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Lattice-distortion-induced electronic bistability of the donor defect in semiconductors
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The adiabatic approximation and a discrete lattice model are used for calculations of the
electron-lattice interaction energy for an electron captured on a donor-type impurity. Thus the
model describing the character of the electron-lattice interaction for a range of electron-impurity
and electron-lattice coupling for any electron localization is obtained. The possibility of a large
lattice-relaxation-induced bistability of the defect is investigated for the symmetrical and Jahn-
Teller lattice distortion. The configurational-coordinate diagrams for the bistable substitutional
donor (DX center} and As antisite (EL2 center?) in GaAs are presented.

I. INTRODUCTION

During the last decade there appeared many papers
concerning defects in semiconductors exhibiting bistable
electronic properties. The bistability was reported for the
complexes, such as the thermal donors in Si native de-
fects, such as EL2 centers in GaAs; and impurities, such
as In and Ga in CdF2, Cl in CdTe, DX centers in
Al„Ga, „As.' The similar centers, such as DX, were ob-
served in GaPyAs, (Ref. 6) and Al„Gal „Sb. Due to
the commercial applications of the devices based on
GaAs the bistable defects in this semiconductor have
been very intensively investigated. The DX centers in
Al„Ga, „As were detected for Al concentrations greater
than 0.2 when the donors of di6'erent species —group-IV
elements (Si, Ge, and Sn) and group-VI elements (S, Se,
and As) were incorporated. They were also found in
GaAs under hydrostatic pressure. It is believed that the
electron bound to the donor can occupy two states; first,
the ordinary shallow state and second, the localized one,
separated by the potential energy barrier. Several models
based on the large lattice-relaxation (LLR) assumption
have been proposed for explaining the physical nature of
the centers. ' ' Also the small lattice relaxation (SLR)
was proposed for describing the deep donor centers in
Al, Ga, ,As by Henning and Ansems. ' However, as
was found later, ' ' two types of localized donor states,
one accompanied with small lattice distortion and second
with large lattice distortion, can exist in Al„Ga& „As.
The theoretical basis of LLR models is the adiabatic en-
ergy approximatior. ' of an electron-lattice system used
for describing the bistable donors by Toyozawa. ' Ac-
cording to Toyozawa's idea the electron can be localized
due to the interaction with the acoustic phonons. In his
model the system is described by the electron-phonon and
electron-impurity coupling constants, which depend on
the deformation potential of the conduction-band
minimum and the electron and donor parameters given in
the effective-mass approximation (EMA), respectively.
The adiabatic energy of the system as a function of cou-
pling constants for a given electron state can have two
minima, one for the delocalized electron (the ordinary

EMA shallow donor state) and the second corresponding
to the completely localized electron accompanied by
LLR, or only one minimum corresponding to the local-
ized or delocalized state. Unfortunately due to the con-
tinuum approximation of the crystal lattice the Toyo-
zawa model cannot describe the localized electron. The
only exact datum one can obtain in the framework of this
model is the maximum of the electron-phonon coupling
constant for which the EMA electron state can exist.
In addition the typical values of the deformation poten-
tials for III-V and II-VI compound semiconductors are
too small to be responsible for the bistability of donor
centers in these materials. '

In this paper the alternative model based also on the
adiabatic approximation is proposed but now the interac-
tion of the electron with the discrete lattice is considered.
Thus the electron-lattice interaction is given by the indi-
vidual lattice ion potentials and displacements. In such a
way one may obtain a description of the general behavior
of the defect for arbitrary electron localization for a
range of the electron-lattice interaction strength. In Sec.
II the general properties of the model are presented. I in-
vestigate here the electron in the symmetric 3 t state in-

teracting with the symmetric deformation of lattice (the
breathing mode). Sections III and IV concern the
negative-U system and the Jahn-Teller lattice distortion,
respectively. The last section contains the calculations of
the configurational-coordinate (CC) diagrams for the
cases of DX and EL2 centers in GaAs,

II. ADIABATIC ENERGY APPROXIMATION
FOR THE LOCALIZED STATES

Let us consider the electron acting with the attractive
impurity potential and the potentials created by the lat-
tice ion displacements. The total energy of such a system
in adiabatic approximation consists of three parts: elec-
tron, lattice, and electron-lattice interaction:

