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Various properties of liquid arsenic are calculated within the formalism of the quantum local-

density-functional approximation, using the molecular-dynamics method proposed by Car and Par-

rinello. The structure of liquid arsenic is found to be similar to its ground-state, rhombohedral crys-

tal structure, with coordination number 3 (in agreement with neutron-diffraction experiments), and

has similar bond-angle, pyramid-height, and pyramid-angle distribution functions. Liquid arsenic is

found to be a semiconductor with an energy gap of 0.15 eV. These results are consistent with the

picture that the threefold coordination arises from a Peierls-type distortion from a sixfold-

coordinated, simple-cubic-like structure. High-density and high-temperature properties are also

studied, and it is shown that a crossover to a sixfold-coordinated metallic liquid will occur at high

density, but not at high temperature. The structural properties of liquid arsenic are also studied by

simulations employing pair potentials derived from second-order perturbation theory, which work

surprisingly well, while showing small but significant differences from the ab initio simulations.

I. INTRODUCTION

The recent neutron-scattering experiment of Bellissent
et al. ' showed that in contrast to the group-IV elementa1
semiconductors Si and Ge which, upon melting, increase
their coordination number from 4 to more than 6 and un-

dergo a semiconductor-to-metal phase transition, the
coordination number of liquid arsenic remains the same
as its crysta1 structures, and liquid arsenic is a narrow-
band-gap semiconductor, while their crysta1 structures
are either semimetal (rhombohedral, also called A7, the
ground state) or semiconductor (orthorhombic).

An arsenic molecule in gas phase consists of a perfect
tetrahedron of 4 atoms. Or if one face of the tetrahedron
is put on a horizontal plane, it looks like a pyramid as
shown in Fig. 1(a). The tetrahedron distorts in condensed
phases into a flattened pyramid shape illustrated in Fig.
1(b), with the three bonds within the base face generally
broken. The crystal and amorphous phases of arsenic
can be viewed as different arrangements of the pyramids;
their coordination number (3), bond lengths (-2.5 A),
and bond angles (-97') staying practically the same.
The experiment of Bellissent et al. ' indicates that the lo-
cal structure of liquid arsenic is also similar. The varia-
tion in electronic behavior of different structures—
ranging from semimetal to semiconductor —reflects the
different arrangement of the pyramids that determines
the overall density.

With the help of first-principles, Hohenberg-Kohn-
Sham-type local-density-functional (LDA) calculations
carried out by several groups, a simple and elegant
picture has emerged for an understanding of the
crystal structures of arsenic. The valence-electronic
configuration of an arsenic atom is 4s 4p . The s level is
far below the p level, and the fully occupied s band does
not contribute much to the cohesion of the crystal. The p

level is half filled with three electrons. From the simple
view of chemical bonds, the p bonds should be orthogonal
to each other, which leads to an isotropic, sixfold-
coordinated simple cubic (sc) or related structure, as
shown in Fig. 2(a). However, such a structure is unstable
against the doubling of the periodicity, or a three-
dimensional analog of a Peierls distortion, for a half-filled
band. One way the Peierls distortion works is to move
one plane of atoms perpendicular to the threefold axis in
sc in the direction of the threefold axis (similar to the
one-dimensional dimerization), resulting in alternations
of short covalent bonds and long, van der %aals-like
bonds, as shown in Fig. 2(b): this is the A7 structure.
Now the coordination number becomes 3, the bond angle
becomes a little bigger than 90', and double layers form.
The similar threefold coordinated, double-layer-like or-
thorhombic structure may be understood similarly. The
electronic density of states (DOS) obtained by Mattheiss
et al. shows clearly how the Peierls distortion stabilizes
the A 7 structure against the sc structure. The DOS of sc

(b)

FIG. 1. Basic unit of atoms existing in various phases of ar-

senic. (a) A tetrahedron of 4 atoms existing as a molecule; (b) a

pyramid or a flattened tetrahedron existing in condensed

phases, the direction of which is represented by the arrow.
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FIG. 2. Illustration of a three-dimensional Peierls distortion.
{ajp-bonded simple-cubic structure; (b) rhombohedral structure
resulted from a Peierls-distorted simple-cubic structure.

liquid arsenic within LDA and using norm-conserving
pseudopotentials. ' Since such ab initio calculations are
seriously limited by computer time and memory, simula-
tions employing interatomic pair potentials derived from
second-order perturbation theory are performed for com-
parison with the ab initio calculations. The major results
have been reported earlier this paper provides addition-
al results and details. The methods used will be described
in Sec. II; properties of liquid arsenic near the triple point
from the ab initio simulations and from the pair-potential
simulations are reported in Secs. III and IU, respectively;
high-density and high-temperature properties are predict-
ed in Sec. V; and Sec. VI gives our conclusions.

has the s peak well separated from the p peak as expect-
ed, and the Fermi energy is right in the middle of the p
peak. Since the DOS at the Fermi surface is large, sc
would be a good metal. Because of the Peierls distortion,
each peak splits into two. The splitting of the p peak
opens a deep minimum at the Fermi energy, moves some
states just below the Fermi energy to lower energy and
therefore lowers the total energy and stabilizes the A7
structure against the sc structure, and causes the DOS
reaching its minimum value at the Fermi energy and as a
result makes the A7 structure of arsenic a semimetal.
The Peierls distortion argument gives all major features
of the A 7 structure, and is well accepted.

Gaspard et al. showed that a Peierls-type distortion
does not necessarily require periodicity; Bellissent et al. '

naturally suggested that the structure of liquid arsenic is
also due to a Peierls-type distortion from a sixfold coordi-
nated, sc like liquid. Since the Peierls distortion is non-
perturbative and involves a complicated balance between
the energies contributed from electrons and ions, we
would expect that in order to understand the properties
of liquid arsenic, the electrons must be treated in an exact
and explicit way. But surprisingly, the molecular-
dynamics simulations of Hafner using pair potentials de-
rived from second-order perturbation theory gave good
pair-correlation function compared with experiment.
This kind of potential is expected to work for near free-
electron metals, and indeed the second-order perturba-
tion theory is not good enough to explain the A 7 crystal
structure of arsenic. ' It is encouraging that such a po-
tential worked for liquid arsenic, which may be a small
gap semiconductor. ' Based on his simulations, Hafner
argued that a Friedel modulation does an equally good
job as a Peierls distortion does to explain the threefold
coordination of liquid arsenic.

