed
line. Both the free energy and temperature are norm. alized with
respect to To, and are thus dirnensionless.
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FIG. 3. Calculated amplitude and phase as a function of po-
sition at T =0.73 for Mo = 1.80. The amplitude A and the posi-
tion r are normalized with respect to the maximum of A and the
distance between two neighboring discomrnensurations, Ar, re-
spectively, and are thus dimensionless.



41 BRIEF REPORTS

M =2. The degree of the change in period is more re-
markable in Mp closer to Mp =2. Further, the
incommensurate-to-commensurate transition is repro-
duced for Mp=1. 80 and 2.20.

As pointed out by de Fontaine and Kulik in the appli-
cation of the ANNNI model to the LPSL's, the period of
the (2~1)-type and (2J3)-type structures can be written
as M= V/8' where V and 8' are prime numbers, and
are strictly commensurate. In our theory, the commensu-
rate structure should satisfy the condition UqpG(p~p)

=tvG&oto) (v and tv are integers). From qo =1+1/2M,
M is derived as u/2(tv —v), which coincides with the
de6nition of the commensurate structure mentioned
above. Hence, the lock-in term originating from
5( vqo ) = 1 appears in the vth-order term. Because the
present free energy has terms up to fourth order and the
value of U is greater than 5, the lock-in term cannot be
taken into account. This means that the (2tl )-type and
(2'3)-type structures are regarded as the incommensu-
rate structure. It should be noticed that our treatment is
never inappropriate, because the higher-order lock-in
term makes only a very small contribution to the free en-

ergy. The most important advantage in the present
theory is that we are able to understand features of these
structures, such as the temperature dependence of the
period, and the discommensurate structure. In fact, the
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present theory can explain the features found experimen-
tally in the 338-type alloys, except for the discontinuous
change in period, which results from the transition be-
tween ( 2J 1 )-type structures.

FIG. 4. Calculated period as a function of temperature for
various Mo. For MO=1 ~ 80 and 2.20, the actual period jumps
from the incommensurate value to M=2.0 upon cooling, as
shown by arrows.
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