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Calculation of defect states in semiconductor crystals by recursion method
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The termination method of recursion coefficients (continued-fraction technique) for semiconduc-
tor crystals is carefully examined using model density of states (DOS) and exact recursion
coefficients. It is shown that the linear prediction method tends to produce spurious peaks in the
DOS when a 5-function-like band-gap state appears or when a band-edge singularity exists. We
point out that further improvement of the termination method is required for such calculations (if

gap states exist). We propose an efficient termination method based on perturbation theory and an

averaging procedure.

Recently there has been considerable interest in the
study of electronic structure of lattice defects in semicon-
ductor crystals. ' Particular attention has been focused
on the determination of band-gap states associated with
the defects in the semiconductors. This is due to the fact
that the gap states play an essential role in determining
the various physical (e.g., electrical and mechanical)
properties of the semiconductor crystals.

For simple lattice defects such as impurities or point
defects in the semiconductors, the theoretical calcula-
tions are usually successful and helpful in interpreting the
corresponding experimental results. For the complex
extended defects (e.g. , dislocations and grain boundaries),
however, theoretical schemes are very limited and fully
quantitative results have not been obtained. The super-
cell method or linear combination of atomic orbitals
(LCAO) recursion method can be applicable to the
electronic-structure calculation of these extended defects,
but both methods have certain drawbacks and calcula-
tional difficulties. In the former method, supercells are
usually too small to obtain the accurate result of the lat-
tice defects, while in the latter method it is not possible to
calculate infinite numbers of the recursion coefficients
(a„,b„) and it is required to use an appropriate termina-
tion method.

Recently, the termination method based on first-order
perturbation (FOP) theory' '" has been used to calculate
the electronic structure of various lattice defects in semi-
conductor crystal. The explicit expression of the ter-
mination function is derived from FOP theory

Gtt =g+(1/b )exp( 2ig—) g exp( in/)a„+2—t
n=0

where

g = [(E—a ) —i [4b (E—a)—]'r j /2b

P =cos '[(E—a ) /2b ],
az„,= (a„—a ) /b,
a2„=2(b„b)/b .—

(2)

(4)

In the above Eqs. (2)—(5), a and b are the asymptotic
coefficients (or center of the undamped oscillation of the
recursion coefficients) of a„and b„, respectively. In addi-
tion, some modifications must be made so that real prob-
lems can be treated: The termination function GII is fitted
to the first known recursion coefficients (a„,b„), n 520.
It is generally believed that the procedure allows the
detection of any peak in the DOS associated with the de-
fect. However, in the present paper we point out that
such a linear termination (perturbative) method tends to
produce spurious structure in the DOS when a 5-
function-like band-gap state appears or band-edge singu-
larity exists. To show this, we consider several examples
for the electronic DOS with 5-function-like peak or
band-edge singularity.

First, let us consider the linear atomic chain composed
of 3 and B atoms, with atomic energy levels E„and Ez,
alternatively. For this semi-infinite linear system the
electronic Green's function can be given exactly as

(E E„)(E Ett—) i[4t(E —E—„)(E Ett) —(E— E—„)(E Ett) ]'— —
2t (E Eq)— (6)

where the surface is terminated by A atom and t denotes the transfer integral between atoms 3 and B. A similar ex-
pression is also given for the surface Green's function Gzz. The local DOS on the surface atom A p „(E), can be calcu-
lated straightforwardly from the imaginary part of the Green s function G„„.We present in Fig. 1 the p„(E ) curve for
the parameter values E„= Ez = 1.0 and

~
t

~

=4—.0 (energies are given in units of one-fourth of the hopping integral t).
The exact p „(E) curve in Fig. 1(c) shows the band gap for the energy region Es (E (E„.
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In Fig. 1 we also present the approximate local DOS for the surface atom A, calculated by using the recursion
method: Figs. 1(a) and 1(b) are obtained with the use of the so-called constant (square-root) termination method and
the linear termination method based on the FOP theory, ' "respectively. The exact recursion coefficients (a„,b„) are
taken into account up to n =30 in both DOS curves. For the p„(E) calculation in Fig. 1(b), the termination function
Gtt(1=31) is given by

GII =g+(1/t ) exp( —2ig)[E„+Ezexp( 2i P—)]/[1 —exp( —4i P)] .