Early experiments" showed a phase transformation of
crystal arsenic at high pressure. The linear augmented-
plane-wave method (LAPW) calculation of Mattheiss
et al. suggested that this is an A 7 to sc structural trans-
formation corresponding to the disappearance of the
Peierls distortion, whereas the ab initio pseudopotential
calculations of Needs et al. suggested that an A7 to sc
transformation is unlikely to happen. What happens to
liquid arsenic at high pressure and high temperature is
also an interesting and important question.

We have carried out the first ab initio calculations for

II. METHOD

The method we use to carry out this study is
molecular-dynamics simulations, i.e., atoms are treated as
classical particles and Newton's equations of motion are
solved to generate atomic configurations. A faithful rep-
resentation of the interaction between atoms is then cru-
cial to the validity and accuracy of the simulations. We
use two methods to represent the interactions; one is,
suggested by Car and Parrinello (CP), ' to treat electrons
explicitly within LDA, and to calculate the forces ac-
cording to Hellmann-Feynman theorem; the other is to
include the role of electrons implicitly in an approximate
pair potential.

A. CP method

The total energy of a many-electron system within
LDA is

OCC 2

~[:[0(r)I [RI l [~ I )=&f

+ U[n, (r), [Rl i ~ [~&I ] ~ (I)

where n, (r) is the electron density, [g, (r)I are the elec-
tron wave functions, [RI ] are the positions of the ions,
and [a„I are possible external variables. To find the
ground state, CP suggested to minimize the total energy
with respect to all possible degrees of freedom using
simulated annealing or downhill-type minimization algo-
rithms. The more important aspect of the CP method is
that it can be used to calculate finite-temperature proper-
ties within Born-Oppenheimer (BO) approximation. Let
the ions follow Newton's equations of motion, and so

M'
M)R) =—

I

Strictly speaking, the energy E here is the electronic
ground state given by

6F. +g A)g, (r, t),
o$,*(r,t )

where A, are Lagrange multipliers to enforce the ortho-
normal constraints. Instead, CP suggested association to
each electronic degree of freedom a fictitious mass p, and
let them also follow Newton's equations of motion so that
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(4)

Equation (4) is a good approximation of Eq. (3) if p is
small compared with MI. The electronic degrees of free-
dom can be allowed to gain only a litt}e fictitious kinetic
energy, corresponding to a small thickness of the BO sur-
face. This method worked very well for semiconductors,
and has been successfully used to a variety of s-p-bonded
systems, including selenium and sulphur clusters by Hohl
et al. ,

' amorphous silicon by Car and Parrinello, ' sil-
icon microclusters by Ballone et al. ,

' and amorphous
carbon by Galli et al. ' Recently, this method is be-
lieved to work also for metals after some
modifications, ' ' and has been successfully applied to
liquid silicon by Stich et al. ,

~' to liquid gallium arsenide
by Zhang et al. , to liquid carbon by Galli et al. , and
to liquid sodium by gian et al. ~

B. Pair potential

Recently a lot of empirical potentials have appeared in
the literature mainly for group-IV elements Si or C, and a
lot of interesting work has been done using these poten-
tials. But here we choose to use the pair potential de-
rived by treating the valence electrons as a homogeneous
electron gas and the positively charged ions as perturba-
tions to second order. This method is more systematic,
but the potentials fail to give stable covalent structures.
The derivation of the pair potentials can be found in Ref.
26. The result is very simple and physical: the pair po-
tential is the sum of the direct Coulomb repulsion be-
tween two ions, and the attraction of the first ion to the
screening charge distribution induced by the second ion:

4 Z2e2
4(k)= +u„,(k)y(k)u'„", (k),

k

where g is the linear-response function of the interacting
electron gas, v„, the bare pseudopotential between a
valence electron and an ion, and v",' the screened pseudo-
potential.

Hafner and Heine used such pair potentials to ex-
plain crystal structures of elemental metals and Hafner
and Kahl to explain liquid structures. Recently,
Hafner employed such a pair potential to study liquid
arsenic and obtained good results. Following Hafner, we
use the Ichimaru-Utsumi dielectric function and Ash-
croft empty core pseudopotential. The pair potentials
for arsenic at two different densities are shown in Fig. 3.
They are used in this study. R„„, the core radius
of Ashcroft pseudopotential, is 0.53 A.

III. LIQUID ARSENIC: ab initio SIMULATIDNS

A. Computational details

We employ the CP method within LDA and with use
of norm-conserving pseudopotentials. Only the s nonlo-
cality is included with the pseudopotential of p state
treated as the local part. Kleinman and Bylander's fac-
torized form ' of the nonlocal pseudopotential is used to

FIG. 3. Pair potentials from second-order perturbation
theory for arsenic at two different densities. The thick line is at
n=0.04220 atoms/A', and the thin line is at n=0.06297

0

atoms/A '.

speed the calculations. Liquid arsenic is simulated by 64
atoms in a cubic supercell with periodic boundary condi-
tions. This size is about the limit that we can handle with
the present supercomputers, and is large enough to give
good ensemble averages as we will show by analysis of
size dependence of pair potential simulations, where
much larger sizes are feasible. The fictitious mass of the
electrons is 400 times the true electron mass, which is
still much smaller than the ion mass of arsenic. The time
step is 3 a.u. , or 7.26X10 ' sec. To give an idea how
large this time step is, an As2 molecule vibrates a period
in about 800 time steps.

The size of the unit cell, 22.2826a~, is chosen so that
the density is 4.856 g/cm, which is given and used by
Bellissent, who took it from the early experiment of
Klemm et al. Another experiment showed that at
the triple point, the density of liquid arsenic is 5.22
g/cm'. The difference reflects the experimental uncer-
tainty, and does not affect our results and conclusions.

A very important parameter is the energy cutoff of the
plane-wave basis set. A test calculation shows that a 16
Ry energy cutoff is good enough to describe an As2 mole-
cule. We performed a simulation of liquid arsenic with
an energy cutoff of 6 Ry, hoping that although it is
lower than needed for an As2 molecule, it may be ade-
quate for the liquid, where atoms are more uniformly dis-
tributed and wave functions are expected to be more
smooth. But the results are not satisfactory. The first
peak in the pair-correlation fonction is too high, the peak
positions are too small, and the coordination number is
too small compared with experiment, showing that 6 Ry
energy cutoff is also not large enough for liquid arsenic.
For all the calculations reported here, an energy cutoff of
12 Ry is used, which was also used by Needs et al. to
calculate the properties of crystalline arsenic. Only one k
point, the I point, is used to calculate the self-consistent
electron density and the DOS, and the fact that all the
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wave functions in coordinate space are real at the I point
is used.

