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Thomas-Fermi theory of 6-doped semiconductor structures:
Exact analytical results in the high-density limit
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The nonlinear Thomas-Fermi formulation of § doping is proven to represent an exactly solvable
model which is equivalent to the Hartree model in a wide range of doping densities. Analytical
solutions to the eigenvalue problem of Schrédinger’s equation in the Thomas-Fermi field are proven
to exist and to represent the exact solutions to the many-body inhomogeneous electron system in the

limit of high densities.

I. INTRODUCTION

Spatial localization of impurities in a single monolayer
of semiconductor crystals obtained by epitaxial-growth
techniques, such as molecular-beam epitaxy (MBE),
represents the ultimate physical limit of dopant distribu-
tions in semiconductors. & doping is one of the several
names, others include planar doping, pulse doping, or
atomic layer doping, for a particular epitaxial method
whereby dopant atoms are introduced into a semiconduc-
tor while epitaxial growth is interrupted.! Currently, §
doping has been successfully used to produce Si layers in
GaAs and Al Ga,__As,? Sb layers in Si,* and S layers in
InP.*

In the 8-doping concept of GaAs, shallow Si donor im-
purities are located in an atomic monolayer of the (100)-
oriented GaAs host material.> The fractional coverage of
the impurities can reach several donors per unit effective
Bohr area of an impurity and provides a nearly continu-
ous distribution of charge that can be mathematically de-
scribed by a Dirac delta function. Due to electrostatic at-
traction, electrons remain close to their parent ionized
donors and form a high-density quasi-two-dimensional
(quasi-2D) electron gas in the field created by the ionized
sheet of positive charge. In the narrow effective-field po-
tential well electronic levels are quantized into two-
dimensional subbands.

One of the characteristic features of & doping is the oc-
cupation of many subbands, and there have been various
theoretical investigations on the electronic levels of these
systems. The WKB approximation® and empirical poten-
tials’ have been employed in the determination of sub-
band energies and relative subband concentrations of -
doped GaAs. Zrenner et al.® and Gillman et al.’ have
performed self-consistent calculations for the determina-
tion of the subband structure of 6-doped GaAs by solving
Poisson’s equation and the one-dimensional Schrodinger
equation for motion perpendicular to the 6-doped sur-
face. Direct evidence for the formation of 2D subbands
in 8-doped GaAs came from Shubnikov—-de Haas oscilla-
tions observed during magnetotransport measurements®
and, more recently, from experiments on far-infrared ab-

41

sorption of radiation by subband resonant modes.'® The
self-consistent calculations for the subband structure turn
out to be in very good agreement with the result of these
experiments.

The difficulty of the problem of 8-doping lies in the
necessity of self-consistent determination of the effective
potential since electrons already populate several excited
subbands even at modest areal doping densities. The
effective field depends strongly on subbands, and there
has been no a priori way to determine this field. In con-
trast to other two-dimensional electron systems, ! howev-
er, the fact that electrons occupy many excited subbands
suggests that a semiclassical approach may be a valid
description of such systems.

In this paper the Thomas-Fermi (TF) model for 8-
doped semiconductor structures is proposed and demon-
strated to be equivalent to the self-consistent approxima-
tion in a wide range of doping densities. It is also shown
that the effective-mass formulation of the TF theory of 6
doping presents a completely soluble model. Not only ex-
plicit algebraic solutions of the nonlinear TF equation for
the effective field are determined, but also explicit
power-series solutions for the eigenstates of Schrodinger’s
equation in the TF field are presented.

The nonlinear TF theory, which is the topic of this pa-
per, has an enormous physics literature!>!> and few exact
results. As is expected from the inherent statistical na-
ture of the method, best results are expected in high-
density regimes where the Pauli exclusion principle for
electrons is likely to play a major role.

Rigorous proof that under a suitable large nuclear-
charge limit the many-body quantum-mechanical energy
is asymptotic to the TF energy for atoms, molecules, and
solids was given by Lieb and Simon.'*!> For the system
under consideration, a similar proof can be given, provid-
ed the large nuclear-charge limit is translated into the
limit of a large number nj of ionized donors per unit
effective Bohr area. The proof follows the same scaling
and Dirichlet-Neumann bracketing arguments of Ref. 15
and will not be given here.

The TF model for §-doping and the solutions of the
nonlinear TF equation are described in Sec. II of this pa-
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per. The analytical solutions of the TF Schrodinger ei-
genvalue problem are presented in Sec. III where calcu-
lated TF results for the subband structure are presented
and compared with those of the more elaborate self-
consistent calculation. Discussion and conclusion will be
given in Sec. IV.

