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Band nonparabolicities in lattice-mismatch-strained hulk semiconductor layers
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Analytic expressions for band nonparabolicities and effective masses are derived for lattice-
mismatch-strained bulk semiconductor layers. We have investigated both a full 6X6 valence-band
Hamiltonian and an 8 X 8 model. In the latter, the interactions between the singlet conduction band
and the triplet valence bands were treated exactly, with the effects of higher bands calculated to or-
der k . To our knowledge, the present work constitutes the first explicit calculation of strain and
k p matrix elements using a basis consistent with the formalism of Luttinger and Kohn [Phys. Rev.
97, 869 {19SS)] throughout. The present results should prove to be valuable in determining
strained-layer heterostructure band alignments using excitation spectroscopy and in applications re-

quiring highly accurate estimates of confinement energies in narrow quantum-well structures (such
as those used in long-wavelength infrared detection).

I. INTRODUCTION EJ(k) ==Eo '+ Ej''k +E'4~'k + (lb)

Optical techniques such as photoluminescence excita-
tion spectroscopy' and optical absorption have been
widely used to determine heterojunction band alignments
in unstrained semiconductor quantum wells. It is now
well known that nonparabolicity plays an important role
in determining the subband energies of both very narrow
quantum wells (-10 A) and of higher-lying subbands in
wider wells. For isolated quantum wells grown on
(001)-oriented substrates, the relevant band nonparaboli-
city may be obtained via calculation of the energy versus
wave vector (k, ) relation to order k, for the well and bar-
rier bulk materials, i,e.,

E(j)
2

fi 1 1 BE
2 Bk k=o E=E &'(o)

(lc)

and

where we have dropped the subscript z. The k indepen-
dent coefficients E'z" and E4J' are related to the effective
mass and band nonparabolicity as follows:

(la)
E(j) 1 1 BE(j)

4! kmj a =o,E =z(J)(o)
(ld)

Here E, k„and m ', refer to energy, wave vector, and z
component of the effective mass. The subscript j is a
band index and yap is the nonparabolicity parameter for
the jth band. It should be noted that the use of bulk
band nonparabolicities in modeling quantum-well struc-
tures is strictly valid only for isolated quantum wells. In
superlattice structures the subband nonparabolicities
tend to be enhanced by zone-folding-induced moment-
um-space mixing of I and X subbands. This mixing
induces virtual excitations to higher subbands having
mixed momentum character, thus altering the matrix ele-
ments appearing in yNp. Such effects will not be con-
sidered in the present work.

Equation (la) gives two terms in a general power series
expansion for the dispersion relation of the jth band. Al-
lowing for k=O contributions to E,(k) and ignoring
linear k terms this expansion can be written as

where E (k) in Eqs. (lc) and (ld) denotes the general secu-
lar relation between energy and wave vector as obtained,
e.g. , using a k.p treatment.

Dispersion relations for the degenerate (p-like) valence
bands of unstrained bulk group-IV elemental and III-V
compound semiconductors may be obtained using the
6X6 k.p and spin-orbit Hamiltonian of Luttinger and
Kohn, as applied, e.g. , by Dresselhaus to Ge. An exact
erst order treatment -of the k p and spin-orbit interac-
tions between the lowest singlet (I 2) conduction band of
Ge and the triplet (I z&) valence bands is contained within
the later work by Kane. ' Hasegawa" introduced strain
into the 6 X 6 valence-band Hamiltonian at k =0 in order
to interpret the cyclotron resonance experiments of Hen-
sel and Feher' on uniaxially stressed Si. Introduction of
the spin-orbit interaction splits the sixfold degenerate I 25
(including spin) valence-band edge at k=0 into a fourfoldJ=—,

' (I s) and a twofold (I 7) set of states. Unaxial stress
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along ( 100) or ( 111) further splits the fourfold degen-
erate J=—,

' (I s) valence-band edge into two doublets

denoted by ( —,', +—,') and ( —', , +—,'). Each member retains its
twofold Kramers degeneracy in the absence of a magnetic
field. Hasegawa" calculated nonparabolicity corrections
to these J=—,

' states by treating them to second order in

nondegenerate perturbation theory (the states are split by
the energy b,E =2~a~ for small stress; where e is the biaxi-
al splitting of the J=

—,
' set of states). It is presently of in-

terest to obtain a general secular equation for the 6X6
Luttinger Hamiltonian in the presence of lattice
mismatch strain without resorting to such approxima-
tions. Although it would appear that such a general rela-
tion might be readily obtained by combining the k=O
strain-induced coupling terms calculated by Hasegawa
(within the 4X2 cross space between the J=—,

' and J=—,
'

manifolds) along with the explicit k-dependent matrix
elements of Luttinger and Kohn; such an approach im-
mediately fails to generate the proper E-vs-k relationship
to order k in the presence of strain. The cause for the
breakdown of this approach may be traced to a difference
in the form of the zeroth-order valence-band basis func-
tions used to block diagonalize the spin-orbit interaction.

