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%'e derive and evaluate expressions for the electromagnetic coupling between a two-dimensional
grating and a nearby two-dimensional electron gas. By considering both the thickness and the sepa-
ration of the two systems as small compared with macroscopic wavelengths, a numerically tractable
prescription for their mutual inhuence on an incident beam is developed. The theory is evaluated in
several model calculations, which compare favorably with recent far-infrared transmission studies
of cyclotron and magnetoplasmon resonances. The general need for a nonperturbative analysis is il-
lustrated.

I. INTRODUCTION

A common way to study the excitations of electron sys-
tems with reduced dimensionality is with infrared absorp-
tion. ' In order to increase the range of wave vectors
that can be so examined, one often uses a planar grating
coupler of period a to allow jumps in the probe wave vec-
tor parallel to the plane by

G„=(2' la)n,
where n is an integer. ' A schematic of the experimental
arrangement is shown in Fig. 1. Typically, light is in-
cident along the surface normal and one measures the net
transmission T Since .the physical thickness of such a
grating is often much smaller than its separation d from
the similarly confined electron system, the optical prob-
lem may be idealized to the coupled response of a pair of
two-dimensional layers. Further, because a is much
smaller than the wavelength of light in either of the sur-
rounding media, any field with a parallel variation set by
G„with n%0 cannot propagate away; i.e., all of the
diffracted beams are evanescent. The task of theory is
then to describe consistently these local fields near the in-
terface and their influence on the transmission of the
zeroth-order beam.

In this paper we begin an analysis of how one can
theoretically formulate and evaluate the effect of the grat-
ing coupler. For simplicity we treat the confined electron
system as a homogeneous, two-dimensional, free-electron
gas (called henceforth the 2D-EG), whose electrical
response is characterized by an areal density X, an
effective mass m*, and a Drude relaxation time ~. We
postpone to later work the study of more complicated
features in the 2D-EG since our present emphasis is on
the influence of the grating. The first papers that em-
ployed such experimental methods outline a perturbative
scheme for treating the grating's influence. The
derivation that we developed in Sec. II is more complete
and more general. We do confirm the earlier perturbative
expressions, but also can calculate in regimes where they
fail. This always occurs as v. is increased, so the continu-
ing improvements in 2D-EG sample quality mandate
such improvements in the theory.

Our theory also can explain a novel experimental
feature that appears in comparing cyclotron resonance
signals observed without and with a grating coupler.
When there is no grating present, the maximum change
in the transmission of an unpolarized incident beam is
50%. This is easy to understand if one considers the in-
cident light to have equal amounts of right and left circu-
larly polarized light. The cyclotron absorption on reso-
nance blocks one of these, but leaves the other essentially
unaffected. The puzzle is that when one adds a grating
coupler, the maximum charge in transmission increases
to weil over 50%.

This effect, however, is also simple to rationalize once
one acknowledges the polarizing action of the grating.
Let z be the direction along the metal strips of the grat-
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FIG. 1. Qualitative sketch of the interface region showing
how various parameters in the text are defined. Both side and
top views are given. The spatial variation of the grating con-
ductivity is here imagined to be due to thin metal strips along z,
of difFerent thickness along X.
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ing and y be the orthogonal direction in the grating
plane, see Fig. 1. For simplicity characterize the (diago-
nal but anisotropic) conductivity of the grating by the
(artificial) homogeneous values of infinity along z and
zero along y. This makes an isolated grating a simple
linear polarizer. There can be no electric field along z in
its near vicinity. Hence there is no significant electric
field along z in the 2D-EG as long as the separation d in

Fig. 1 is much less than the wavelength. In the presence
of a static magnetic field along x, the surface normal, the
incident radiation will cause current to flow in the 2D-
EG along both the y and z axes, but that along z will be
effectively canceled by an image current in the grating.
Hence only the oyy component of the 2D-EG conductivi-

ty can influence the transmission coefficient, independent
of whether there is or is not an applied static magnetic
field present. For an unpolarized incident beam, the
transmission coefficient is then easily shown to be

2T —i T —~ (e )1/2
2 y 2 (2)

1+(e, )' + cr
C

II. FORMALISM

The physical assumptions about the system geometry
allow several important simplifications in the analysis. If
the zeroth-order beam is moving along the surface nor-
mal, only the induced currents lying in and averaged over
the surface plane can influence the reflection and
transmission amplitudes. One can then separate the
problem into two stages: first to calculate the microscop-
ic surface currents for different choices of perturbing
fields and second to determine their effect on the zeroth-
order beam.