Here y and 6 are the electron wave function and lattice
dilation, respectively. Since all the experiments suggest
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that the electron captured at the lattice-distortion-
induced state is localized in the volume of unit cell one
may consider further only the interaction of an electron
with the ions placed in the neighborhood of the defect.
For the compound semiconductors and substitutional im-
purity we have four neighbors to be included. In depen-
dence on the distortion symmetry, the ion displacements
may be decomposed into the adequate collective coordi-
nate complete set. In this section I considered only the
electron occupying the symmetric A, state so only the
interaction with the symmetric A& mode of the lattice
distortion is taken into account. In such a way 5 is the
real displacement of an individual lattice ion and the en-

ergy of the lattice and electron-lattice interaction may be
given as follows:

(2)

e, „«=g fg'(r)[V(r —R, —b,, )
—V(r —R, )]p(r)dr .

(3)

Here C is the crystal elastic constant, V(r) is the lattice
ion potential, R, and 5, are the sth-ion position and dis-
placement, respectively. After changing the integral vari-
able in form (3) one obtains

s, I,«= g f V(r)[y (r+R, +6, )
—y (r+R, )]dr . (4)

The expansion cp up to the linear term with respect to h, ,
results in

e, , «=45 f V(r)grady (r+R)dr .

and

E =c., ((p) ——f dr V(r) (p (r)
C dT

L
r=—R

(8)

E =e, (g) P, ex—p( 4vrrl )rl—

where the constant P, is given by

(10)

To proceed further one needs some details about the elec-
tronic energy of the system. In general we may use the
electronic Hamiltonian with the kinetic energy operator
defined by the real dispersion of the electron in the con-
duction band and the real potential of the impurity.
Thus, since a number of conduction-band minima must
be included, the reference energy level is connected rath-
er with Brillouin-zone average energy' defined by the
symmetry points I, X, and L (Ref. 23) than with the posi-
tion of the lowest conduction-band minimum. In fact,
since we are interested in the character of electron-lattice
interaction not in the absolute value of the energy, we do
not need the exact electronic Hamiltonian. According to
the variational principle we may introduce the
parametrized electron wave function satisfying the ade-
quate symmetry conditions and vary the total energy
with respect to their parameters. It is useful to have a
function with one parameter describing the electron lo-
calization. For the electron in A, state we may use the
s-type Gaussian function

y(r, a)=2' a exp( m.r a )—,

where the effective radius of the state a is the variational
parameter. Using the parameter q =a /R one can trans-
form Eq. (8) as follows:

s, „„=46, y'(r)
dT r=R

f V(r)dr .

Since we are interested in the minimum value of the adia-
batic energy we minimize functional (1) with respect to 6
and y. Putting (6) into (1) and minimizing with respect to
6 one obtains

y (r)
1 d
C dr r=R

f V(r)dr

Here the direction of 6 and R is (1,1,1) or arbitrary
equivalent for T~ point-group symmetry. We may as-
sume that only the short-range, core potentials of the ions
significantly contribute to the electron-lattice interaction
energy. The sum of the Coulomb potentials gives only
the constant background independent of the individual
ion positions. In such a way the Frohlich interaction is
not taken into account. For the III-V and II-VI semicon-
ductors this approximation seems to be reasonable due to
the small values of the electron —LO-phonon coupling
constants. As far as the core potentials are nonzero only
on a small distance from the ion centers one may approx-
imate the gradient electron density by the constant and
obtain

The minimization of functional (8) with respect to y may
be replaced by the minimization of functional (10) with
respect to rl. The equation dE/dg=0 gives the relation
between P& and g,

dE, q

P, = — q "exp(4vrg )(10—8n g )1
(12)

One may investigate the dependence of the right side of
Eq. (12) on rl. Due to the fact that P, &0 [see Eq. (11)]
we are interested in a certain range of g only. It is evi-
dent that if the value of the right side of (12) changes
monotonically with g the equation has only one solution
and the energy of the system has only one minimum for
the electron localization given by rl(P, ). There is a
different situation when it changes nonmonotonically. In
this case for a certain range of P, Eq. (12) has several
solutions which correspond to the minima and the maxi-
ma of the energy. For further analysis I assumed that the
pure electronic energy E,(g) has only one minimum for
g=g, and that dc., /dg is slowly varying in comparison
to g "exp(4m. g ). Under these conditions for both
rl, &(0.8m)'r and rj, &(0.8m)'~~ Eq. (12), in dependence
on the value of P, , may have only one or three solutions.
For the case of three, for g, & g2 & q3, g, and q3 corre-
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E, =B(ri —g, r) ') (13}

where B and g, are the parameters describing the kinetic
energy and the ratio of the potential to the kinetic energy
of an electron for rI= 1. Formally the approximation (13)
is similar to EMA where g& and B are constants for the
whole range of g and can be given by electron effective
mass m, dielectric constant e„, and the charge of defect
Z:

