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Exchange efFects in a quasi-one-dimensional electron gas
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%'e calculate the electron exchange of a quasi-one-dimensional electron gas in a quantum-well

wire of radius Ro. A two-subband model is considered and the exchange self-energy for the first and
second subband is calculated under the assumption that only the lowest subband is partially filled

with electrons. Band-bending effects are also discussed. Results for the total energy per electron in-

cluding kinetic and exchange energy are presented.

I. INTRODUCTION

~ex~~kin

—0.414r, for d =3
—1.200r, for d =2,

where r, is the density parameter. Exchange efFects are
more important in two dimensions than in three dimen-
sions. Therefore, we expect that exchange effects are
even more important in Q1D ES.

The paper is organized as follows. In Sec. II we de-
scribe the model. The result for the self-energy and the
ground-state energy are presented and discussed in Sec.
III. The summary is in Sec. IV.

II. MODEL

Analytical results for the subband spacings in QlD ES
(neglecting many-body effects) are only available for wires

The subband structure of quasi-one-dimensional elec-
tron systems (QlD ES) as realized in quasi-one-dimen-
sional quantum wires is presently under study in experi-
ments (for a review, see Ref. 1) and in theory (for a re-
view, see Ref. 2). In realistic calculations of the subband
structure only numerical results are available which
neglect many-body efFects.

Many-body effects are known to enlarge the intersub-
band spacing in two-dimensional systems (for a review,
see Ref. 4). Exchange effects have been discussed by
Stern' for silicon metal-oxide-semiconductor (MOS) in-
version layers. Quantum wells were considered only very
recently. '

Surprisingly, for one-dimensional systems such calcula-
tions have not yet been performed. The reason is prob-
ably that for Q1D ES analytical results for the electron-
electron interaction potential are not available. In this
paper we present results for the electron exchange and
discuss the increase of the intersubband spacing due to
direct Coulomb and exchange eftects.

The total energy per electron, taking into account the
kinetic energy (Ek;„) and the exchange energy (s,„) is also
calculated. In the d-dimensional interacting electron gas
one finds (for a review, see Ref. 7)

and

E2 =(14.68 Ry')[a'/Ro]' .

is the effective Bohr radius and

R y+ = rrte ~/2e~& fi~ is the effective rydberg. m is the
electron mass in the semiconductor and sL is the dielec-

tric constant of the background. The intersubband ener-

gy E2&' =E2 —E& is given by

Ez&' =(8.90 Ry')[a*/Ro] (2)

Using a simple approximation for the wave functions
4(r, ttt) in the wire (r ~ Ro) we are able to get analytical
results for the electron-electron interaction potentials.
For the wave function of the first subband we use
4(r, (b)-(1—r /Ro) and for the wave function of the
second subband we use

4(r, g)-r(1 r /R o)e—

see Ref. 9, and we get

V ( )
—72

EL (qRo) 10 3(qRo) 3(qRo)

{j4
13(qR o )E3(qR o )

(qRo)

(3a)

with rectangular or circular cross sections and for infinite
barrier height. However, even for such simple models no
analytical expressions are available for the electron-
electron interaction potential V;;'kt(q). i, j, k, and I are
subband indices.

%e have calculated the electron-electron interaction
potential for a cylindrical quantum wire with radius Rp
and infinite barrier height at Ro. For this model the
wave functions are expressed in terms of Bessel functions
and the energies of the two lowest subbands are given by

E, =(5.78 Ry')[a "/Ro]
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and

e 1
Vippi (q) =576

(qRp)

4 8

15(qRp) (qRp)

64
4 I4(qRp )E4(qRp )

(qRp)

(3b)

with Eq. (4b). Therefore, we believe that our model
represents a generic model for the study of exchange
effects in quasi-one-dimensional systems.

In our calculation we use the effective-mass approxi-
mation. Therefore, we expect that our theory is only val-
id for quantum wires which are not too thin: 2Ro &a*.
Because we used a confinement with infinite barriers we
are restricted to widths of the quantum wire where

e' qRo
Vi'iii(qRp «1)=—2 ln [1—O(q )] (4a)

and

Se
Vi22i (qRp « 1 ) =

7EL
1+—,', ( qR p ) In

qRo

I„(x) and K„(x) are modified Bessel functions. ' For
qRo ((1 we get

E, =(5.8 Ry')(a "/Rp) « Vp

and Vo is the confinement energy in real wires. In semi-
conductor quantum wires with 1Ry'-5 —20 meV and Vo
of the order of 0.4—1.0 eV our restriction 2R.o & a ' is safe
enough to make our results applicable to real systems.
The condition that only the lowest subband is occupied
implies that the Fermi energy sF must be smaller than
the intersubband energy distance F2 E, . —From this
condition it follows that P & 4a "/Rp.