We begin with the latter task since it is the easier of the
two. One is looking for the modifications to the Fresnel
reflection and transmission coefficients, when light from
vacuum strikes at normal incidence a dielectric whose
bulk response is characterized by e, and which in addi-
tion can generate surface localized currents described by
the constitutive relation

(J)=X E (3)

where both the surface current density (J ) and the elec-
tric field E lie in the surface plane, and neither depends
on position in this plane. We are postponing until later
in this section the calculation of the 2 X 2 tensor X, which

where c is the speed of light and e, is the dielectric con-
stant of the substrate. At the cyclotron resonance cr be-
comes large and the drop in T can exceed 50go.

We will numerically demonstrate this behavior in Sec.
III along with the predictions of a more realistic analysis.
We also will present model calculations of the signal
strength predicted for the magnetoplasmon resonances
which occur at larger wave vectors. The dependence of
these and of the cyclotron resonance on the parameters of
the grating and of the 2D-EG will be illustrated and com-
parisons made with more approximate estimates of the
grating coupler efficiency.

AF. =0, (4a)

xXAB = (J)
e

(4b)

where b denotes "the jump in value across the interface
of %9

It is now straightforward to solve for the macroscopic
fields. One writes down linear combinations of partial
waves that satisfy Maxwell's equations away from x=0
and which represent the incident, reflected, and transmit-
ted beams. The unknown amplitudes of these partial
waves are determined by requiring Eq. (4) to hold. We
will illustrate the procedure for an incident beam polar-
ized along y. The electric field is written as

(0, 1,0)e'~'+(O, E",E,")e '~", x (0
(O, Ey', E,')e'~', x )0

where p =talc and p'=co(e, )'~ Ic, with co the light fre-

quency. The triplets of numbers describe the Cartesian
components of the partial waves along x, y, and z. From
Faraday's law the corresponding magnetic field is

(0,0, 1)e' "+(O,E,", E~)e '~",—x (0
(e )' (0 EZ, E~)e'~—" x )0

I (6)g 0— I COf

wherein the same four unknown amplitudes appear.
These are found by invoking (4) and using (3) with E
there evaluated at x=0.

We skip the intermediate algebraic steps to write the
results for the transmission coefficient as

T =(e )'"(iE'i'+ iE'i')
where

4'
zy y 1+(e,)'"+

C

and

E'=2 1+(e,)'"+ r„
C

4m
yz

4m
zy

(9)
1(+)e'" +"r„

e

The answer for an incident beam polarized along z may
be written as in (7)—(9) but with every y subscript
changed to a z subscript and vice versa. For an unpolar-
ized incident beam one should use

T= —,'(T +T, ) . (10)

Note that elements of the two-dimensional conductivity

describes the net effect of the microscopic structure of
two conducting layers; i.e., of grating coupler plus 2D-
EG. The surface currents in (3) lead to the following
boundary conditions for macroscopic fields moving along
the surface normal:
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X may be considered as large or small depending on
whether they are greater or less than

J's'(y)= g J' '(n)cos(G„y)
n&0

(12a)

=1/(377 0) .
4m

The "perfect polarizer" limit discussed in the Introduc-
tion can be extracted from these equations by letting
X„—+ ~ and replacing all other X elements with the cor-
responding elements of the 2D-EG conductivity. As we
show in Sec. III, this can be adequate for describing cy-
clotron resonance signals, but it completely misses mag-
netoplasmon effects. Hence we turn to more sophisticat-
ed estimates of X.

Again the small thickness and period of the grating
and its small separation from the 2D-EG allow us to sim-

plify the equations. In contrast to the above calculations
where the spatial variation of the transverse electromag-
netic fields is evident while the longitudinal fields are hid-
den in the constitutive relation for the averaged surface
current (J), we now want to examine the longitudinal
fields in detail which means that we will be working on a
spatial scale where the transverse fields can be treated as
constant. Further we assume that the grating inhomo-
geneity depends only on y in the surface plane and that it
is not only periodic in y but also an even function of y.
This allows us to expand the surface currents in a cosine
Fourier series in y and sets the parity of the various mi-
croscopic field components.