2st2ZRm

31TE'

3~
2mR

(14)

In fact we need only B and gt to be constants for the
range of ri close to the resolutions of Eq. (12)—ri, and t)s.
If the system can exist either in strongly localized or
delocalized states this approximation seems to be reason-

spond to the minima of the energy, and g2 corresponds to
the maximum. One may see that the system is then bi-
stable and can exist in the state with localization parame-
ter equal either to g, or g3. To picture the model one
may assume that the electronic energy of the system may
be approximated by the following function:

able. A similar concept was proposed by Bourgoin and
Mauger for describing the intervalley mixing shallow-
deep instability of L-point donor level in GaAs. Using
this approximation one may obtain the dependence of the
right side of Eq. (12) on rI for different electronic energy
parameters [see Figs. 1(a) and 1(b)]. I know that in fact
the dependence of the electronic energy on g is much
more complicated. However, I maintain that the con-
clusions concerning the character of the electron-lattice
interaction deriving from this picture are qualitatively
valid in general. To consider further the physical condi-
tions of bistability one may treat Eq. (12) formally as the
dependence P, on g and find the extreme values of P, (t) )

given by (12}. Taking dP, /d pi =0 one obtains

ri(d e, /drl ) 16rr2ri 4 23rrrl—2+110
«, /dry 10—8m'

' (16)

The graphical solutions of this equation are presented in
Fig. 2. The solid curves represent the right side of the
equation, others correspond to the left side for different
values of gt. For g&=0.39 (dotted curve) there are two
solutions labeled as I and II corresponding to the max-
imum and minimum P„respectively. Adequate depen-
dence of P, /B on t) is presented in Fig. 1(a). For
2000&P, /B &8000 the energy of the system has two
minima: first for tI slightly smaller than riti (the localized
electron) and second for i) slightly greater than rI, (the
delocalized electron). For other values P, /B the energy
has only one minimum; for P i /B ) 8000 and

P, /B & 2000 the electron is localized and delocalized, re-
spectively. For g, =1.1 (dashed-dotted curves) there are
no solutions for positive P, (the inllection point labeled as
i appears for P, &0). The dependence of P, /B on rI for
this type of electron-lattice interaction is presented in
Figs. 1(a) and 1(b) for gi =0.7 and gl =1.7, respectively.
For suSciently large gi the system is again bistable: for

gi =2.3 (dashed curve) Eq. (16) has two solutions labeled
as III and IV. From Fig. 1(b) it is seen that for
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FIG. 1. Graphical representation of Eq. (12) for different
values gi. FIG. 2. Graphical solutions of Eq. (16) for different values gI ~
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2500 (P, /8 (8200 the two minima of energy exist: first

for g & g» and second for g & g», . However, here the
electron in both states is strongly localized. As was men-
tioned before the parametrization of the electronic energy
given by (13) is not strictly valid for intermediate values
of q. Nevertheless one may see from Fig. 2 that the
crossing points IV and I, which appear for strongly local-
ized and delocalized states, respectively, and the asymp-
totic behavior (d E, /dg )g/(de/d q) for large and small

g forced the existence of the crossing points III and II for
intermediate electron localization, for any reasonable
particular dependence E, (il). Therefore the conclusions
concerning the possibility of the existence of the two
types of donors, the normal and the bistable donors, are
quite general. It is interesting also to consider the distor-
tion of the lattice. Using forms (7) and (9) we may see
that ion displacement 4 is significant only for the states
fo'r which the localization parameters are close to
rl=(0. 8n )'~ . In Fig. 3 the normalized ion displacement
is presented versus the localization of the electron. All
the results are summarized in Fig. 4 which is the phase
diagram describing the character of the electron-lattice
interaction in dependence on P, /8 and gI. One may see

that for the values of the parameters corresponding to the
area labeled as I the system is bistable and can exist ei-

ther in the delocalized, ordinary shallow donor state or in

the localized state accompanied by LLR. The area la-

beled as II corresponds to the normal states (the energy
of the system has only one minimum). Here the
electron-lattice interaction for given P, depends on gI
and reaches the maximum for go=2(0. 8n) '~ For the.
area labeled as III the system is again bistable and can ex-
ist alternatively in two different localized states; first,
with the electron localized inside the core of the impurity
ion without lattice distortion and second with the elec-
tron localized on one of the nearest-neighbor ions accom-
panied by LLR. One may see that the defects which are
defined by the parameters from region I (bistability with
localized and delocalized states) have all properties of DX
centers. The bistable defect with the localized stable and