P.(E)

(0) (b) (c)

For the constant termination scheme, the termination
function GII simply becomes g.

In Fig. 1(a), one can observe the prominent oscillations
in the DOS curve. This oscillation is a direct conse-
quence of using the constant termination method for the
DOS with band gaps: Physically it is due to the abrupt
matching between the known coefficients and the con-
stant ones. " It is known that this type of oscillation in
the DOS can be removed almost completely by using the
better approximation for the termination method. '

However, it is noted that the oscillations cannot be avoid-
ed within the theoretical scheme using the FOP theory,
as shown in Fig. 1(b). This is because the FOP theory
does not work well for the electronic DOS with the
band-edge (Van Hove) singularity.

Second, we consider the electronic DOS having a 5-
function-like band-gap state. For this example we take a
linear atomic chain with adsorbed atoms at the surface.
In Fig. 2 we present the electronic DOS on the atom B
adsorbed on the surface of BABA linear chain (i.e.,
B atom in the configuration of BBABA ). We now
have a band-gap state at E=0.66, without the band-edge
singularity.

Figures 2(a) and 2(b) are calculated by using the con-
stant termination method and the linear termination
method based on the FOP theory, respectively; Fig. 2(c)
gives the exact DOS. In these DOS calculations exact re-
cursion coefficients (a„,b„) up to n =30 level (30 pairs of
the coefficients) are taken into account. The DOS pz(E)
obtained by using the constant termination method
shows the unphysical oscillations again, which are absent
in the exact DOS curve in Fig. 2(c). These marked oscil-

I

lations in the DOS are not removed when we use the
linear termination method based on the FOP theory, as
shown in Fig. 2(b).

In order to investigate the DOS behavior with increas-
ing number of exact recursion coefficients, we have also
calculated the local DOS p~(E ) on site B in the
configuration of BBABA, by systematically chang-
ing the number of levels n in the continued fraction. The
electronic DOS ps(E) thus calculated for n =25, 60, and
200 is presented in Figs. 3(a)—3(c), respectively. One can
see in Fig. 3 that the unphysical oscillations in the DOS
are suppressed gradually with increasing the number of
levels n. However, it should be noted that the spurious
oscillations or peaks survive even in the DOS obtained
for n =200 (for real problems it is usually not possible to
calculate the eXact coefficients up to this level).

The DOS calculations presented in Fig. 3 also give us
the information regarding the separation of the gap states
from the band edge (band region). In fact as shown in
Fig. 3(a) (n =16) or in Fig. 2(b) (n =30), the gap state (lo-
cated near the center of the gap region) is not separated
from the band edge of the upper "conduction" band, if
we terminate the continued fraction at the level n ~ 30.
In order to separate the 5-function-like gap state from the
band region, it is required at least to calculate exact re-
cursion coefficients up to the n =50 level; DOS calcula-
tions with the n =30 level would be insufficient for the
detection of the defect states (gap states) in the semicon-
ductor crystals.

We now discuss the convergence of the perturbation
expansion for the electronic Green's function. For this
purpose, we take into account the second-order perturba-
tion (SOP) contributions GI&

' to the termination function
GII, and calculate the local DOS using the same model as
in Fig. 3. The termination function GI'I

' based on the
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FIG. 1. Local DOS p„(E) for surface atom A of the linear
chain ABAB . . - . DOS curve (a) and (b) are obtained by using
the constant termination method and the linear termination
method, respectively. Curve (c) shows the exact DOS. Exact
recursion coefficients are calculated up to n =30 level.

FIG. 2. Local DOS pz(E) for adsorbed atom B on the sur-
face BABA (BBABA . - . ). DOS curves (a), (b) and (c) are
the same as in Fig. 1 ~
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FIG. 3. Local DOS p&(E) for adsorbed atom B on the sur-

face BAB A (BBAB A ), calculated by using the linear
termination method. Exact recursion coefficients are taken into
account up to (a) n = 16, (b) n =60, and (c) n =200 levels.

FIG. 4. Local DOS p&(E) for adsorbed atom B on the sur-
face BABA (BBABA ) calculated by using the exact
recursion coefficients of (a„,b„; n 60). GII

' functions are tak-
en into account for curves (b) and (c), while curve (a) is calculat-
ed without GI'i ' contribution.