Initially atoms are randomly displaced from a simple-
cubic crystal structure, then relaxed and temperature
raised to more than 6000 K to ensure a molten system,
then lowered gradually to about 1150 K, close to the
triple-point temperature 1090 K. Because of the small
size of the system and therefore the large Auctuation,
temperature is determined to only +100 K. After equili-
bration, statistics are collected in 4000 time steps.

B. Structural properties
(b)

The first quantity we can calculate from a successive
sequence of coordinates is the mean-square displacement
as a function of time interval, shown in Fig. 4. The be-
havior is typical. In a small time interval (t (10 ' sec),
the curve is parabolic and the motion of the atoms are
mainly ballistic like, or strongly correlated to their
motion a time t before. After about 2X10 ' sec, the
curve falls approxiinately onto a straight line (this time
interval is also typical. For liquid water at room temper-
ature, for example, the diffusion coefficient
D=2. 85X10 cm /sec is in the same order of magni-
tude as that of liquid arsenic from our estimate, and the
mean-square displacement also falls approximately onto a
straight line after about 2X 10 ' sec. ) indicating that our
molecular dynamics run is long enough to reach the un-
correlated region and to cover enough phase space to
give reliable ensemble averages. From the slope of the
fitted straight line, we estimate the self-diffusion
coefficient D to be 6.0X10 cm /sec; we are not aware
of an experimental result to compare with.

Figure 5(a) shows the pair-correlation function from
our ab initio simulations and from Hafner's. They are
qualitatively similar. The coordination number defined
as the number of nearest neighbors is generally calculated

1.2 p

0.8

V

0 4V

0—
0

time (10 ~ sec)

FIG. 4. Mean-square displacement of arsenic atoms in the
near triple-point liquid state as a function of time from CP
method. The straight line is a least-squares fit.

0
0

FIG. 5. The pair-correlation function g2(r) vs separation r
for liquid arsenic near the triple point. (a) The thick line is from
the ab initio simulations, the dashed line is the g2(r) for only the
three nearest-neighbor atoms (see text), and the thin line is from
Ref. 8. (b) The thick line is the g2(r) from the present work
broadened by the experimental q,„and the thin line is the ex-
perimental result from Ref. 1.

according to the formula
R,

Z=4np J dr r g2(r), (6)

where p is the average number density and R, is a cutoff
distance, usually taken as the position of the first
minimum in g2(r). But since the second peak is much
broader than the first peak, Z so defined (let us call it the
number of atoms under the first peak) may include some
contributions from the second peak. To avoid ambiguity
and to find the coordination number in a straightforward
way, we show, in dashed line in Fig. 5(a), the pair-
correlation function for the three nearest neighbors of
each atom. It is almost in perfect coincidence with the
first peak in g2(r), showing that the true coordination
number is indeed 3. The differences on the right-hand

0
side of the peak and the tail near 3 A indicate the ex-
istence of some fourfold and twofold coordinated atoms.

0
It is interesting to notice that at 2.7 A, there is a sudden
drop in g2(r). If we take the position of this sudden drop
to be R„ then we get Z = 3 froin Eq. (6), and the possibil-
ities for an atom to be onefold through fivefold coordinat-
ed are 2.7%%uo, 19.5%, 55.3%, 22.0%, and 0.4%, respec-
tively, showing dominant threefold coordination.
Hafner's result is qualitatively very similar to ours, but
the first peak in his g2(r) is much lower and broader, and
he compared his gz(r) directly with the experimental re-
sult of Bellissent et al. ' Etherington et al. argued that
this kind of comparison is not very valid, because the ex-
perirnental pair-correlation function was obtained with a
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finite momentum range q „and is therefore not exact,
whereas the pair-correlation function from simulations is
"exact' in the sense that it is calculated in the coordinate
space and no momentum cutoff is imposed. Bellissent
et al. ' observed this effect, and stated that if q,„ is in-

creased, the height of the first peak in g2(r) increases
drastically to about 4. Our g2(r) happens to show a peak
height of about 4, and this may not be an accident. In or-
der to do a valid comparison with experiment, our g2(r)
is broadened with q,„=13A ' and shown in Fig. .5(b)
together with the experimental result. Over all, the
agreement is fairly good. The positions of the first peak
and the first minimum agree, and the structures of the
second peak are qualitatively correct. Considering that
there are no adjustable parameters in our simulations,
this agreement is impressive. But the height of the
second peak, the depth of the second minimum, and the
position of the third peak are not quite right.

The static structure factor S(q) is defined by

1.0

0.5 i

0

1.5 '—

1.O I

0.5

0
0 8

q(A ')

(b)

16

S(q) = g exp[iq (r; —r )] —N, 5 o,= 1

ij

(7)

where E, is the number of atoms in the system. Because
of the small size of the system, S(q) so calculated fiuctu-
ates a lot and the Auctuations have to be removed by a
suitable averaging scheme. Here we Fourier transform
gz(r) to obtain S(q) to check the peak positions [S(q)
such obtained gives broader peaks, especially the first few
of them, because of the r-range cutoff, but the peak posi-
tions are roughly correct ]. The result is shown in Fig.
6(a) as well as the experimental result. The overall agree-
ment is again good, but the first two peaks are lower and
broader than those of experiment, just the opposite as in

g2(r), and can be understood similarly. The experimental
S(q) is exact in principle, but the S(q) from simulations
is not because the r range is limited to about 6 A by the
size of the system. In our result, S(q) has peaks at 2.85,
3.55, 5.70, 8.25, and 10.60 A ', in fairly good agreement
with the experimental peak positions 2.45, 3.74, 5.86,
8.00, and 10.75 A '. Figure 6(b) reproduces Hafner's re-
sult. Since the size in his simulations is large enough to
distinguish small q differences, Hafner got the first two
major peaks correctly separated from each other. But
beyond the second peak, our ab initio results show slight-
ly better agreement with experiment, especially the peak
positions.