1.0-
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0,8-
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0.6-
I—

C3

4—

CL

0
0.0 1.0 2.0 3.0 4,0

FIG. 4. The phase diagram for existence of normal and bi-
stable states in semiconductors.

III. NEGATIVE-U SYSTEM

metastable states such as EL2 in GaAs can be placed into
region III. For region II the extremely weak electron-
lattice interaction characteristic for ordinary shallow
donors corresponds to the small gi and P, /8 values. The
intermediate or strong electron-lattice coupling without
bistability characteristic for 0.6 &gI &2. 1 corresponds to
the properties of transition metal ions. The strong locali-
zation of electron with very weak or without electron-
lattice interaction characteristic for region II for gI & 2. 1

corresponds to the properties of rare earth ions. Using
form (14) we may calculate gi for several types of impuri-
ties. Using the typical EMA parameters one obtains for
shallow donors gI &0.2; using the true electron mass,
e„=1, and Z = 1 one obtains for transition metals
gI=2. 2; using Z =8 for rare earth ions one obtains

gI =18. The model also may be used for describing the
electron traps in InSb. Here the residual oxygen impuri-
ty introduces three types of states: tied to the I", L, andX
minimum of the conduction band, respectively. ' The
first one is the typical shallow donor state without the
electron-lattice interaction. The second and third are lo-
calized accompanied by intermediate and strong
electron-lattice coupling, respectively. It is easy to find
that for InSb gI «g& =—gI and B"»B =—B~. Thus for
the same Pj the interaction with the lattice should be
stronger for the state connected with the L and X mini-
ma.
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Anderson suggested that the strong electron-phonon
coupling may result in phonon-mediated attraction which
overcomes the Coulomb repulsion between two electrons
at the same defect. One may calculate the binding energy
of the defect occupied by two electrons E2, and the ener-

gy of defect with only one electron E. The sign of
U =E~, —2E

FIG. 3. The normalized lattice dilation vs localization of
electron wave function.

decided which electronic configuration is energetically
preferable. The negative-U systems were found in semi-
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conducting glasses and crystalline semiconductors.
Toyozawa' has investigated theoretically the possibility
of the existence of the negative charged donors in the
framework of his model. He found that for the bistable
defects being in the state accompanied by LLR U (0.
The lack of electron paramagnetic resonance (EPR) sig-
nal for semiconductors with DX centers leads to the con-
clusions that they may be in fact the negative-U systems.
In the model presented we also considered the case of two
electrons captured on the one defect. Assuming that two
electrons with opposite spin occupied the same orbital q
and using the approximation (13) one obtains the follow-
ing expression on the electronic energy of the two-
electron system:

sz, (r])=B[(2' 2girl —')+g;„,rl '] .

by Kobayaschi et al. ,
' Oshiyama and Ohnishi, and

Chadi and Chang. ' Actually, according to the Jahn-
Teller theorem the system being in the degenerated T2
state is unstable without the lattice relaxation. It is very
probable that the adiabatic energy reaches the second
minimum due to displacement of the donor or one of the
nearest-neighbor ions to the interstitial position. This
type of distortion was found to play an important role in
the creation of metastable state of the EL2 center.
For analysis of this case one may represent the distortion
by a sum of totally symmetric ion displacements given by
the configuration coordinate Q, ( A, ) describing the
symmetrical mode and the sum of Q4 ( T2 ), Q5 ( T2 ), Qs
( T2 } the normal coordinates defining the displacement of
T2 symmetry:

F2, =e2, (ri) 4P&exp—(4nri )ri (19)

Here g;„, is the measure of interelectron interaction.
Taking into account that each electron interacts with the
lattice in the same way one obtains the following expres-
sion on the adiabatic energy:

Q )
=0.25(b, , +b 2+ b 3+h4),

Q4 =0.25(b, +b 2
—b 3

—A4),

Qq =0.25(5) —62+63—bq),

Q6 =0.25( b, —h~ —b,3+b,~) .