In the present work, strain and k p interactions are
treated on an equal footing and (following Luttinger) we
have chosen the phases of the zeroth-order wave functions
such that for a given total angular momentum J, the
functions corresponding to +MJ and —MJ are related

by time-reversal symmetry. This time-reversal degenera-
cy is of course present because the unperturbed Hamil-
tonian, which consists of strain, spin-orbit, and k p in-
teractions, is invariant under time reversal.

lattice parameter of the epitaxial film. Hydrostatic con-
tributions to H, have been ignored at present. These lead
to a rigid shift in the center of gravity of the bands.
These terms must be included, however, when
conduction-band states (which may have different hydro-
static deformation potentials) are considered, as is shown
in Sec. III.

The spin-orbit term (H, , ) is given by

H, , = (tr XVV) p
4m 0C

(4)

fi
[yi& —2y2[(J„——,'J )k +c.p. ]

0

—4y3([J„,J J[k„,k j+c.p. )] . (5)

where o is the dimensionless Pauli spin matrix vector, V
the periodic crystal potential, and p the particle momen-
tum.

The k p term (H&) arises naturally given the Bloch
form of the carrier wave function. In the present
analysis we only require the general form of H&', since the
various constants (inverse mass parameter and momen-
tum matrix elements at zero stress) may be determined ei-
ther from experiment or calculation. The general form of
H„may be determined using the theory of invariants,
developed by Luttinger. ' This approach allows one to
write an explicit operator formulation for Hz based upon
the angular momentum operator, J, , in analogy with Eq.
(3) for the uniaxial strain Hamiltonian. In the present
case

II. 6X 6 VALENCE-BAND DISPERSION
WITH STRAIN

For completeness' sake, we reiterate the various contri-
butions to the Hamiltonian for the degenerate valence
bands for growth on (001)-oriented substrates:

Here m0 is the free-electron mass, j' kz+ky+kz
are the Luttinger inverse mass parameters (see, e.g. ,
Lawaetz' ), [, ] denotes the anticommutator, and c.p.
implies cyclic permutations upon the subscripts x,y, z.

Choosing as basis the six time-reversal symmetry-
invariant wave functions

Hv He+Hs o +Hk (2)

((2„(—,', —,
'

) = —
~ [(X+i Y ) 1 —2Z f ]),2~ 2

where the uniaxial strain operator has been given by
Kleiner and Roth' as P„(—,', —

—,
'

) =
~ [(X i Y) 1'+2Z l —]),1

(6a)

H, = ,'D„[(J„—,'J —)e „+(—J——,'J )e

+(J, —
—,'J )e„] . (3)

and

In Eq. (3), D„ is the valence-band uniaxial deformation
potential for (001) uniaxial stress and J denotes the total
angular momentum operator divided by A. The form of
Eq. (3) is particularly simple, since for lattice-mismatched
growth on (001) substrates the strain tensor is diagonal
having e „=err =e~~ and e„=—(2C,2/C» )e„„. The in-
plane strain e~~ =(a, —bo)lbo, where a, is the unstrained
lattice parameter of the substrate and b0 the unstrained

P, ( —,', —,
'

) = —
~
[(X+i Y) l +Z I ]),2~2

$, ( —,', —
—,
'

) = —
~ [ —(X i Y) 1 +Z 1 ] )—,

(6b)

the 6X6 valence-band Hamiltonian corresponding to Eq.
(2) becomes
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where

$2
[(k„+ky )(y, +y2)+k, (y, —2y2)]+@=H»+—e,

2mp

L = — [(k„+k )(y, —y2)+k, (y, +2y2)] —e—=H, ),2' p

e= ', D„(e„——el ),

a= fi [k,(k„i' )y—3],
v'3

mp

3 A'

P= ' "
[(k,' —k,')y, —2ik„k, y, ],2 mp

(8)