One of the advantages of computer simulations is that
some quantities that are not easy to measure experimen-
tally can be calculated easily. The bond-angle distribu-
tion function g3(0) is one of such quantities that can help
us gain more insight into the structure of a liquid. g3(t))
is defined as the possibility of finding an angle 0 between
triplets of atoms, the bond length of which about the in-
cluded angle are both less than the position of the first
minimum in gz(r). The angle distribution function as a
function of 0 is shown in Fig. 7(a). It is more natural to
show it as a function of cosO, since the solid angle incre-
ment is a constant for constant d cosO but varies for con-
stant dO. The fact that g3(0) tends to zero at 0=180 in

Fig. 7(a) does not imply that the possibility of finding an

FIG. 6. Static structure factor S(q) for liquid arsenic near

the triple point from (a) our ab initio simulations (thick line) and

(b) Hafner's pair-potential simulations (thick line). The thin

lines are from experiment.
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FIG. 7. Bond-angle distribution function g, for liquid arsenic
near the triple point. (a) g3 as a function of 8. The histogram is

from the present ab initio simulations and the thin line from
Hafner's pair-potential simulations. (b) g3 as a function of cos8.
The histogram is from the ab initio simulations and the thin line

from our pair potential simulations, which should be the same

as Hafner's result. The arrows show the positions of the bond

angle in rhombohedral (r) and orthorhombic (o) crystal struc-
tures with the lengths of the arrows representing the relative

weight.
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angle of 180' is zero, but rather the possibility is normal-
ized to sin8. Since Hafner plotted his bond-angle distri-
bution function as a function of 8, we plot it the same
way for a convenient comparison. The two results are
again very similar to each other, except that the peak
around 100' in our result has more weight than Hafner's,
and the subsidary maximum at 60' is smaller. The bond
angles are mainly distributed between 80' and 125 . The
bond-angle distribution function versus cosO is plotted in
Fig. 7(b) [also shows the g3(cos8) from our Hafner-type
pair potential simulations for comparison], showing that
near cos8= —1 or 8=180', the possibility is nonzero,
which is consistent with our naive expectation. The
strong repulsive forces between atoms at short distance
do not allow the bond angle to be close to zero, but noth-
ing prevents it, and nothing enhances it also, to be close
to 180' in a liquid; both calculations give
g3(cos8= —1)-0.5, which is the value that would be
found if all angles were equally probable. The subsidary
maximum near 8=60' (cos8=0.5) indicates the existence
of some equilateral triangles. Hafner concluded that the
equilateral triangles are related to the "defects" (relative
to an ideal continuous network with nearly ideal rhom-
bohedral bond angles) in liquid arsenic, and such defects
are tetrahedral groupings of four arsenic atoms just as
they exist in gaseous arsenic. Although this conclusion is
reasonable from this single piece of information, it is not
the case from our ab initio simulations as we will show
later.

An important feature of threefold coordination is that
an atom and its three nearest-neighbor atoms form a py-
ramid as shown in Fig. 1(b). It is interesting to see what
the pyramids look like in liquid arsenic. Since g2(r) and
g3(cos8) do not depend on the shape of pyramids very
sensitively, we show, in Fig. 8 g4(r), the distribution of
the height of the pyramids, or the distance between an
atom and the plane defined by its three nearest neighbors

[see Fig. 1(b)]. g4(r) shows a broad peak around 1.25 A,
the value for crystal structures, indicating that the shape
of the pyramids in liquid arsenic is very similar to that of
the crystals. From the information given by gz(r),
g3 ( cos8 ), and g4 ( r), we conclude that the local structure
of liquid arsenic generated from ab initio simulations is
similar to the crystal structures.

The two well-known crystal forms of arsenic have very
similar local structures. It is natural to ask whether the
short-range order of liquid arsenic is more similar to the
rhombohedral or to the orthorhombic structure. This
question cannot be answered by considering only g~(r),
g, (cos8), and g4(r) because there is almost no difference
between the two structures as far as the nearest neighbors
are concerned. In Fig. 7(b), the arrows show the posi-
tions of the bond angles in rhombohedral (r) and ortho-
rhombic (o) crystal structures with the length of the ar-
rows representing the relative weight. They are so close
to each other that they can not be distinguished from
each other in the liquid. Figure 1(b) defines the direction
of a pyramid to be perpendicular to the base face and
pointing from the base face to the apex atom. Since a
widely accepted name for the angle between two bonds is
"bond angle, " we shall similarly call the angle between
the directions of two neighboring pyramids "pyramid an-
gle,

" which is helpful to distinguish the two crystal
forms. To visualize the concept of pyramid angle, the in-
set of Fig. 9 gives directions of two neighboring pyramids
that generally involves six atoms, but sometimes involves
only Ave, or even four atoms as in a perfect, isolated
tetrahedron of As4 molecule. The pyramid angles are al-
ways 180 in he rhombohedral structure, whereas in the
orthorhombic structure, —,

' of the pyramid angles are 180'
and —', are around 48'. The arrows below the histogram in

Fig. 9 indicate the positions and relative weights of these
angles, and the histogram shows the pyramid angle distri-
bution function, g~(cos8), of liquid arsenic from our ab

1.2—

0.8—
V70
Q

lO

0
0 1

pyramid height (P)

C0

V)

-1.0 -0.5 O.O

(o)
0.5

relative pyramid orientation (cos e )

1.0

FIG. 8. Distribution function g4 (r ) of the pyramid height for
liquid arsenic near the triple point from ab initio simulations.
The arrow shows the value for crystalline structures {both
rhombohedral and orthorhombic) of arsenic.

FIG. 9. Distribution function g~(cos8) of the angle between
neighboring pyramid vectors for liquid arsenic near the triple
point from the ab initio simulations. The inset illustrates the py-
ramid angle between two neighboring pyramids.
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initio simulations. If the pyramids were completely ran-
domly arranged, that is there were no correlation at all
between neighboring pyramids, then g6(cos8) would be a
constant except the smaller possibility near zero degree
(cos8=1) because of topological reasons. This is almost
true except the big peak around cos8= —1 (8=180 ).
This peak is so high that we have to believe that the
neighboring pyramids are happy to sit in the opposite
direction. Since only a very weak feature appears near
cos8=0.67 (8=48')—one of the two pyramid angles in
the orthorhombic structure, the pyramid angle distribu-
tion function is an evidence that the structure of liquid
arsenic is more similar to the rhombohedral than to the
orthorhombic structure.