SOP theory is given as

Gl/ g + Gll +Gll

where
00 m —

1

G{2i (1/r3) ~ E —i2m 1+)bi ~ E —(P —1)AD (y)(I I+m —ie I+p —&e p
m=1 p=l

—
i m —

1 i Pi +E —
( m + 1 )Pi

) /( 1
—4/i )

with

p/2
2 g cos[(2q —1)P], for even p

q=1
ip —i)n

1+2 g cos(2qg), for odd p .
q=1

(10a)

(lob)

In the above Equation (5), E; takes either E„orEz, and

m, p, and q are positive integers. Gi&" is the termination
function of the FOP theory, and given by the second term
of Eq. (7).

In Fig. 4 we present the local DOS for the adsorbed 8
atom on the BABA . surface (same adsorption
geometry as in Fig. 3), calculated by using the exact re-
cursion coefficients of (a„,b„; n (60). The second-order

G&I
' functions are taken into account for curves b and e,

in the range of recursion levels of (l to 1+100) and (I to

i+200), respectively: the DOS curve a is calculated
without the GII

' contribution. Though the inclusion of
the second-order G&1

' function suppresses, to some ex-
tent, the spurious structure in the DOS, it is still
insufticient to detect correctly the characteristic peaks or
gap states of the lattice defects (indicating the slow con-
vergence of perturbation expansion).

In order to investigate more general defect states (two
5 functions) in covalent semiconductors, we adopt the
more realistic sp-hybrid orbital model. ' The Hamiltoni-
an of the sp-hybrid linear chain can be described by the
intra-atomic overlap integral V, and the interatomic hop-
ping integral V2. The model interface (grain) boundary is
introduced in the lattice by changing the hopping integral
from V2 to V2 between the hybrid orbitals on the atomic
sites at i =0 and i =1, as shown by the inset of Fig. 5(d).
For this sp-hybrid lattice the first-order termination func-
tions GI'I" can be given by

Gi,"=(1/h )exp( —3ig)[X„+X~exp(—2ig)]/[1 —exp( 4ig)], —

where

and

h =( Vi+ V2)/2,

X„=2(Vi —V2)/( Vi+ Vp),

X~ =2( V~ —Vi ) /( V, + V2 ) .

(12)

(13a)

(13b)
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The second-order Green s function is also given in an explicit expression

oo n —
1

G' '=(lib ) g e ' "+ '~'X„2 g D (P)e ~'(X,e ~'+X )+(X„,e ~'+X„)D„((t)e
n =1 p=l

+(X„,e' '+2X +X„,e ')D (P)e " '/(1 —e ')

e 2bt+ 2X +X e
—2/i)D (y )e

—(n +1)Pig( 1 —e ~') (14)

where X„ takes either X~ or X~ depending on the atomic
orbitals.

In Fig. 5 we present the electronic structure on the a
orbital (i =0) at the interface boundary with V, =2.0,
V2 =2. 185, and V2/Vz =0.25. For this set of parameters
the band-gap-to-bandwidth ratio becomes 0.044, less
than 0.05. The DOS curves (b) and (c) are obtained by
using the FOP and SOP termination functions, respec-
tively: The exact recursion coefficients are taken into ac-
count up to the n =61 level. Curve (c) is obtained by us-
ing the SOP termination function GI'I ', which is calculat-
ed by Eq. (14) as a contribution of 180 atomic sites. Also
shown in Fig. 5(d) is the exact local DOS. One can see in
Fig. 5 that Shockley interface states (two 5 functions) ap-
pear in the band gap due to the reduced hopping integral
across the boundary layer. Here, it must be noted that in
spite of small band-gap —to —bandwidth ratio (-0.04),

p; (E)=Ci(2lnB )(B E)' +—Cq5(E Eo), — (15)

where the band region extends over the energy range
B~E ~—B, and the coefficients C~ and C2 satisfy the

condition C, +Cz=1. For simplicity, we assume the
symmetric case C, =C2= —,

' and ED=0. For this case re-
cursion coefficients (a„,b„) are analytically given as

I

many spurious peaks survive in the DOS curves (b) and
(c}calculated by using the perturbative termination func-
tions.