D =(H)3, —H» ),

and
S=—,'(L +H) 50 . —

Note that the diagonal components of Hj„namely,
H», H~z, and (H»+H, „)/2 —ho, gives the dispersion of
the heavy-hole (—,';+—), light-hole (—', ;+—,

' ), and spin-orbit
split-off (—,';+—,

'
) hole bands to order k in the absence of

strain. Note further that the dispersion of the heavy-hole
and light-hole bands is anisotropic, having different mass
parameters for dispersion in plane [i.e., along
kl =(k„+k )' ] and along the z axis (which is the as-
sumed axis of quantization).

The eigenvalues of Eq. (7) are doubly degenerate. The
general secular equation is a cubic form given by

2

0= S'H'L '+ H' ——3/2e-
v'2

+ ia~ [—,'H'+ ,'L'+S' (D —2e)]——
+ ~p~ (2L'+S'+2D —4e)+33/3 Re[(u) p*]

D0=H' S'L '+ ———3/2e
v'2 (10)

Noting that MJ remains a good quantum number for ei-
ther (001) or (111) pseudomorphic growths, the three
(doubly degenerate) eigenvalues for hole dispersion along
k, are denoted as E3/p and E,zz(+ ). Here

+3/z 0=0]a+ ~ ~

where H»(k, ) and e have been given in Eq. (8). It is seen
that the heavy-hole (MJ=+—', ) state is strictly parabolic
along k, having an effective mass given by—(y, —2yz) '. However, the coherency strain

where H': (H E), etc—; E —denoting the eigenvalue.
Since we are only interested in the z dispersion at present
we choose k=(0, 0,k, ). Note that in this case a=P=O
and Eq. (9) reduces to
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thoroughly admixes the ( —,',+—,
'

) and ( —,', +—,
'

) states, giving

rise to two doubly degenerate eigenvalues that may be
represented by their MJ values, namely, +—,'.

The effective mass and nonparabolicities corresponding

to the MJ=+ —,
' states may be readily obtained by using

the secular E versus k relation implicit in Eq. (10) along
with the definitions given in Eqs. (lc) and (ld). One ob-
tains for the strain-dependent hole effective masses:

mo

m ~]g2

]/2(0)( Yl+Y2)+~o(r]+2Y2) e(8Y„Y])
2E+]n(0)+ to+ e

(12)

The nonparabolicities are then given by

$2(+1 /2 j
7NP

mo

mp

m+& j2
+2(Y]+Y2)+

2E+ ] g2 (0 ) +5o+ E

m a&y2
(r]+4Y2)(YI 2Y2)

mo
(13)

where the k=0 strain-dependent energies E+]y2
,'(e—+—ho)+2]hoF(y), with F(y)=(1 —2y+9y2)]~2

and y
—= e/b, o. Equation (12) gives strain-dependent light

(+ —,') and split-off (
—

—,') hole masses identical to the re-
sults of Hasegawa. " The nonparabolicity parameters
given in Eq (13) a. re general results for the 6X6 valence-
band problem and reduce to the results of Hasegawa in
the limit of small strains.

The dot-dashed curves in Figs. l and 2 show the
strain-induced modifications of the z components of the
light-hole mass (m + ] &2 ) obtained using the 6 X 6
valence-band model given in Eq. (12) for pseudomorphic
growth of In„Ga] „As alloys on (001) GaAs and InP, re-
spectively. The dashed curves in these figures give the

unstrained bulk masses as obtained from a linear interpo-
lation between experimental values for the binary com-
pounds. ' Et is observed in Fig. 2 that in-plane compres-
sion generates an increase in the z component of the light
hole, whereas in-plane tension produces a decrease in this
light-hole mass component. The large deviations ob-
served in the pseudomorphic mass values (compared to
the unstrained bulk) can lead to substantial errors in cal-
culating quantum confinement energies if strain effects
are not properly accounted for. Further, significant devi-
ations from the 6 X 6 valence-band mass estimates occur
when the interactions with the I 2 conduction band are
included, as is shown in Sec. III.

Strain-induced modifications of the split-of hole mass,
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FIG. 1. Light-hole effective masses for In Gal As layers on
(001) GaAs. Dashed curve gives linearly interpolated un-
strained mass values; dot-dashed curves give results of the 6X6
(valence band) model with strain, solid curve gives results from
8X 8 model.