(21)

where P~ is given by Eq. (11). Minimization of Eq. (19)
with respect to g yields

dE, pq
P, =0.25 ri "(10—8m' ) 'exp(4m' ) . (20)

d'g

Comparing Eqs. (12) and (20) and taking into account
that for g;„, «g&, d s2, /d ri= 2d e, /d —ri, one may see that
the system of two electrons becomes bistable for a P, /B
parameter about two times smaller than the one-electron
system does. For given g& and g;„, one may obtain the
terminal values of P, : PP(2e) and PP( le) for which the
defect with two and one electrons becomes bistable. The
calculation performed for g;„, &g& results in PP(2e)
& P, ( le). In addition it was found that for the range of
parameters P, /B and g& for which both the one- and
two-electron systems are bistable the U energy is negative
for the states with LLR and positive for the states where
the interaction with the lattice is small. It yields that
stable and metastable states of the defect should be the
different charge states. This conclusion concerns espe-
cially the case of simple donors which, without lattice
distortion, usually bound only one electron (Z =1). For
other defects which may bound more than one electron
due to the Coulomb potential (Z ~2) the situation is
qualitatively different and the center in both states may
have the same charges.

Here 5; are the nearest-neighbor ions' relative shifts.
Due to the fact that this distortion contains the syrnme-
trical part it is "felt" also by the electron being in A&

state. To obtain electron-lattice interaction energy one
may use the electron wave function which is a linear
combination of Bloch waves with the momentum for the
entire Brillouin zone. In one band approximation we
have

P(r)= g f (k)exp(ik r)uz(r) .
k

(22)

One may see that for almost all semiconductors the ener-

gy increases very quickly with the momentum in the vi-
cinity of the I minimum (small effective mass). Taking
into account the results of preceding sections: the
"heavier" electron may be localized for smaller electron-
lattice interaction, one may predict that the summation
on k in (22) in the close vicinity of I should not take the
significant contribution to the lattice-distortion-trapped
electron wave function, the more so as the volume corre-
sponding to the I minimum in k space is small in com-
parison to the total volume of the Brillouin zone. There-
fore considering the strong electron-lattice interaction we
may treat the localized electron states as tied to the X
and/or L minima only. In such a way summation on k in
(22) is extended around the four equivalent points for the
L minimum and around the six points for the X minimum
of the conduction band. Thus for both cases one obtains

IV. JAHN-TELLER DEFORMATION

In the preceding sections I have considered the symme-
trical distortion of the lattice. It is clear that it is not the
only possibility. For instance, Morgan, ' describing the
properties of DX centers, suggested that the localized re-
laxed state is in fact the T2 excited state of the donor,
tied to the L minimum of the conduction band which be-
comes metastable due to the interaction with the T2 sym-
metry lattice deformation. A similar model was proposed

P(r) = g exp(iK .r) g' f (k)uz +z(r)exp(ik. r)
k

= g a, y(r)exp(iK, r), (23)

where y is independent of K and is given by

p(r) = g' f (k)uz &(+r)exp(ik r) . .
k

(24)

In (23) and (24) the prime denotes that the summation on
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k does not extend over the entire Brillouin zone for each
K but over the smaller areas which together give the en-

tire zone. It should be noted that since y depends on the
Bloch function it is not the EMA envelope function. The
sets of a coemcients are

I, = f V(r)dr,

I~= V r r2dr,
3R

S=(dry /dr)„

(27)

a„(L)=0.5(1,1, 1, 1),
1

a„(~)=l/&6(1, 1, 1, 1, 1, 1)

1 —1 1 —1
1

u =— 1 —1 —1 —1
T2 (L) 7

1 —1 —1 1

(25)

One may see that the T2 state in both cases, for states
tied to L and X minimum, splits into A, and E states.
Knowing which state is the ground one ( A, or A t ori-
ginated from T2) we may minimize the total energy with

respect to 6 and obtain the following expression on the
total energy of the system:

1 0 0 —1 0 0

ar (x)=1/&2 0 1 0 0 —1 0
0 0 1 0 0 —1

The function (23) is not normalized. Using the y given

by (9) in (23) one obtains the following normalization fac-
tors:

N( A, (L ) ) = 1+3 exp( —3n.g /16 },
N( A, (X))=1+4exp( —3m' /16)+exp( —3nr} /8),

(26)
N(T2 (L))=1—exp( —3nr) /16),

N(T2 (X))=1—exp( —3nr) /8) .