If some moleculelike tetrahedrons existed, we would
expect a peak near 8=109' or cos8= —

—,'. A very small

peak around 87' appears instead. Therefore, perfect
tetrahedrons similar to As4 molecules can be excluded;
the defects Hafner suggested according to his g3(8) do
not exist in our liquid arsenic generated from ab initio
simulations.

C. Electronic and optical properties

In the CP method, the self-consistent electron densities
are generated from the same procedure that derives the
atomic configurations. These electron densities complete-
ly determine the electronic and related properties of the
system according to density functional theory.

The electronic DOS of liquid arsenic is obtained by
averaging over 40 configurations and is shown in Fig. 10.
Also shown by a thin line is the DOS of the rhom-
bohedral crystal structure calculated by Mattheiss et al
They are very similar to each other. In both DOS's, the s
and p states are separated by a deep minimum around
—7 eV, with the whole s peak far below the Fermi
energy —consistent with the expectation that the s level

has little contribution to the cohesion of the bulk arsenic.
In the crystal, the s peak is split by a minimum at —12
eV, and in both liquid and crystal there is a deep
minimum at the Fermi energy splitting the p peak. This
similarity suggests that (a) the local structure of liquid ar-
senic is indeed similar to the rhombohedral crystal struc-
ture, consistent with our previous finding; (b) since the
Peierls distortion picture is so successful in explaining the
rhombohedral structure, and since a Peierls distortion is
so natural to understand the minima that split the s and p
peaks, we have to conclude that it is still the Peierls dis-
tortion that is responsible for the liquid structure. The
"Peierls gap,

" i.e., the minimum at the Fermi energy,
lowers the total energy and stabilizes the liquid structure
against a sixfold coordinated liquid.

It is interesting to examine the possible localization of
electronic states in a disordered system by the participa-
tion ratio defined as

L;= 0 r, r

where g, (r) is the normalized wave function of the ith
state and Q is the volume of the system. For a free parti-
cle state, i.e., g(r) is a plane wave that is the tnost extend-
ed state, the participation ratio L is exactly 1. If a state
only occupies a volume v &fL, then L is approximately
v/Q. For an extended state v, though possibly small
compared with 0, is proportional to 0; but for a local-
ized state, v is a constant regardless of Q. Therefore, for
an infinitely large system, L is zero or finite for a local-
ized or an extended state, respectively. But for a finite
system as in our calculations, localized and extended
states can not be distinguished strictly. Nevertheless, we
can get at least a rough idea.

The participation ratio Uersus energy for liquid arsenic
is shown in Fig. 11. It is interesting to notice that it has a
steplike behavior. Comparing the energy axis with that

0.8

0.3—

4 8

Energy (eV)
energy (eV)

FIG. 10. Electronic DOS for liquid arsenic near the triple
point from the present ab initio simulations (thick line) and for
the rhombohedral-crystal structure from Ref. 6 (thin line).

FIG. 11. Participation ratio vs energy from ab initio simula-
tions for liquid arsenic near the triple point.
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of the DOS, we observe that the participation ratio is ap-
proximately a constant for all the states that have the
same symmetry (referring to angular momentum). This
observation can be understood if wave functions in the
liquid still retain some characteristics of wave functions
in an atom in the radial direction as well as in the angular
direction. No state has a particularly small participation
ratio, indicating that there is no localized state, at least
within the limitations of a 64 atom cell.

The imaginary part of the dielectric constant ez(co),
which measures the light absorption, is calculated ac-
cording to the Kramers-Heisenberg formula

8~2 2 occ unocc

e,(~)=,', g g l&ilu. li&l'&(s, —
&

—~) .
J

This formula (also called the Kubo-Greenwood formula)
has been used by Allen and Broughton to calculate the
electrical conductivity of liquid silicon and a related for-
mula was used by Allen and Feldman to calculate the
heat conductivity of amorphous silicon, and they are suc-
cessful. In our calculations, this formula needs to be
modified because the nonlocal pseudopotential does not
commute with coordinate r. ' But since the nonlocal
pseudopotential is only a very small part of the potential,
the correction is expected to be small. Therefore, we use
the Kramers-Heisenberg formula as it is to calculate
e2(co), and show the result in Fig. 12. An energy gap of
0.15 eV appears. In fact, an energy gap opens at the Fer-
mi energy of the DOS for each configuration and the
smallest one is 0.15 eV. But the averaged DOS shows a
minimum instead of a gap because of the small size of the
system and, therefore, the relatively large fluctuations of
the Fermi energy. In a finite system, a very small gap is
generally not reliable because the energy spectrum is
quasicontinuous. Here we tend to believe that this gap is
large enough to be true because the average level spacing
is less than 0.05 eV and LDA generally underestimates
gaps of semiconductors (a comparison of Fig. 12 with

30—
~ 'l

20—
3

10 ——

~(eV)

FIG. 12. Imaginary part of the dielectric constant vs energy
from ab initio simulations for liquid arsenic near the triple
point.

Fig. 21, which shows metallic behavior is also helpful),
but it is smaller than the quoted experimental result, '

-0.5 eV. The dc dielectric constant e, (0) is estimated to
be 48.7 according to

&)(0)—1=—J Eg(co)dc' .
7T —oo Q)

(10)

Unfortunately, we are not aware of any experimental
measurements of light absorption for liquid arsenic.

IV. LIQUID ARSENIC:
PAIR-POTENTIAL SIMULATIONS

First of all, Hafner's static structure factor S(q), pair-
correlation function g2(r), and bond-angle distribution
function g3(e) are exactly reproduced using the pair po-
tential shown by the thick line in Fig. 3 (which is eactly
the same as the one Hafner used) with a cutoff radius of
10 A, and using 500 atoms in a cubic supercell with
periodic boundary conditions (Hafner used cutoff radius
of about 10 A also and 864 atoms).

Hafner argued that the threefold coordination in liquid
arsenic is due to a Friedel modulation. As shown in Fig.
3, the pair potential has an inflection point near 3 A,
which is a result of the Friedel oscillations extended to
short range. The simple pair potential prefers a close-
packed-type structure; the fixed density forces the
nearest-neighbor distance to be around 3 A; and the
inflection point splits the close-packed nearest neighbors
into two shells with the first shell containing about 3
atoms. In order to see the effects of the intermediate- and
long-range part of the Friedel oscillations, we cut the po-
tential off at about 5.7 A, i.e., only retaining one oscilla-
tion. The pair-correlation functions and bond-angle dis-
tribution functions are shown in Figs. 13 and 14, together
with the results using the cutoff radius 10 A. The
differences are almost invisible. We agree with Hafner
that the approximate threefold coordination is because of
the inflection point near 3 A in the pair potential, and the
inflection is a result of the Friedel oscillation. But the
intermediate- and long-range part of the Friedel oscilla-
tions are not important at all.