II. THE NONLINEAR THOMAS-FERMI EQUATION

The Thomas-Fermi theory of 8 doping developed in
this paper is based on a density-functional formulation'®
where one adopts a local view for the kinetic-energy term
and seeks a mean-field description in terms of the local
electron density n(x). The many-body exchange and
correlation effect are known to be unimportant in the
present system and will be neglected completely.!” In
what follows, x is a coordinate that runs perpendicular to
the doping plane, and the validity of the effective-mass
approximation and the representation of the doping layer
by a continuous positive sheet of charge of vanishing
thickness are explicitly assumed.

If the effective Bohr radius and the effective Rydberg
are taken as the natural units of distance and energy,
which for GaAs parameters are 98.7 A and 5.83 meV, re-
spectively, the TF energy-density functional is written as

ETF[n(x)]=%f(3Tan)2/3n dx +47ran|x|n(x)dx

—2r [ [non(x)lx —x'ldxdx’ . (.1

Notice that in the chosen system of units, the impurity
areal density np, is given as the number of donors per unit
Bohr area (0.97X 10~ 2 cm? for GaAs).

The Euler-Lagrange equation for minimizing Eq. (2.1),
in conjunction with Poisson’s equation and the subsidiary
condition for a fixed number ng of electrons per unit
Bohr area, yields the following equation for the effective
field

=2 (V)24 8y 8(x) |

o k- (2.2)

Notice that the Fermi energy u appears in Eq. (2.2) as the
Lagrange multiplier for the subsidiary condition on the
total number of electrons. Equation (2.2) is recognized as
the Thomas-Fermi equation for the problem; it is a non-
linear second-order differential equation that can be
solved by quadrature. Physically it holds only for nega-
tive ¥ —p; for positive ¥V —pu the electron density van-
ishes because there are no populated states with energy
larger than the Fermi energy p in a degenerated § layer.
The correct differential equation for positive V —pu is
therefore d*(u— V) /dx2=0.

A simple mechanical picture of a particle climbing an
energy barrier, with ¥ —pu playing the role of position
and x 20 of time, is useful in clarifying the nature of the
solutions of Eq. (2.2). If ¥(0)—pu <0 is taken as the ini-
tial ““position” of such a “particle” and 4wn, as its initial
“velocity,” as implied by the presence of the §-function
term on the right-hand side of Eq. (2.2), energy conserva-
tion demands three different classes of solutions.
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If, for instance, V' (0)—pu is small, a small energy bar-
rier is to be surpassed, and after a short elapsed “time” x,
the “particle” starts to run freely to + <, i.e.,
V(x)—p=4m(np —ng)x —x.); x2x.. This situation
clearly corresponds to a nonneutral situation where
np > ng. Further decrease in V' (0)—pu implies in a larger
energy barrier, and this situation continues until we reach
a critical situation where the initial “kinetic energy” is
just enough to put the “particle” on top of the energy
barrier [V (o )=pu] after an infinite elapsed time
(x,=o0). This refers to the neutral case (ng=np). Fur-
ther decrease in V' (0)—pu, implies that there will not be
sufficient energy to climb the energy barrier, and the
“particle” should return back past the point it had start-
ed. This third class of solutions are clearly impossible
since there is no way for Eq. (2.2) to be satisfied for any
finite number of electrons. It implies that negatively
charged structures do not exist in the TF theory. In the
atomic case where the same is known to occur, * the situ-
ation represents a failure of the TF theory since negative-
ly charged atoms do exist. Whether or not this is true for
the structures under consideration for finite n,, may be a
largely irrelevant question in view of the small number
and very weak binding of the extra electrons.

The second class of solutions is the most interesting
since it refers to neutral structures. The following ex-
pression for V(x), i.e.,

a2

THE T T

Vix) .
(a]x]+xq)

(2.3)

where a=2/15m is a numerical constant and x, a param-
eter, is easily verified as a solution of Eq. (2.2) satisfying
the boundary condition of local charge neutrality at
|x|—-. A unique solution is obtained through
dV /dx|y,,=4mnp as implied by the presence of the §
function in the right-hand side of Eq. (2.2). In this way
one finds

xo=(a’/mnp)'"> . (2.4)

As one can see from Eq. (2.3), the parameter x, in Eq.
(2.4) represents a fundamental length scale for the prob-
lem. It tells us, for instance, that the system shrinks in
size for increasing np, as np '/°.