We shall neglect the finite thickness of both the grating
and the 2D EG, treating each as a strictly two-
dimensional layer. This excludes (for now) a treatment of
intersubband transitions, which have been observed both
without and with grating couplers —see the examples in
Ref. 3. It also prevents a discussion of grating couplers
with non-negligible thickness; e.g. , those based on deep
grooves of dielectric rather than just thin layers of met-
al. ' ' A more involved grating theory is necessary for
these. '

The in-plane response of the grating and the 2D-EG
are treated quite differently. We assume the grating con-
ductivity is diagonal and local, but due to its inhomo-
geneity has a macroscopic anisotropy. The current is
written as

'g'(y). E'g'(y) (12b)

where the superscript g denotes grating. The precise
functional dependence of the conductivity tensor on y is
not crucial; we only require that it can be expanded as

o'g'(y)= g cr' '(n}cos(G„y) .
n&0

(13)

A similar expansion holds for the grating s resistivity ten-
sor

p's'(y)=[0's'(y)] '= g p' '(n)cos(G„y) .
n&0

(14}

in which the parallel electric field is that at the plane of
the 2D-EG. Our model calculations in Sec. III ignore the
n dependence of Lr(n), which suppresses in particular the
excitation of cyclotron resonance harmonics. "' ' It
can be easily restored.

To get a closed set of equations for the currents in (12)
and (15) we need to describe the electric field near the in-

terface. We separate the total field E into

E(x )=Er+EL(x ),
where

(16)

ET=(0,e,e, ) (17)

is constant and represents the slowly varying transverse
fields near the interface. Comparing for example with (5)
we would identify e =E~=1+E"and e, =E,'=E,'. The
strong microscopic variation of E lies in the longitudinal
field EL (x ) which we expand as

For the 2D-EG we allow its conductivity to be nondi-
agonal and nonlocal, but presume it (for now) to be iso-
tropic and homogeneous. The latter two constraints can
be removed without greatly complicating the formal
theory, but we postpone this extension to a future pa-
per. ' The 2D-EG current is written in cosine Fourier
space as

J(n}=rr(n) E(n),

g r„( ins(G„},ycos(G„y}, 0)e ", x &0
n&0

E (x)—. g [A.'„'(—sin(G„y), cos(G„y), 0) e " +A, '„+'(sin(G„y}, cos(G„y), 0)e " ], 0&x &d
n&0

g t„(—sin(G„y), cos(G„y), 0) e ",d &x
n &0

(18)

where x=O is the location of the grating and x =d that
of the 2D-EG. Away from these planes EL has zero
divergence and zero curl. Consistent with our neglect of
spatial variation in the transverse fields, the speed of light
does not enter the wave vectors in (18); i.e., EL is the

electrostatic approximation to the longitudinal field gen-
erated by the charge accumulations in the pair of two-
dimensional layers. We are also neglecting spatially vary-
ing transverse electric (or magnetic) fields, which is a
standard approximation in problems of local field
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effects, ' since their relative contribution is reduced by
factors of co/G„c « 1.

The parameters in (18) are to be determined by the
boundary conditions across each layer:

one could formally use (12) to find for n %0

J' '(n)= cr' '(n)e + — dy cr' '(y) r
a

O' N' 3'

hE =0, (19a) + —,
' g' cr'g'(rn)(r„+ +r~„~) .

m &0
(27)

bD„= . (V J),
LCO

(19b}

where we have introduced the displacement field
D =e(x)E with

1, x&0
e(x)= . eo, 0&x &d (20)

and have used the equation of continuity in each layer to
express the induced charge density in terms of a diver-
gence of the microscopic current. For the 2D-EG this
divergence may be simply expressed as

V J=—g G„cr~„(n)t„sin(G„y),
n&0

(21}

while for the grating it depends on the functional form of
o(g)(y)

Substituting EL of (18) into (19) and using (21) we can
eliminate 1,'„+', k'„', and t„ from the resulting set of four
equations for each n %0 to arrive at

E(g )(y )
—p(g ((y ) .J(g )(y )

which implies an inverse analog of (26)

E'g'(n =0)—=e

(12')

—f dy p'g'(y} jo+ —,
' g p'g'(k)J'g'(k) .

k &0

(28)

To simplify the notation define

The prime on the summation is a reminder that the term
with rk 0 should be excluded. The combination of Eq.
(27) with Eq. (22) should allow one to eliminate the
J'g'(n) and solve for the r„as proportional to e~.