One question frequently raised about the ab initio
simulations is how reliable it is using a system of 64
atoms to represent the liquid bulk. The ab initio simula-
tion itself can not clarify this because calculations with
larger systems are impossible. Clearly this is a place
where pair-potential simulations can help. The results of
pair-potential simulations with 64 atoms (cutoff radius
for the pair potential is 5.7 A) are also shown in Figs. 13
and 14. The differences are again invisible except the
worse statistics. Therefore, 64 atoms are enough to give
good ensemble averages and to properly describe the
properties of a liquid in the short range.

Although our pair-correlation function is identical to
Hafner's, we analyze it in a different way. Hafner fitted
the peaks with Gaussians to find the coordination num-
ber, which we think is somewhat arbitrary. In Fig. 15(a)
in the dashed line, we plot the g2(r) for only the three
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FIG. 13. Pair-correlation functions from various pair-
potential simulations at low density. Thick line: 500 atoms
(shifted up by 1.0 for clarity), pair potential is cutoff at R, =10
A; thin line: 500 atoms (shifted up by 0.5), R, =5.7 A; histo-

0
gram: 64 atoms, R, =5.7 A.

bond angle cos8

FIG. 14. Bond-angle distribution functions from various
pair-potential simulations at low density. The line convention is
the same as in Fig. 13.

nearest-neighbor atoms. It is clearly different from the
first peak in g2(r). Therefore, the coordination number
cannot be identified as 3 from our criterion. The solid
thin line, the g2(r) from the four nearest-neighbor atoms,
is in better coincidence with the first peak in g2(r), indi-

cating that the coordination number is 4. Therefore, the
coordination number from pair-potential simulations is
different from that of ab initio simulations. As discussed
in Sec. III C, the calculated g2(r) has to be broadened to
do a valid comparison with experiment. The broadened
g2(r) is shown in Fig. 15(b) as well as the experimental re-
sult. Overall agreement with experiment is about the
same as in the ab initio case [Fig. 5(b)], being worse at
small r and better at larger r.

The number of atoms under the first peak in g2(r) is
defined in Eq. (6) with R, the position of the first
minimum that is different from the coordination number

because no correction from the secnd peak is made; and
the number of atoms under the second peak is defined in
the same way except that the integral is from the first
minimum to the second minimum, and so on. We find
that the number of atoms under the first peak of gz(r) are
3.9, 3.82, and 4.48 from experiment, ab initio and pair-
potential simulations, respectively, as listed in Table I.
The ab initio result is in better agreement with experi-
ment. The number of atoms under the second peak in all
the three g2(r) are about 14. However, both Bellissent
et al. ' and Hafner claimed that this number is about 9,
considerably smaller than 14. From this inaccurate num-
ber, they concluded that the second peak in g2(r) (the
peak and the shoulder in the experimental result) corre-
sponded to the second (three atoms) and third (six atoms)
neighbor shells in the rhombohedral structure. It seems
to us that this is not the case. The number of atoms un-

TABLE I. Properties of liquid arsenic in comparison with those of crystals. The ab initio simulations are performed with 64 atoms
0 0

and E,„,=12 Ry; the pair-potential simulations are performed with 500 atoms, R, =5.7 A, and R„„=0.53 A; experimental results
are taken from Ref. 1 and properties of crystals are taken from Ref. 2.

Property

Coordination number
First peak {A)
No. of atoms
Second peak (A)
No. of atoms
Bond angle
Pyramid height (A)
Pyramid angle
Energy gap (eV)

Crystal
rhombohedral

3
2.51

3
3.14, 3.76, 4.13

3+6+6
97.2
1.25
180'
0

Crystal
orthorhombic

3
2.48/2. 49

3

many
3+6+6

94.1 /98. 5'

1.25
180 /48'

0.3

Liquid
ab initio

3
2.45 {2.50)'

3.82
3.54, 4.10

14.1
80-125 '
—1.25
—180'
0.15

Liquid
pair potential

4
2.61 (2.68)'

4.48
3.85
13.7

65-130'

Liquid
expt.

3

2.50
3.9

3.4, 3.75 (4.1)
15.0

0.5

'The number in parentheses is the peak position after broadening that should be compared with experiment.
The peak at 4.1 A is hardly visible.
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FIG. 15. (a) Analysis of the pair-correlation function at low

density from pair-potential simulations. Thick line is the same

as the thick line in Fig. 13; thin dashed and solid lines are the

g, (r) for three and four nearest-neighbor atoms, respectively.
(b) Comparison with experiment. Thick line is the gz(r)
broadened with q,„=13A; thin line is the experimental re-
sult from Ref. 1.

der the first and second peaks add up to about 18 for all
the three g2(r), evidently corresponding to the first four
shells in the rhombohedral structure, or the first two
shells in a simple-cubic structure.

The second peak in g2(r) shows interesting differences

among the three results. Experiment gave a major peak
at 3.75 A, a shoulder at 3.4 A, and some feature hardly
visible near 4.1 A, in good coincidence to the peaks in
rhombohedral structure 3.14, 3.76, and 4.13 A. The ab
initio simulations give two almost separate peaks at 3.54
and 4.10 A. The 3.54 A peak can be identified as the sum
of the 3.14 and 3.76 A peaks in the rhombohedral struc-
ture. The pair-potential simulations give a single peak at
3.83 A without any evidence of coming from three peaks.
Therefore, the results of the ab initio simulations are
qualitatively more similar to those of the experiment than
of the pair-potential simulations. It is unlikely that the
Friedel oscillations could correctly reproduce the fine
structures on the second peak of gz(r). The Peierls dis-
tortion and Friedel modulation pictures may not contra-
dict each other, though the former is not perturbative
and the latter is. If we have to choose one, then the
Peierls distortion picture is preferable.