As it was stated earlier in this paper, the local TF
description expressed by Eq. (2.1) is exact in the high-
density limit. If small departures from this limit are con-
sidered, corrections to the local TF picture for neutral
structures can be obtained by considering the first few
terms of a gradient expansion in the exact effective-mass
kinetic-energy density functional.'® To leading terms in
this expansion, evaluated at the TF extremum n (x), one
finds

2

E,=

O |W»
® ‘Q

[«

np(1+2x3) . (2.5)

In this expression, the multiplicative factor in front of the
parentheses is the TF ground-state energy per unit Bohr
area, while the correction O (n}/®) inside represents the

leading gradient correction to the system’s kinetic ener-
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gy. Since a term O (n})°) also represents the leading non-

vanishing exchange contribution to the ground-state en-
ergy, one is led to conclude that the TF and the self-
consistent theories for 8 doping are equivalent to the ex-
tent that the leading many-body (exchange) correction is
ignored in both models. This is surprising and contrasts
with the analogous situation encountered in the atomic
case where the kinetic first-gradient correction (innercore
correction) is known to dominate over the leading ex-
change contribution in the large nuclear limit.'*

A final remark about the TF potential for neutral
structures, as given in Eq. (2.3), is that it implies that
1=0 when this quantity is measured from the bottom of
the conduction band in the bulk (|x|— «). Besides, it
has power-law decay for large distances in contrast to an
expected exponential decay for finite n;. The fact is that
as njp increases, an increasing number of subbands with
vanishing small populations and large kinetic energies
starts to appear. Since these states are very much delo-
calized, the combination of an infinite number of them,
which is the case when np— 0, gives rise to the power-
law decay observed in Eq. (2.3).

IIl. THE TF SCHRODINGER EIGENVALUE PROBLEM

In the TF model, neutral 8-doped structures are de-
scribed by a universal one-parameter potential energy
function. Since it is even in x and has translational in-
variance along directions that are perpendicular to x,
solutions of the Schrodinger equation in this field are de-
scribed by parity and transverse (parallel if referred to the
doping plane) linear momentum. The energy spectrum is
quantized for motion along x while it is continuous for
directions that are perpendicular to x. The electronic
system is quantized into 2D subbands whose number den-
sity, in electrons per unit Bohr area, is given by

n=——(u—e,), (3.1)

2T
where np, = 3 ;n;. In Eq. (3.1), g; is the jth bound-state
(subband bottom) eigenvalue of the TF Schrodinger equa-
tion

—Y+Vi=ey,

where V is the TF field of Eq. (2.3).

As it was advanced earlier in this paper, Eq. (3.2) ad-
mits exact analytical solutions. From Eq. (2.3) and by the
definition of a new independent variable z as

(3.2)

z=Vklax +x,) , (3.3)
where k=V —¢ /a, Eq. (3.2) can be rewritten as
22"+« —15 —2z2 [¢=0. (3.4)
z

The differential equation in Eq. (3.4) is peculiar in the
sense that it has two irregular singular points (z=0 and
z=o). Therefore, it cannot be solved by usual
methods. !® It can be mapped into Mathieu’s equation by
suitable redefinitions of the dependent and independent
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variables. In the course of this, however, the independent
variable becomes complex and, as it is known from the
theory of Mathieu’s functions, the determination of the
spectra becomes extremely complex.!® For this reason,
an entirely different route was adopted.

First, a WKB ansatz for ¢ is proposed, i.e.,

© dz’
sz A(Z')

¥(z)=V'A(z)sin , (3.5)

where the constant J and A(z), such that )»(z)~e2‘/“’ as
z— oo, are as yet unknown. The Wronskian of any two
linearly independent solutions of Eq. (3.4), is independent
of z, and simple inspection of the Wronskian equation re-
veals another solution of Eq. (3.4). For this new solution
the sine function in Eq. (3.5) is simply replaced by the
cosine with J being the Wronskian of the two solutions.
Notice that, from the required asymptotic behavior of A,
only ¥(z) as given in Eq. (3.5) is acceptable in the descrip-
tion of bound states. Substitution of either solution into
Eq. (3.4) yields

1

24

4J2=20"A— A2+ 4k\? 1 (3.6)

Equation (3.6) is rather discouraging since it is a non-
linear second-order differential equation. If a first deriva-
tive is taken on both sides of the equation, however, a
linear third-order equation is obtained; that is,

2

zA"" +4k zk'——-gg)\‘—'o

z

lz —z 3.7)

z

The structure of singularities and the invariance of Eq.
(3.4) upon the changes z—1/z, ¥(z)—zy(1/z), suggests

y'
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FIG. 1. The TF effective field and the eigenstates of the TF
Schrodinger equation for a neutral 8-doped structure with
np=5. The circles indicate the corresponding Hartree results.
Energy and distance scales are given in reduced units.
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TABLE I. A comparison between the TF and the Hartree theory for a neutral 8-doped structure for
np =35, for various quantities. Subband bottoms, Fermi energies, and the values of effective fields at the
position of the doping plane have been measured with respect to the bottom of the conduction band in
the bulk. Ground-state energies are measured with respect to the bottom of the conduction band at the

doping plane. All energies are in reduced units.