It is also possible to examine the applicability of per-
turbative termination method in the limit of zero gap
width. For this purpose, we use the Hubbard model with
a 5-function impurity state. ' The model DOS is given by
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FIG. 5. Local DOS on a orbital of site 0 at the interface
boundary, calculated by using (a) the constant, (b) FOP, and (c)
SOP termination functions. The exact recursion coeScients are
taken into account up to n =61 level. Curve (d) is the exact
DOS. V& = Vz/4 is used.

FIG. 6. Local DOS p, (E) of Hubbard model with an impur-
ity state: Approximate DOS by (a) constant termination and (b)
and (c) linear termination method. (d) is the exact DOS.
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FIG. 7. Local DOS on a orbital of site 0 at the interface

boundary, calculated by using the FOP terminating function
and averaging procedure. Curves (a), (b), and (c) are calculated
from 10, 15, and 25 successive DOS. (d) is the exact DOS.
V, = V, /4 is used.

(B /4)(n+1)/(n+3), n =1,3, 5, . . .b'—
(B /4)(n+4)/(n+2), n =2,4, 6, . . . ,

(16a)

(16b)

with a„=0. The coefficients b„exhibit the damped oscil-
lation and the asymptotic limit is B /4.

In Fig. 6 we present the approximate DOS curves cal-
culated by using the constant termination method (a) and
linear termination method based on the FOP theory (b)
and (c), respectively; Fig. 6(d) shows the exact DOS. The
energies are given in units of B. The DOS curves in Figs.
6(b) and 6(c) are obtained by using the approximate ter-
mination functions GII. The correction terms proportion-
al to 5b„[Eq. (1)] are taken into account only in the finite
region of n, i.e., 1+1~n ~l+¹Specifically, N values
are chosen to be 100 and 300 in Figs. 6(b) and 6(c), re-
spectively. For damped oscillation of the recursion
coefficients, these approximate termination functions are
expected to work fairly well (compared to the exact ter-
mination function GII or fitted termination function as
used by Mauger et al. ). In Figs. 6(b) and 6(c) one no-

tices the unphysical oscillation around the 5-function
peak. It is noted that the oscillation near the 5-function
peak does not disappear even when we use the value of
N =300 (or much larger N value). These oscillations in
the DOS are considered to arise from the insufficient ter-
mination function of the perturbation theory.

Finally, we propose an efficient termination method to
eliminate (or further suppress) spurious peaks in the DOS
without extensive numerical computations. In view of
the complexities of the higher-order perturbative ter-
minating functions, we have tried to calculate the 1ocal
DOS using the FOP theory and the averaging procedure.
In Fig. 7 we present the averaged local DOS on the a or-
bital of site i =0 at the interface boundary, using the
same parameter values as in Fig. 5. The DOS curves (a),
(b), and (c) are averaged over 10, 15, and 25 successive
DOS curves with recursion level n ~61, respectively;
curve (d) being the exact DOS. One can see in Fig. 7 that
spurious peaks disappear almost completely by using the
FOP termination function and averaging procedure over
a small number ( -25) of successive DOS. This is due to
the fact that the positions of the spurious peaks in the
DOS vary systematically with varying the number of the
recursion coefficients. The present termination procedure
is found to be much more effective compared to that
based on the constant termination method plus averaging
procedure. Using the latter method, it is difficult to re-
move the unphysical oscillations near the band edges.
We have also found that the smoothed DOS structure is
insensitive to the details of the averaging procedure.

In conclusion, we have presented several examples for
the electronic DOS and examined the utility of the ter-
mination method using the exact recursion coefficients.
The approximate DOS curves calculated by using the
constant termination method and the perturbative ter-
mination method are compared to the exact ones. We
have demonstrated that the linear termination method
based on the FOP theory is unsatisfactory and leads to
spurious structure in the DOS when a 5-function-like
band-gap state appears or when band-edge singularity ex-
ists. To suppress the spurious structure in the DOS, it
would be required to go beyond the FOP theory: It has
been pointed out that the perturbative termination
method coupled to the averaging procedure is very suc-
cessful for the calculation of the defect energy levels.
Calculations taking into account high-n-level coefficients
are not always satisfactory and usually not practical.
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