While the static structure factors S(q) and the bond-
angle distribution functions g3(cos8) have no qualitative
differences between the two simulations, the pyramid
height distribution functions g4(r) (Figs. 16 and 8) are
very different. In the ab initio case, g4(r) has a peak

0
around 1.25 A, whereas the pair-potential result shows
more uniform behavior, implying that the shape of py-

1

pyramid height (~)

FIG. 16. Pyramid-height distribution function from pair-

potential simulations for near the triple-point liquid arsenic.
The arrow is the value of crystal structures.

ramids is random. This confirms that the local structure
predicted by the pair potential is significantly different
from the ab initio result. Pyramids are less well defined
because the fourth neighbor is not expelled from the first
shell of atoms. The ab initio predictions for the liquid
bear a closer resemblance to crystalline structures of ar-
senic than do the pair-potential predictions.

The diffusion coeScient estimated from pair-potential
simulations is about 6.5X10 cm /sec, in good agree-
ment with the ab initio estimation. Summarized compar-
ison of properties from experiment, ab initio and pair-
potential simulations are given in Table I.

V. LIQUID ARSENIC AT HIGH DENSITY
AND HIGH TKMPKRATURK

The structural phase transformations of matter under
various conditions are always an important issue in con-
densed matter physics, and the possible disappearance of
the Peierls distortion makes it particularly interesting for
1iquid arsenic. In this section we investigate possible
structural changes of liquid arsenic at high density and
high temperature from both ab initio and pair-potential
simu1ations.

A. High density

In their linear augmented-plane-wave (LAPW) calcula-
tions, Mattheiss et al. found a phase transformation of
crystal arsenic from rhombohedral to simple-cubic struc-

0

ture at the volume of about 17 A /atom and under a
pressure of about 190 kbar. In order to see if such a
transformation also occurs in liquid arsenic, we perform
simulations at the volume of 15.88 A /atom.

The conditions for the ab initio simulations are exactly
the same as described in Sec. III except that the number
of plane waves is less as a result of the smaller volume
and a constant energy cutoff. Several pair-potential simu-
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FIG. 17. Pair-correlation function g2(r) for high-density
liquid arsenic from pair-potential simulations (a) and from ab
initio simulations (b). The thin lines are the pair-correlation
functions for six nearest-neighbor atoms.

lations are carried out with different choices of core ra-
dius R„„in the empty core pseudopotential, and all the
results are extremely similar except the height of the first
peak in gz(r). Therefore, we describe here the results
from a particular set of simulations using the pair poten-
tial shown in Fig. 3 by the thin solid line, which is gen-
erated with R„„=0.53 A, the same as Hafner's choice
for his near the triple-point simulations, and again only
the first oscillation of the potential is retained, and the
number of atoms is 500.

The pair-correlation functions are shown in Fig. 17,
and the pair-correlation functions for the six-nearest-
neighbor atoms are also shown. From both simulations,
the coordination number can be identified as 6, and the
first peaks from the two simulations are very similar.
However, as shown in Table II, the second peak in gz(r)
from the ab initio and pair-potential simulations are very
different. The bond-angle distribution functions are even

FIG. 18. Bond-angle distribution function g3(cos0) for high-

density liquid arsenic from pair-potential simulations (thin line)

and ab initio simulations (histogram).

more different, as shown in Fig. 18.
The results from the pair-potential simulations suggest

an interpretation by a simple-cubic-like structure. In a
simple-cubic crystal structure, the number of atoms un-
der the first two peaks are 6 and 12, respectively, and the
position of the second peak is &2 times the position of
the first peak. In the pair-potential result, the number of
atoms under the first two peaks are 6.27 and 13.96, re-
spectively, very close to 6 and 12. The first two peaks are
centered at 2.45 and 3.50 A, and,',",=1.43=&2. The
similarity between the two structures is evident. This ob-
servation is strongly supported by the bond-angle distri-
bution function, in which big peaks exist at 0-90' and
180', just as in a simple-cubic structure. The subsidiary
maximum at 0-60' has no simple explanation. It could
be due to next nearest neighbors or some kind of defects.

The results from ab initio simulations are more difficult
to explain. The number of atoms under the first two
peaks in g2(r) are 7.3 and 7.7, respectively, both close to
6, and the peak positions are 2.49 A and 3.34 A. A good

TABLE II. Properties of liquid arsenic at high density. The volume is 15.88 A /atom.

Property

pressure
coordination No.

1st peak position (A)
No. of atoms

2nd peak position (A)
No. of atoms

bond angle
similar crystal structure

transformation
electronic character

dc resistivity (pQ cm)

ab initio

-60 kbar
6

2.49
7.3
3.34
7.7

-60
simple rhombohedral

possibly first order
metal
40+10

Pair potential

6
2.45
6.27
3.50
13.96

-90', 180' (60)
simple cubic

possibly smooth
metal
—57
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candidate is a simple-rhombohedral-like structure, the
difference between which and an A7 structure is that in
an 3 7 structure, there are two atoms in a unit cell, but in
a simple rhombohedral structure, there is only one atom
in a unit cell. The simple rhombohedral structure has
three qualitatively different types characterized by
different angle 8 between two basis vectors: (1) 8)90',
which can be viewed as a simple cubic flattened along the
threefold axis; (2) 60 & 8 &90', an elongated simple cubic
or a fiattened fcc along the threefold axis; and (3) 8 & 60',
an elongated fcc along diagonal. From the g2(r) shown
in Fig. 17(b), we can exclude the possibility of (1) and (2),
because otherwise the position of the third peak would be
at about 3.7 A, indistinguishable from the second peak.
Therefore the high-density liquid arsenic generated from
ab initio simulations has a simple-rhombohedral-like, or
an elongated-fcc-like structure. From the position of the
first two peaks, we estimate the position of the third peak
to be at about 4.2 A, beyond the second minimum in

gz(r) and 8 to be about 44 . Notice that this 8 is not the
bond angle in this case. It is more clear to look at the
structure along the threefold axis. In fcc structure, the
interlayer distance is c =Q —', d -0.82d, where d is the
nearest-neighbor distance; whereas in liquid arsenic,
c=1.2d with d=2. 49 A. All the neighbors are within
the layer and the bond angle is 60', which is consistent
with the bond angle distribution function. It is interest-
ing to notice that all the above analysis will be equally
valid if we assume a hexagonal structure instead of a
simple-rhombohedral structure, and it would be nice to
distinguish the two cases, which unfortunately requires
the examination of the correlations between atoms about
6 A apart, and at that range the result is no longer reli-
able because of the long-range disorder in a liquid, as well
as the small size of the system. We leave this uncertainty
as a subject for further studies. The area under the 60'
peak in g3(cos8) is only a very small fraction of the whole
area, indicating that the structure is less ordered.