Hartree Thomas-Fermi
Subband Occupation n Energy € Occupation n Energy €

0 3.07 —19.30 3.06 —19.20
1 1.18 —17.40 1.18 —7.44
2 0.52 —3.31 0.54 —3.37
3 0.18 —1.12 0.19 —1.18
4 0.05 —0.32 0.06 —0.36
5 0.004 —0.039 0.008 —0.054

n —0.013 0

V() —32.29 —32.05

E, 89.86 89.02

the following Laurent series expansion for A(z):
(=1)"
zZn

z+ (3.8)

with ag=1.

Further substitution of these series into Eq. (3.7) yields
a three-term recursion formula for the unknown
coefficients that can be solved in terms of continued frac-
tions.'® The subsequent analysis of the thus emerging
series reveals that Eq. (3.8) has, indeed, the required
asymptotic behavior following Eq. (3.5).

The solution of the bound-state eigenvalue problem is
completed first by calculating J as given in Eq. (3.6), for
instance, from the values of A and A’ at z=1, and second,
by requiring definite parity for the solutions. In this way
one arrives to an exact Bohr-Sommerfeld quantization
rule for the spectrum of the TF Schrodinger equation of
Eq. (3.2); that is,

w 1
J| - —= =1,2,... 3.9
‘/Kxodz "2 nm (n=1,2 ) (3.9a)
for odd-parity states and
® 1 . —
= 4 ‘/
\/}xodzk(z) tan” '[2J /N (Vikxy)]+nm
(n=0,1,2,...) (3.9b)

for even-parity states.

A summary of the analytical results obtained from the
TF approach to neutral structures is presented in Fig. 1,
where the TF field as well as the eigenstates of the TF
Schrodinger equation were plotted for np =5 (5.13 X 10'2
donors/cm? in GaAs). The corresponding results ob-
tained from the numerical solutions of Hartree’s equa-
tions for the same density are indicated by solid circles.
As it is seen, the TF and the Hartree field are indistin-
guishable in the scale of the graph. Remarkable coin-
cidence is also found for the eigenstates.

Table I summarizes the results obtained from the TF
theory and those from the self-consistent field for various

quantities such as subband energy bottoms, concentra-
tions of electrons in different subbands, Fermi energies,
ground-state energies, and bottoms of the potential well,
for the same doping density as indicated in Fig. 1. As
can be seen from Table I, the TF predictions are in re-
markable overall agreement with those of the self-
consistent field. Larger relative errors in subband bot-
toms and electronic concentrations are observed for the
highly excited subbands, but these discrepancies are ex-
pected in view of the previous remarks concerning the
tail of the effective field at large distances. As it is seen
from Table I, the electron concentration in these sub-
bands are so small that their presence may be largely ir-
relevant to the overall properties of the structures under
consideration.

IV. DISCUSSION AND CONCLUSION

A clear indication that the TF theory of this paper
remains valid in the entire experimental range of doping
densities, while the 2D subband concept is meaningful for
8-doped GaAs (10'2-10"3 cm ~2), is provided by Eq. (2.5)
which predicts a very weak dependence with nj, for rela-
tive corrections in the system’s ground-state energy as
one departs from the exact high-density limit. If Eq. (2.5)
is used to predict the system’s ground-state energy at
np =35, for instance, one finds 89.87 Ry as compared with
the Hartree value of 89.86 Ry of Table I. For small dop-
ing densities, on the other hand, the description in terms
of 2D subbands is certainly not valid, and it is necessary
to treat the & layer as a system of randomly distributed
impurities in a plane. Presumably, when the number of
donors per unit Bohr area is less than unity, a metal-
insulator transition takes place as one may infer from the
recently observed thermally activated hopping transport
in 8-doped GaAs in the low doping regime.*°

In conclusion, a very simple model approximation has
been proposed for the calculation of the subband struc-
ture of 8-doped semiconductors. The approximation con-
sisted in the use of the semiclassical Thomas-Fermi po-
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tential suggested by occupation of many subbands. It
was demonstrated that this simple procedure yields re-
sults that are equivalent to those obtained from the much
more elaborated, and purely numerical, self-consistent
approximation. In addition, the Thomas-Fermi model
for 6 doping of this paper was proven to represent the ex-
act solutions to a nontrivial inhomogeneous many-body
system in the limit of high densities. Possible extensions
of the present model would include the study of the posi-
tively charged structures produced by electron recom-
bination with holes in a uniform p-type doped semicon-
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ducting background, the diffusion of donors along the
growth direction, small nonparabolicities in conduction
band, and many-body effects within the local-density ap-
proximation (LDA).
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