We shall actually follow an alternate route based on a
suggestion of Theis, ' which uses resistivity tensors to
eliminate the r„so one can solve for the J~g'(n) as pro-
portional to j0 ~ This approach starts from the inverse of
(12b)

r F =J'g'(n} (22)
p= —f dy p~(g~'(y), (29)

where

LCO

4-6. 1+eocoth( G„d )

p(Ic)=pE (Ic),

j(k)=J'g'(k)/jo for k )0.
Then (28) becomes

(30)

(31)

co[ 1 —coth ( G„d ) ]+
4m.i

G„o~~ ( n ) +e, +eocoth( G„d )

(23)

jo/e = p+ —,
' g p(k)j(k) (32)

k &0

which requires the j(k) to determine jo. To find these we
use (12'} to find for n %0

Only y components appear in (22} and (23) because there
are no fluctuating fields along z nor does any quantity
vary with z.

Before trying to solve (22) recall that we seek

r„= pj(n)+p(n)

+ —,
' g' p(m)[j(n+m)+j ~(n —m~)] jo

m&0
(33)

(J)=o(n =0)'E'T+J g (n =0)

where

where again the sum excludes the term with j(k =0).
Substituting (33) into (22) formally eliminates the r„:

J,' '(n =0}= — dy cr' '(y) e, —=oe,
a

(25)
j (n)/F„= pj(n)+p(n)

+ —,
' g' p(m)[j(n +m)+ j( ~n

—m~ }] .
m &0

(34}

is easily calculated and cr(n =0) is known. Hence the
only unknown is from (12) and (18)

J„'g'(n =0)—=j,
j a

dy o~~~'(y) e~+ —,
' g o~~Pk)rk,

Q 0

(26}

which in this form requires the rk. To determine these

X=cr(n =0)+ (35)

The "perfect polarizer" approximation of the Introduc-
tion sets j0/e~ to zero and cr to infinity.

After solving (34) for the j(n), one uses (32) to find the
proportionality between j0 and e„which finally allows
the determination of X from (24) —(26) as

j0/e 0



41 THEORY OF T%'0-DIMENSIONAL GRATING COUPLERS 8497

j(n) =p(n)F„, (36)

which when substituted into (32) and expanded again
yields

2

jo/e„= 1/p ,' g ——F„.p(k)
k)o p

(37)

This result, used in (35) to determine X, which in turn
determines T in (10), is equivalent to the perturbative es-
timates found by others. Its validity depends on none of
the F„becoming large, which fails when i increases so
one can be near a zero of the denominator in (23).

III. MODEL CALCULATIONS

To numerica11y implement either of the two solution
schemes outlined above, which are formally equivalent,
requires a truncation of a Fourier series so that matrices
of finite dimension may be used. We have found that our
results can be unphysically sensitive to the choice of this
cutoff if we use conductivities and try to truncate the r„
series, while no such difficulty appears if we use resistivi-
ties and truncate the j(n) series. The physics behind
this distinct numerical behavior is that there are strong
spatial fluctuations in the electric field at the grating, but
relatively weak variations in the microscopic current den-
sity. Hence one can be more successful in approximating
high Fourier coefficients in J' ' than in E' '.

Before turning to model calculations, we make note of
a perturbative estimate of jo/e . If we assume that F„p
and F„p(m} are all much smaller than unity, then we can
extract from (34) the analytic estimate

is that va ((1, so the F„of(41}are always much smaller
in magnitude than c/(4n ).