Comparing the gz(r) and g&(cos8) at high density de-
scribed in this section and those at low density described
in Secs. III and IV, we find that the ab initio results are
very different, possibly implying a first-order phase
change in between; but the pair-potential results are ex-
tremely similar except that the number of atoms under
the first peak in g2(r) increases from about 4.5 to about
6.3, indicating that the structure changes smoothly from
low density to high density. The ab initio pseudopoten-
tial calculations of Needs et al. suggested that the
simple-cubic structure is always unstable against the
rhombohedral structure, and at very high density the
rhombohedral structure would transform directly to a
close packed structure without going through a simple-
cubic structure as an intermediate state. This result
seems to be consistent with our ab initio simulations from
which we find high-density liquid arsenic to be close to a
close packed structure, although we do not know if a sc-
like phase would exist at a density between our high and
low densities.

All the three groups that studied the structural
properties of crystal arsenic predicted that at all volumes,
the sc structure is stable against simple-rhombohedral

distortions. This is not contradictory to our finding for
liquid arsenic, because the stable structure we find is type
(3) defined earlier (the angle between two basis vectors is
8 & 60'), whereas they only checked types (1) and (2) with
0 close to 90 . Whether the liquid structure is still similar
to the crystal structure at high density is another interest-
ing subject for further studies, which can be qualitatively
determined by examining the stability of the fcc structure
against rhombohedral distortions.

The ab initio method used here does not have a pres-
sure algorithm. To give a rough idea how large the pres-
sure is, we use the calculated energies at the two volumes
and the experimental triple-point pressure to estimate the
pressure at high density from the following formula:

1 1E=a (11)
v ~o

+Eo,
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FIG. 19. Electronic DOS for high-density liquid arsenic from
ab initio simulations.

and find the pressure of the high-density liquid arsenic to
be about 60 kbar. This number is not accurate, but it
suggests that if the phase transformation indeed exists, it
should be easily observable by experiment.

The electronic DOS, the participation ratio and the
imaginary part of the dielectric constant from the ab ini-
tio simulations are shown in Figs. 19-21. The s states
and p states are no longer separated from each other and
the participation ratio remains roughly a constant
throughout the spectrum. There is still no evidence of
electronic localization. Although the DOS still has a
minimum at the Fermi energy, liquid arsenic is clearly a
metal, as also shown by the behavior of e2(co), which
seems to diverge as ~ tends to 0, consistent with the ex-
perimental result of Alekseev et al. , where the conduc-
tivity of liquid arsenic at 330 atm (much lower than our
pressure) was measured and showed metallic behavior (al-
ready). Although the electronic DOS of liquid arsenic
from pair potential has not been calculated, it can be
guessed from the calculation of Mattheiss et al. since it



X.-P. LI 41

0.4—

0
gj

o 02—

C4

0
—20

energy (eV)

l

10

FIG. 20. Participation ratio of electronic state for high-
density liquid arsenic from ab initio simulations.

FIG. 22. Electrical conductivity for high-density liquid ar-
senic from ab initio simulations (thick line) and two fittings to
the Drude formula (thin lines).

has a simple-cubic-like structure. High-density liquid ar-
senic generated from pair-potential simulations is then
also probably a metal.

Figure 22 shows the electrical conductivity as a func-
tion of frequency for liquid arsenic from ab initio simula-
tions. At co-0, the statistics are bad, which is rejected
by the large scattering of the data at that range. The thin
lines show two possible fittings of cr(co } to the Drude for-
mula

co& /'r
o(co)=

4n(co +1/r )

showing that o (co) is Drude-like at large co, but deviates
significantly from Drude behavior at small co. The dc
resistivity is 40+10pA cm.

The dc resistivity of liquid arsenic from the pair-
potential simulations can be calculated using Ziman for-
m ula4'

3~~ 2g 2kFp=, f S(q )[U(q )]'q' dq,
4A e kF

where U(q) is the screened pseudopotential of a single
ion, S(q} the structure factor of the liquid that is a result
of our pair-potential simulations, and kF the wave num-
ber of the electrons at Fermi surface. We find p=57
pQ crn, marginally within the error bar of the ah initio re-
sult.

B. High temperature

500 ~

400—

300—

200—

100—

The possible structural changes of liquid arsenic at
very high temperature (-2450 K) are also investigated
by means of both pair-potential and ab initio simulations.
The pair-correlation functions and bond-angle distribu-
tion functions are similar to the near triple-point results
except some minor differences that may be explained by
the temperature effect. Therefore, no structural transfor-
mation is observed. Recently, Bergman et al. reported
the pair-correlation function of liquid arsenic at about
1400 K from neutron-scattering experiment. They found
that the structure is almost not changed. This seems true
from our calculations up to the temperature of 2450 K.

0
0 4

~ (eV)

FICs. 21. Imaginary part of the dielectric constant for high-
density liquid arsenic from ab initio simulations.

VI. SUMMARY AND CONCLUSIONS

The present work contains the most detailed compar-
ison of local structure in a liquid as derived by two
different methods: ab initio LDA Uersus a perturbative
pair potential. The degree of success of pair potentials is
surprising and impressive —the pair-correlation func-
tions and the bond-angle distribution functions agree fair-
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ly well with the ab initio results, and the high-density
crossover to a new structure comes out reasonably with a
correct coordination number. But the fine details are not
quite right —in the near triple point structure, the fourth
atom is not successfully expelled from the first shell of
atoms, and as a result the pyramids are less well defined;
the high-density liquid structure is different from the ab
initio result, and the nature of the crossover is probably
different. From both calculations, the pair-correlation
functions are in reasonable agreement with experiment.

A transformation should occur in liquid arsenic from a
threefold coordinated semiconductor to a sixfold coordi-
nated metal when pressure is increased but not when tem-
perature is increased. The volume at the crossover
should be & 16 A /atom, and the pressure is accessible
by experiment. The ab initio simulations show that the
near triple-point liquid has a very similar structure to the
A7 crystal, and the new phase at high density is similar
to a rhombohedral or a hexagonal structure close to a
close-packed structure, with 6 nearest neighbors, and the

crossover is probably first order. We hope our theoretical
findings can stimulate some experimental work.
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