It should be mentioned here that for the T2 symmetry
state the trial electron wave function defined by (23)
should also contain the p-type Gaussians. However, the
variational calculations give the electron-lattice interac-
tion energy, defined for the individual ion by (6), very
small and almost not dependent on lattice distortion, for
reasonable ion displacements, when the trial function is
given by the sum ofp-type Gaussians.

Using forms (21)—(26) I have calculated the electron-
lattice interaction energy for the electron states of A&

and T2 symmetry tied to L and X minima. The results
obtained are presented in Table I (the details are given in
the Appendix). Here

E =e, (r)) P—, g ' exp( 4nr) —)N (28)

One may see that the values of the P, parameters depend
here on the symmetry of the state (see Table I).

Comparing Eqs. (28) and (10) one may see that the
difference between them is in the normalization factor
which, in fact, does not strongly depend on g. Therefore
the conclusions concerning the type of electron-lattice in-
teraction drawing from Eq. (28) are generally the same as
in the preceding sections. We may consider now which
distortion, the totally symmetric A

&
or the Jahn-Teller

distortion, produce in fact the bistability of the defect. It
depends of course on the value of the P, parameter. For
the A, distortion P, is given by the form (11). It is easy
to find that, including the intervalley interaction P„ for
A

&
state the breathing modes have the values

256m' (I& +1. I5z) /R /C and 2304m Iz/R /C for the
states tied to the L and X minima, respectively. One may
then see that if I, &4.5I2 and I& &1.5I2 for the states
from L and X, respectively, P& for the interaction with
the Jahn-Teller mode is greater than P, for the breathing
mode. In this case for positive I, and I2 (the local pseu-
dopotentials of the lattice ions are repulsive for electrons}
the A, state originated from T2 is bistable and becomes
the ground one when the electron is trapped by the lattice
distortion. The A& state which was the ground state
without the interaction with the lattice due to the smaller

TABLE I. The electron-lattice interaction energy and coupling constants Pl for A, and T2 donor states pinned to L and X of con-

duction band. The integrals I, and Iz and 8 are defined by Eq. (27).

Minimum State Energy

( I 1 + 1.5I~ )0/N

Electron lattice interaction
Split ting Energy

(I 1 + 1.5I2 )8
N(A, (L))

Pl

64m (II+1.5I2)
R'C

T2

1 1 1

(I —05I )0/N 1 1 1

1 1 1

3I20/N

A, {3I,—1.5I }0/N(T (L))

3IqO/N( A I (X)}

647' ( 3I 1 1.5I2 )

R C
576m I

R'C

T2

1

(2I, —I2)O/N 1

1 —1

1 —1 0
—1 —1 1

3(2I 1 I2 )8/N( 1"2 (X))
256~ (3Il 1 5I2)

R C
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values of P, is the "normal" state and becomes excited
for the distorted system. In general the bistability of the
state depends also on the values of 8 and g&. This prob-
lem will be discussed in the next section for the case of
donors in GaAs.

V. BISTABLK DONORS IN GaAs

In this section I would like to present some quantita-
tive results obtained in the framework of the model. Let
us focus on the donor centers in GaAs. As was shown,
the type of the electron-lattice interaction depends on the
constant P, and electron energy parameters 8 and g& (see

Fig. 4). To obtain P, I have calculated the integrals I,
and I2 using the symmetric local part of pseudopotentials
given by Bachelet et a!.3 The elastic constant was calcu-
lated from the longitudinal-optical phonon energy [285
cm ' (Ref. 34)]. I have obtained the following values of
I, and I2. I, =17.8 and I2=2. 1 a.u. and I& =33.8 and

I2 =4. 1 a.u. for donors in Ga and As position, respective-
ly. According to the conclusions of the preceding section
these values suggest that the bistability of the centers is
connected rather with the Jahn-Teller distortion than
with the breathing distortion. It is known that the substi-
tutional donors of the IV and VI groups give the addi-
tional localized shallow states tied to I, L, and X minima
of the conduction band. Due to very small effective mass
for the I point we may consider further only the L and X
minima. According to group theory the fourfold degen-
erated state under the L minimum splits into the sym-
metric A