III. RKSUI TS AND DISCUSSION

+O(q ) (4b)
A. Self-energy

We have compared Eq. (3) with the exact (numerical) re-
sults (where we used the exact wave functions for the
calculation of the electron-electron interaction potentials)
and we found very good agreement (within 5%). In the
following we use Eq. (3) for the electron-electron interac-
tion potentials.

We consider a homogeneous electron gas ()'cilium mod-
el) with electron density N =2g, kF /n. =EN p and
Np = 1/2a". g„ is the valley degeneracy, k~ is the Fermi
wave number, and 1V' is the reduced density. The density
parameter r, (Ref 7) is g. iven by r, =i/8'(N=1/2r, a").
A spin degeneracy of two is assumed. In the following
we use g„=1. All calculations are for zero temperature.

It is well known that shape effects of the wire cross sec-
tion do not play an important role for the binding ener-
gies of hydrogenic impurities in one-dimensional sys-
tems. " We expect that the same is true for the exchange
energies because the interaction potential is averaged
over the wave functions. In Ref. 12 Viz2i(q) has been
calculated for a quantum wire with zero thickness along
one confined direction. The long-wavelength limit

Vi22i (q =0)= 1.2e /eL

r"'(k) = —f" V" (q)e(k —lk —ql ) (Sa)

e(x) is the unit-step function. The exchange energy

X,'2i(k) for the second subband can be calculated follow-

ing the derivation for two-dimensional systems. ' In Ref.
13 X,'„'(k) was neglected. However, in Ref. 6 asymptotic
results for Xe„'(k) have been presented for quantum wells.

We get

X' (k)= —f V, (q)e(k —lk —ql) . (Sb)

With Eq. (4) we derive for kFR p « 1

k k+kF
X',„"(k)/( I Ry') = — 1 — ln

—
—,'in[ i(k' —kF ) IR p /4]

(6a)

The exchange self-energy X,'„"(k) for the lowest sub-

band is expressed in terms of V;;„(q)and given by

(Ref. 12) is in good agreement with our result, compare alld

T

4 N (kFRo) k k +kF
X',„'(k ) /( I Ry' ) = —— 1+
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For kFRo && 1 we get

X(„"(kF)/( I Ry')

= —[N/No](1 —ln[kFR() ]+ . . ) (7a)

and

X(,„)(kF) /(1 Ry' )

[1+—,((kFRo) (ln[kFRo] —
—,')+ ] .

(7b)
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g(„"versus k given by Eq. (5a} is shown in Fig. 1, together
with &(,„"given by Eq. (6a). As for three-dimensional sys-

tems (see, e.g., Ref. 14), we get with Eqs. (3a) and (5a) a
divergent effective mass m ' at the Fermi points (+kF ):

k+k~m/m'=1+ ln
ma*k k —kF

We expect that, as for three-dimensional systems, ' this
singularity is canceled by correlation effects. But to the
best of the authors' knowledge it has not previously been
shown that the exchange contribution to the self-energy
for Q1D ES gives a logarithmic singularity for the effec-
tive mass.

In Fig. 2 we show X,'„')(kF ) and X,'„'(kF ) versus electron
density for various values of Ro. The dashed lines are for
k =0. For small-electron density the self-energies in-

crease with increasing electron density and become near-
ly constant for high-electron density. The self-energies
depend strongly on the wire radius.

In Fig. 3 we show X(„')(kF) and X,'„'(kF ) versus wire ra-
dius Ro for various values of N. The dashed lines are for
k =0. The exchange self-energies decrease with increas-
ing wire radius. However, the ratio X(„"(kF)/Ez)' in-

creases with increasing wire radius. For N/No =4 we get
for 2',„"(kF)/E(2)' 0.10 (for Ro=a'/2), 0.23 (for
Ro=a*), 0.49 (for Ro=2a'}, and 1.0 (for Ro=4a').
We conclude that for large wire radii the exchange effects
due to X,'„'(kF) are of the same order as the intersubband

FIG. 2. (a) X,'„"(k =kF) and (b) X,'„'(k =k+) vs electron den-
sity N for various wire radii Ro. The dashed lines are for k =0,
see Eq. (9).

energy-distance. X,'„)(k~) is about a factor 5 smaller than
X(„')(kF).