In Fig. 2 we show how the transmission of light of
different polarizations is affected by the grating parame-
ters t/a and p&/pI. For all the curves we held fixed
va =0.005 and pI, =1000 Q. The polarizing property of
the grating quickly becomes evident as p&/p& increases
with T, falling to zero (eventually as pi} and T~ saturat-
ing. The saturation value of T„decreases with decreasing
t/a because the width of the highly conducting strips is
thereby increased. The choice of p&=1000 0 can be
viewed as a compromise between two opposing behaviors.
A larger pi, gives a larger saturation value of T, but one
would need then to make the ratio p&/pi, smaller to get
the same amount of polarizing effect. In the other direc-
tion, a smaller p„decreases the saturation value of T but
increases the polarizing action as p&/pI increases. Typi-
cally experimental values have

4m =377 n&p, .
C

For all the results plotted in Fig. 2 we used (32) and
(34} and cut off the cosine Fourier sums at n = 10, which
sets the size of the matrix to be inverted in solving (34).
We checked for various cases that the results are not sen-
sitive to this choice. In contrast, we could not find a sa-
tisfactory result for the solution of (22) plus (27) once

pi, /p& exceeded ten. Hence for all the figures we only
show results that use Eq. (32), rather than (26), to evalu-
ate jo. The upper limit on the Fourier sums will be held
at 10.

Now include the 2D-EG. Its response is here de-

In this section we give some numerical illustrations of
our formal results. The models chosen are rather simple
but still can reasonably represent a wide range of experi-
mental configurations.

We begin with the grating taken in isolation, i.e., the
2D-EG is removed and one has only a substrate with

e, =12.8 in x & 0. The conductivity is assumed to have a
step profile, with o&= I/pi, over a width t and oi, =1/pi
over the remainder of the period, a —t, see Fig. 1. The
high and low values of conductivity as well as the ratio of
t/a will be varied to exhibit trends. Our simple choice
for the conductivity profile yields immediately

0.6—

0
0.4

I I I I IIII i i i I i III i i i i iiii i I i i iiii

t
cr = OI+ 1 o& (38)

p pa+ 1 pI ~ (39)
0.0 i i i I IIII i i i i i liif~~t~~kM~LI

p(k&0)= (pi,
—pi)sin(nkt/a),

2 10 100
Pg/Pi

1000 10000

and in the absence of the 20-EG

F„= (1+@,)=i (I+a, }
4m

(41)

where v=co/(2nc) is the light frequency expressed in
wave numbers. A basic assumption of our whole analysis

FIG. 2. Transmission coe%cients through an interface that
has a planar grating but no 2D-EG. The substrate has e, =12.8
and the grating parameters t/a and pz/pl are varied with va
and pj, fixed. The solid (dashed) curves are for light polarized
across (along) the grating strips. Four choices of t/a are illus-
trated: t/a=0. 7,0.5,0.3,0.1, and the transmission coeScient for
each polarization decreases monotonically with decreasing t /a.
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scribed by the surface conductivity

O' 0'

CT 0' (43)

whose elements are

o =
—,'(cr++o ),

o '= ,'i (a—+ tr —},
where

and

Ne ~
g + = /[1 i (c—ozco, )r]m* (45)

(46)

AT/T = [T(8o =0)—T(8o)]/T (Bo=0) (47)

and the material parameters have been chosen to model

0.8 (.o '

0.8
0.6
0.4

I
I

I

with 8O the static magnetic field pointing along x. As
noted earlier, these semiclassical results have no wave-
vector dependence so cr only shows significant structure
near the cyclotron frequency co„and not near harmonics.

In Fig. 3 we plot the fractional change in transmission
of an unpolarized incident wave near the cyclotron reso-
nance. The ordinate is

the data in Ref. 9. Consistent with experiment, the grat-
ing significantly increases the strength of the resonance
(to above 50%) and slightly reduces its width. Across the
center of the resonance jo/e is less than (900 0) ' in
magnitude, while the constant o =(2 0) '. Hence in
view of Eq. (35) it is not surprising that the "perfect po-
larizer" approximation yields essentially the same results
for hT!Tas the full grating calculation.

The grating results are fairly sensitive to the value of ~,
as shown in the inset of Fig. 3. [For this system the
mobility )u is related to r by r(psec) =40.4p( 10
cm V ' s ' }.] The results for no grating remain below
50%, while those with the grating can increase up to
100%. The choice r= 5.5 psec, holding all other parame-
ters fixed, gives a maximum to b, T/T that matches the
58% reported in Ref. 9. There is less sensitivity to small
changes in the grating parameters; but this qualitative re-
mark only holds for the cyclotron resonance region,
where the primary influence of the grating is its action as
a linear polarizer.