&
state and threefold degenerated T2 state. The

situation for the X minimum is more complicated. For
compound semiconductors the conduction band in X
point of the Brillouin zone is split into X, and X3 bands.
It was found that the syrnrnetry of donor states tied to
the specified bands depends on whether an impurity sub-
stitutes anion or cation. Thus for a donor substituting As
ion the electron wave function in the lower band belongs
to an X, representation and in the upper to an X3 repre-
sentation, and for a donor in the Ga sublattice the sym-
rnetry of the proper wave function is X& in the upper and

X3 in the lower band. For Td symmetry group X& repre-
sentation reduces to the A

&
and E irreducible representa-

tions and X3 transforms as T2 irreducible representation.
Thus considering the defect bistability for the donors sub-
stituting Ga one should take into account the T2 state
tied to X and L minima. Using the data from Table I it is
easy to find that P, for the state tied to lower X minimum
is greater than P, for L. This suggests that the greatest
contribution to the electron wave function defined by
(22)—(24) comes from the summation on the X minima of
the conduction band. Omitting the other ones, one may
use the band parameter from X minimum to obtain the
electronic energy c, of the system. Taking it into account
one may obtain the CC diagram describing the bistability
of Ga substitutional donor center [see Fig. 5(a)]. To cal-
culate this diagram I have used B and g& obtained from
(14) and (15) with eff'ective mass m =0.8, high-frequency
dielectric constant e„=10, and the impurity nearest-
neighbor distance R =4.61 a.u. I have used m =0.8,
which is the reasonable value for X minimum, to fit the
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FIG. 5. Configurational-coordinate diagram for donor substi-

tuted Ga (a) and As (b) lattice ions in GaAs. Curves denoted as

E(le) and E(2e) correspond to A, (T2) state occupied by one

and two electrons, respectively.

model to the energy of the metastable state of DX center
with respect to I minimum for Si-doped GaAs-0. 17 eV,
the value obtained by Thesis et al. ' The energy of
electron-electron interaction for the doubly occupied
state (2e) was calculated including only the Coulomb
repulsion between the electrons. It was found that due to
the Jahn-Teller distortion the T2 electron state splits into

A, and E states and when the center captured an addi-
tional electron on the A

&
state the system lowered its en-
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ergy due to the lattice relaxation. Thus the doubly occu-
pied A, state is bistable [curve E(2e)]. When the center
bound only one electron [curve E(le)] both states ori-
ginated from Tz are the normal states but the strong
unharmonicity for the interaction with the lattice was ob-
tained for the A, one. When the center is in metastable
negative charge state one electron can be excited to the
conduction band. For such a process the obtained activa-
tion energy for thermal emission is E, =0.76 eV and the
energy of the optical transition is E,=1.88 eV. These
data are about two times greater than the observed
values: 0.33 eV (Refs. 13 and 11) and )0.8 eV." It
should be mentioned, however, that the fitting may be
much better if we introduce an additional parameter e„
describing the effective screening of the impurity poten-
tial. The similar CC diagram one may obtain for donor
substituting As in the lattice [Fig. 5(b)]. In this case the
P ] parameters are much larger due to the large values of
the I, and I~ integrals. However, here the states tied to
the lower X conduction band have A] and E symmetry
and therefore do not interact strongly with the lattice.
On the other hand, the upper X conduction band is
characterized by small effective mass. Thus the trapped
electron wave function [(22)—(24)] contains only the con-
tributions from the summation on L equivalent points of
the Brillouin zone. To obtain a CC diagram for this case
the effective mass m =0.84 was used. It should be men-
tioned that the values of the effective masses for X and L
minima used in the calculations are in qualitative agree-
ment with those obtained from the EMA donor Tz and

T~ state energies: 122 and 70 meV, respectively. The
CC diagrams presented in Figs. 5(a) and 5(b) are almost
identical. Especially in both cases the center is in the
metastable state when the ion is displaced about 2.2 a.u.
from its lattice position. Also the stable and metastable
states are characterized by different charges. One may
see that the crossing over the energy surfaces E ( le) and
E(2e} yields to diminishing and smoothing of the energy
barrier between the stable and metastable states. This ex-
plains why the thermal emission energy E, for the DX
center does not depend on Al concentration in
Al„Ga, ,As (Ref. 37) and also the independence or very
weak dependence of E, on pressure for DX in GaAs-
doped Si and S. Unfortunately, this model does not al-
low one to judge which ion, the impurity or that of the
nearest neighbor, is really displaced. However, due to
the higher mobility of cations we may predict that in the
case of IV and VI group donors the donor and the lattice
ion is shifted, respectively. Recently Chadi and Chang
using the ab initio pseudopotential calculations have ob-
tained the energy of DX center formation in GaAs and
AI„Ga& As. They found that (1}DX is a highly local-
ized negative U defect center which appears when the im-
purity ion and Al or Ga ion for Si and S dopants, respec-
tively, is shifted in (1,1,1) direction from the substitution-
al to the interstitial position. The displacements were
found to be 1.17 and 1.13 A for Si and the host ion, re-
spectively. (2) Because of the strong instability of the
neutral DX the excitation of one of the electrons to the
conduction band results in the return of the interstitial
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FIG. 6. Configurational-coordinate diagram for As antisite
in GaAs. The energy of fundamental 3