FIG. 2. Light-hole effective masses for In Ga, As layers on
(001) InP. Dashed curve gives unstrained mass values used;
dot-dashed curves are results for the 6X6 valence-band model;
solid curve gives results for the 8 X 8 model.
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FIG. 3. Split-off hole effective masses for In„Gal „As layers
on (001) GaAs. Lower dashed curve gives unstrained mass
values for 6 X 6 model wherein —m 0/m, , =y &. The upper
dashed curve gives unstrained mass values for 8X8 model,
which involves y& and hence is slightly different even at zero
strain. The dot-dashed and solid curves then give strained-layer
masses for the 6X6 and 8 X 8 models, respectively.

FIG. 4. Split-off hole effective masses for In„Ga& As on
(001) EnP. Curve designations are the same as in Fig. 3.

of the split-o8'hole mass in the presence of strain is oppo-
site to that of the light hole (see Fig. 2).

as predicted by the 6X6 valence-band model, are shown
in Figs. 3 and 4 for pseudomorphic growth of
In„Ga, „As allows on (001) GaAs and InP, respectively.
The dashed curves labeled "6X6-unstrained" correspond
to split-o8' masses deduced from experimental light-hole
[m;„(0)] and heavy-hole [m hh (0)] masses 's using
mp/m, ', (0)= —,

' [ 1 /m, '„(0)+ 1 /m „'&(0)]. This approach
(as opposed to using the theoretical Luttinger parame-
ters) appears to give better agreement with experiment.
In Fig. 4 it is seen that in-plane compression decreases
the z-component split-off hole mass, while in-plane ten-
sion increases this mass component. Hence the behavior

III. SECOND-ORDER KANE MODEL
IN THE PRESENCE

OF LATTICE-MISMATCH STRAIN

In order to determine strain-dependent conduction-
band effective masses and nonparabolicities (near k=0)
we introduce two degenerate spin functions having s-like
(L =0) orbital symmetry, namely ~S1') and ~SL) for the
P, ( —,', —,') and P, ( —,', —

—,') conduction-band states, respec-
tively. Again assuming k=(0, 0,k, ) the resulting second-
order 8 X 8k.p Hamiltonian reduces to two equivalent
4X4 blocks. Lattice-mismatched growth on (001) sub-
strates gives rise to a doubly degenerate (4X4) deter-
minant of the form

IS 1 )

—kP1

3

RkE'+ (1+F) E-
2mo

i &2/3kP—

—kP
1

v'3 (14a)

i v'2 3/k P

0

Here k =k, and P=fi/mp(S~p, ~Z). The band gap Eg is
given by

Es —Es(0)+(:-d+—,':"„—a„)Tr(e ) . (14b)

Here Es(0) is the band gap of the unstrained epitaxial
layer with the second term in Eq. (14b) giving the hydro-

static contribution to the band gap of this biaxially
strained epilayer. The zero of energy in the strained bulk
material has therefore been taken to be coincident with
the center of gravity of the valence band.

The determinant in Eq. (14a) differs fundamentally
from that of Kane' (aside from the inclusion of strain),
due to the fact that all matrix elements are calculated to



8436 R. PEOPLE AND S. K. SPUTZ 41

/(I", (CB)[p, fl-,'„J ) f'

E (r,+, )
—E,"'

o j&VB

2P m0F— E(0)
g (14c)

3 fi Es(0)
(14d)

P m0

3 fi E (0)
(14e)

Also S=S(y&,y2), etc. where S, H, L, etc. have been

second order in k.p perturbation theory, whereas the
Kane model' is erst order .Note that in Ge, e.g., the
singlet conduction band [i.e., I 2(CB)] is within our
strongly coupled set of states (which consist of [ I 2, I && ] ),
and hence the second-order couplings between the
I z(CB) and I z, (VB) valence-band states must be re-
moved when computing diagonal matrix elements since a
given state may only couple to itself via states outside the
given strongly coupled set of states. When all possible
couplings of the I"i(CB) and I z~(VB) states are con-
sidered, the diagonal second-order contributions are usu-
ally denoted by the parameter F for the conduction-band
state and by the Luttinger inverse mass parameters'

p 3 for the valence-band states. The notation F,
S, etc. , in the determinant (14a), signify the removal of all
second-order contributions arising from within the
present strongly coupled set of states. It may be readily
shown' ' that the modified F and the modified Luttinger
parameters (which we denote by y„etc.) are related to F
and y], y2 as follows:

AkO= E'+
2m0

X (S E)(L —E)—
'2

D —v'2e
2

—
—,'(kP) (L+2S 2D+4e 3—E ),— (16a)

which admixes conduction band (CB), light hole (lh), and
split-off (s.o.) hole bands. Again, we note that the heavy-
hole (=,', +-„') band remains strictly parabolic along k, .
[The heavy-hole band is highly nonparabolic in the
(k„,kr) plane, however, but such effects are more inti-
mately related to transport rather than optical properties
of quantum-well structures. ]

The strain-dependent effective mass and band nonpara-
bolicity for the CB, lh and s.o. hole states may be ob-
tained using Eq. (16a) in conjunction with Eqs. (1c) and
(ld}, respectively. The following general relations are ob-
tained in the presence of lattice-mismatch strain for
growth on (001) substrates:

defined in Eq. (8). Note that the sum in F extends over all
even parity I 25 states in the conduction band. Since typi-
cally such states are very high in energy compared to the
band gap of Ge, this term (Q will be ignored in the
present analysis. Similar considerations apply at the I
point (k=O) of the technologically important III-V com-
pounds and hence these compounds may be described by
a similar secular determinant. The determinant (14a)
therefore leads to the general secular relations

E=H=H(y, , yi),
for the heavy-hole ( —', , +—', } states [see Eq. (8)] and the cu-
bic form

I3[E,(0)]'+2E (0)(b +e —E')+4 e 2e E'(b, —+e)I—
m,'(e)

=[E (0)] +E (0}(ho+&)+5 e —2e +[Ez —E (0)][(y,+2yz)ho+2(y, +yz}E.(0)—e(8y2 —
y&)]

2mo
[3e—2b,o

—3E {0)]
3A'

0 j (16b)

and

1

2 m0

yN'~p'I3[E, (0)] +2E (0){ho+@—E')+boa —2e —E'(6o+e) I

m *(e) —1 y([bo+e+2E (0}]+y2[2bo+2E (0)—8e]+
m&

[2E (0)+ho+@]
m '(e)

+[Es—E,(0)]

2m0P
$2

m*(e}
[yi(yi+2y }—8y 2]+2(j 1+yi)+

m0

m *(e)
{y,—2@~)+1

0

m0

m.*(e)

(16c)
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FIG. 5. Electron effective mass for In, GaI „As on (001)
GaAs. Dashed curve gives unstrained mass values used; solid
curve gives results of 8X8 model in the presence of lattice-
mismatch strain.

FIG. 7. Electron nonparabolicity (in units of 10 ' cm') for
In„Gal „As on (001) GaAs. All results are from 8 X 8 model.

where j=CB, Ih, or s.o., and E,(0) are the eigenvalues of
Eq. (16a) at k =0, [namely, E' and E+&&z(0) as given in
Eqs. (13) and (14b)].

The inclusion of coupling of the degenerate valence
bands to the I 2 conduction band substantially modifies
the light-hole z-mass component, beyond the
rnodifications obtained for the 6 X 6 VB model. Using Eq.
(16b) one can generate the solid curves in Figs. I and 2
which show that within the present 8X8 model with
strain, the light-hole z-mass component is further
enhanced for the case of in-plane compression, whereas
in-plane tension further reduces the light-hole z-mass
component in comparison to the 6 X 6 valence-band mod-
el. In Fig. 3 we also show the modification of the split-off
hole mass z component induced by couplings to the I 2

conduction band. The solid curve gives the split-off mass

in the presence of strain as obtained from the 8 X 8 model
for pseudomorphic In„Ga, „As on (001) GaAs. The
dashed curve labeled 8X8 unstrained gives the predic-
tions of the 8 X 8 model in the limit strain tends to zero.
Note that in the limit e~O the split-off hole mass is given
by —(y, )

' within the 6 X 6 model whereas the 8 X 8
model gives —[y, +2P mo/3A (E +ho)] '. These
values differ slightly, their difference is therefore reflected
in the unstrained mass values for the two models. Simi-
larly, the solid curve in Fig. 4 shows the strain-induced
variations in the split-off hole z-mass component for pseu-
domorphic In„Ga, „As alloys on (001) InP substrates.