This last point is illustrated in Fig. 4, where we plot
b, T!T over a wider frequency range. Essentially the
same parameters are used as in Fig. 3, but the effect of
different choices of t/a is shown. Contrast in particular
the significant changes in the strength of the first two
magnetoplasmon resonances, near 77.2 and 92.7 cm
against the nearly constant shape of the cyclotron reso-
nance peak. A similar behavior occurs if we vary pi, /p&,
specifically as p„/p, ~l all the magnetoplasmon peaks
disappear while the cyclotron resonance peak merely
drops below 50%. In all of these variations the peak po-
sitions do not noticeably shift. For the magnetoplasmons
the peak locations are well described by the zeros in the
real part of the denominator of the F„,which for ~,~ && 1

0.6— 0.2
0.6 I I I I I I I I I I I I

0.4

0.2

0.0
60

I I I I

65
~(cm-~)

70

0,2

FIG. 3. Fractional change in transmission, Eq. (46), due to
cyclotron resonance. Results both without (long dashes) and
with (solid) a grating present are shown. The 2D-EG has
N =6.7X10"/cm, m /m =0.071, and v.=4.5 psec; its cyclo-
tron resonance in the B field of 5 T is at v, =65.6 cm '. Refer-
ring to Fig. 1 we use for the substrate co=a, =12.8 and for the
grating a =0.872pm, d=800 A, t/a =0.5, oz =1/(1 0), and
vi=1/(2000 0). The short-dashed curve is from the "perfect
polarizer ' expression in (2). In the inset we show the variation
with ~ of the maximum value of 6T/T at v, .

0.0
60 70 80

v(cm i)

90 100

FIG. 4. Fractional change in transmission, Eq. (46), due to
both cyclotron and magnetoplasmon resonances. The same pa-
rameters are used as in Fig. 3, except that ~=5.5 psec here and
that calculations for three different corrugations are shown.
The results plotted as solid, dashed, and dotted curves are for
t/a values of 0.5, 0.65, and 0.35, respectively.
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may be expressed as

2

to„=to, +4m G„[e,+eocoth(G„d)]m*
(48)

0.06—

0.04

I I

I

I I I I

I

I I I I

I

I I I I 0.4 I I I I

I

I ( I I

I

I I I I

I

I I I I

(b)—

i.e., the standard nonretarded dispersion for magneto-
plasmons in a 2D-EG separated by d from a perfectly
conducting gate. It is remarkable that this simple equa-
tion describes so well the peak locations in hT/T.

At a qualitative level, all of the remarks made in the
last paragraph have been known since the perturbation
expressions were obtained. In particular the sum of
contributions in (37) describes approximately the
inhuence of the grating on excitations at wave vectors
Gk. The factor of p (k) contains the strong t/a and

p&/pl dependence of the magnetoplasmon peaks —see

(40)—and the F„determines the peak locations. Howev-

er, Eq. (37) is not always quantitatively reliable, as we
show in Fig. 5, which is based on the parameters of Ref.
4. In Fig. 5(a) we use the value of r reported in the exper-
iment and show b T/T calculated both from our com-
plete theory and from the expansion (37) with no further
approximation. The two theoretical estimates agree well

with each other and with experiment. Then in Fig. 5(b)
we artificially increase ~ by a factor of 10 and again com-
pare the exact and perturbative predictions for AT/T.
There is now a significant disagreement between the two.
The quantitative failure of the perturbation expansions is
similar for the results shown in Fig. 4; the perturbative
magnetoplasmon amplitudes there are o8'by about a fac-
tor of 2. Since ~ in the samples available nowadays is still
larger, ' our nonperturbative approach should find many
future applications.

0.2

0.02 0.1

0.00
10 15 20

v(cm i)

I I I I I I
Q Q

25 30 1 15 20
I (Cmi)

25 30

FIG. 5. Fractional change in transmission due to the pres-
ence of a 2D-EG. Both the exact (solid) and perturbative
{dashed) results are shown. The 2D-EG has
@=1.55X10"/cm and m /m =0.2. There is no static 8
field. Referring to Fig. 1 we use @0=4, e, =12, and for the grat-
ing a=3.52 pm, d =1400 A, t/a=0. 65, o&=1/(0. 1 0), and
a&=1/(350 0). In panel (a) ~=1.35 psec, while in panel {b)
~= 13.5 psec.
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