~
state is taken as zero.

ions to their lattice position and the disappearance of the
DX center. One may see that these conclusions are in
good agreement with what can be drawn from our CC di-
agrams.

Finally, let us consider the special case of double donor
in Ga position (As antisite). For this case in the same
way as for the single donor the strong Jahn-Teller distor-
tion may create the bistability of the electron state. How-
ever, here both the stable and metastable states are local-
ized. Using 8 =0.38 a.u. and g&=2. 34 one may obtain
the CC diagram presented in Fig. 6. Here the fitting pa-
rameters are the energy barrier between the fundamental
A, (A, } and metastable A, (Tz) state (0.34 eV) and the
energy of internal optical transition (1.15 eV).~ The elec-
tron being in the A, ( A, ) ground state almost does not
interact with the lattice due to the small electron-lattice
interaction energy for the A, state. For the excited state
of Tz symmetry the interaction is much stronger. As in
the former case this state splits into A, and E states due
to the interaction with the T~ lattice distortion and the
A, is bistable. Both the stable and metastable
configurations are accompanied by the Jahn-Teller distor-
tion. The obtained value of small Jahn-Teller relaxation
is about 0.05 eV. Because of the fact that the absolute
value of the total energy is calculated here independently
of the band structure the presented diagram rather pic-
tures the possibility of the bistability of double donors
than the physical model. However, it describes well the
electronic properties of the EL2 center in GaAs. Com-
paring the presented estimation with the more sophisti-
cated calculations done by Chadi and Chang and Da-
browski and ShefBer ' one may see that the general con-
clusions are the same in both cases. Especially the sym-
metry of the fundamental and metastable state is A, , the
charges of the center being in fundamental and metasta-
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ble state are the same, the small Jahn-Teller effect in the
internal optical transition should be observed, and in

metastable configuration the As ion is displaced about 2

a.u. in the (1,1,1) direction from the substitutional posi-
tion.
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APPENDIX

To obtain the energy of electron-lattice interaction in-
cluding the intervalley interaction for the electron being

I

in the A, or T2 state one may use the electron wave func-
tion whose components can be given in r space as a linear
combination of Gaussian functions centered in k space on
the L or X points of the Brillouin zone. Thus the mth
component of the function is given by

(A 1)

where p is defined by (9) and the coefficients a, are
given by (25). The vectors K correspond to the four
equivalent L points and six X points of the Brillouin zone.
The matrix element describing the electron-lattice in-
teraction may be given as follows:

=0.25 g a a„fy, (r)exp[i(K —K, )r][V(r —R, —6, )
—V(r —R, )]dr (A2)

where R, and 6, are the impurity —sth-nearest-neighbor-ion distance and displacement, respectively. Using the linear

approximation and applying transformations similar to those in Sec. II one obtains

M „=0.25 g a,a„,f V(r)exp[i(K, —K,') R, ]exp[i(K, —K, ) r][grady& 6,, +i(K, K, )—h, y ]dr . (A3)

When one takes into account only the short-range ion pseudopotentials the exponent exp[i(K~ —K, ) r] can be linear-
ized and the real part of (A3) is

M „=0.25 g a,a„,'exp[i(K, —K,') R, ]

X f V(r)dr[grady (r)], R 5,, —(K —K ) b,, f (K —
K~ ) rV(r)y (r+R, )dr (A4)

Using only the symmetric potentials of the ions after some algebra one obtains

M „=0.25 g a,a„,.exp[i(K, —K, ) R, ] f V(r)dr— [(KJ—KJ') R, ] f V(r)r dr [grady (r)], R b, ,
3R,

(A5)

After the summation over j, j', and s one obtains the electron-phonon interaction energy matrix elements given in Table
I.
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