It should be noted that the value for the parameter P
used in obtaining the results in Figs. (I)—(4) is deduced
from the zero-strain relationship between the
conduction-band effective mass m,'(0) and P . Letting
a~0 in Eq. (16b) and setting E (0)=Eg, one ob-
tains mo/m, '(0) = I+2Pmo(2bo+3Eg )/3' Es(E +ho)
where mo/m, '(0) may be obtained from experiment. ' In
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FIG. 6. Electron effective mass for In„Ga, ,As on (001) InP.
Curve designations are same as in Fig. 5.

FIG. 8. Electron nonparabolicity (in units of 10 ' cm ) for
In Ga, As on (001) InP. All results are from 8 X 8 model.
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FIG. 9. Light-ho/e nonparabolicity (in units of 10 ' cm') for
In„Gal „As on (001) GaAs. All results are from 8 X 8 model.

FIG. 11. Split-oft'hole nonparabolicity (in units of 10 ' cm )

for In„Gal „As on (001) GaAs. All results are from 8 X 8 mod-
el.

Figs. 5 and 6 we show linearly interpolated experimental
values for the electron effective mass in unstrained bulk
In„Ga& „As, plotted as dashed curves. Strain-induced
modifications of the electron effective mass are shown in
Figs. 5 and 6 (solid curves) for pseudomorphic
In„Ga, „As on (001) GaAs and InP, respectively. The
unstrained electron mass change varies between 0.067mo
for GaAs and 0.023m o for InAs. However, when

In„Ga& „As alloys are grown pseudomorphically on ei-
ther GaAs or Inp the electron mass becomes essentially
independent of composition; its value being given by the
unstrained bulk value corresponding to that alloy compo-
sition which lattice matches the substrate of interest.

Strained-layer band nonparabolicities for the 8 X 8
model may be obtained from Eq. (16c). Electron, light-
hole, and split-off hole nonparabolicity parameters are
obtained by substituting Es, E+,&2(0), and E,&2(0) for

E~(0) in (16c), respectively. In Figs. 7 and 8 we show the
electron nonparabolicity for pseudomorphic In„Ga, As
alloys on (001) GaAs and InP, respectively. It is seen
that coherency strain essentially removes the composi-
tional dependence of the electron nonparabolicity, yNp,
which in the presence of strain varies only within 10% of
its value at the lattice match composition. In Figs 9 and
10 we show the light-hole nonparabolicity, yNP' for pseu-
domorphic In„Ga, „As on (001) GaAs and InP, respec-
tively. Again it is seen that coherency strain greatly
reduces the compositional variation of yNp(lh), in com-
parison to its value for the cubic (unstrained) alloy. The
split-off hole nonparabolicity, yNp(s. o.), is shown in Figs.
11 and 12, again for pseudornorphic In„Ga, „As on
(001) GaAs and InP respectively. It is observed that both
in-plane compression and in-plane tension tend to in-
crease ywp(s. o.) (relative to its value for cubic material),
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whereas in-plane compression, in the main, decreases the
electron and light-hole nonparabolicities (as seen in Figs.
8 and 10).

In summary, analytic expressions have been derived for
effective masses and band nonparabolicities in lattice-
mismatch-strained semiconductor layers. Closed form
dispersion relations are obtained using a second-order k-p
model including strain and spin-orbit interactions. Both
a 6 X 6 valence-band model and an 8 X 8 model (which in-
cludes interactions with a singlet conduction-band state)
are considered. Considerable differences are found be-
tween both light-hole and split-off hole strained-layer
masses calculated using the 8 X 8 model in comparison to
the 6X6 (valence band only) model. It is therefore im-
perative that one uses an 8X8 model when computing
confinement masses in strained-layer quantum-well struc-
tures such as pseudomorphic In, Ga, As. It is also
found that lattice-mismatch strain tends to remove any
compositional dependence of the electron mass in pseu-

domorphic In„Ga& As structures; the electron mass be-

ing given essentially by that bulk value corresponding to
the lattice-mismatch composition, for a given substrate.
This phenomenon (compositional independence) also
occurs within the nonparabolicity of the electron and (to
a somewhat lesser extent) the light-hole bands.

The present result should prove to be of value in the
determination of strained-layer heter ostructure band
alignments using excitation spectroscopy, and in applica-
tions requiring highly accurate estimates of confinement
energies in narrow quantum-well structures (such as
those used in long-wavelength infrared detection' ).
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