For different wire radii the exchange energies for k =0
and k =kF are related via

X,"„'(k =0, 2R o ) =X,'„'(k =kF, R () ) (9)

and i =1,2. With this relation one can get X(„')(k =0)
and X(„)(k=0) from Figs. 2 and 3 (see the dashed lines).

Correlation contributions to the self-energies are not
considered in this paper. From two-dimensional systems
one knows' that the correlation contributions from the
first subband and the second subband are comparable and
the effect on the intersubband energy distance is small.
The correlation contributions to the self-energies have a
real and an imaginary part' making the interpretation in
terms of a renormalization of the intersubband energy
distance more complicated. The correlation contribu-
tions will be addressed elsewhere. '

and

E~) '(k)=E2, ' —5E2, (k) (10a)

B. Intersubband energy distance

The exchange self-energy gives rise to a renormaliza-
tion of the intersubband energy distance E2, '(k) given by

(k) g(l)(k) g(2)(k)+EBB (10b}

C4

X

& -2

0.5
l

1.0
k/kF

2.0

///
-12

0.1

I )

05 1

(a)
5 01

R /g%

N/Np
0

I (

0.5 1

(b)

FIG. 1. Exchange self-energy X,'„"(k) vs wave number k (solid
line). The dotted line represents Eq. (6a}.

FgG. 3. (a) X,'„"(k =kF) and (b) X,'„'(k =kF) vs wire radius

Ro for various electron densities N. The dashed lines are for
k =0, see Eq. (9}.



41 EXCHANGE EFFECTS IN A QUASI-ONE-DIMENSIONAL ELECTRON GAS 8321

Ezi /(1 Ry')=0. 32N/No . (10c)

E2 &
does not depend on the wire radius. In Fig. 4 we

show 5E2, (k =0}and 5E2, (k =kF) versus electron den-

sity for Ro=a' according to Eq. (10). ~5E2, (k)~ is

strongly reduced for large N in comparison to ~X,'„'
~

due
to X' 'and E

Presently, the experimentally studied wires' ' have
large radii and exchange effects are certainly very impor-
tant for the interpretation of intersubband energy dis-
tances. However, in most of the experiments three or
more subbands are occupied making the interpretation of
the experimental results diScult.

The intersubband energy distance co&& measured by
far-infrared optical spectroscopy' ' ' ' is shifted by the
depolarization effect. The long-wavelength limit is given
by

~pi(k=O) = [[E2",'(k=O)] +[Ad (k=O)] I
'~ (1 la)

The depolarization shift for quasi-one-dimensional sys-
tems has been calculated recently. ' For our model we
get

[Qdq (k =0}] ¹'
[E2", '(k=Q)] 7 [E2, '(k=Q)/(1 Ry')]

(1 lb)

In Eq. (11) the renormalized energy distance Eizai' enters
and not E2, '. For small-electron density Ep] &Ep& and
we conclude that the depolarization effects are larger if
exchange and band bending are included in the calcula-
tion. In the former calculations ' for the
depolarization-shifted intersubband energy distance the
exchange and band-bending effects have been neglected.

I I

E2~i =8.9 R
Ro=a'

We have assumed that the first subband is partially occu-
pied and the second subband is unoccupied. E2, is a re-

normalization of the intersubband energy distance due to
band bending (BB). For small-electron concentration
self-consistence effects in the Poisson equation are negli-

gible. Thus, one can get analytical expressions for the
change of the subband energies 5E, [5Ei /(1
Ry')=1. 22N/N o, 5E2/(1 Ry')=0 90.N/No] . The
change of the subband energy distance due to the Hartrec-
term is

C. Ground-state energy

The ground-state energy per particle is written as'

~kin+ ~ex+ ~corr (12)

c.„„is due to correlation and is neglected in this paper.
c.k;„ is the kinetic energy per particle and given by

ek;„=(I Ry")~ /(48r, )=(0.2056. . . Ry")lr, . (13a)

c.,„is the exchange energy per particle and expressed as

J 'dkr, '„"(k) .
~N o

(13b)

For kFRo «1 (r, a" /Ro »1) we get with Eq. (6a) the
analytical expression

e,„/(1 Ry )= —[ln(r, )+—,'+1 (n4 a/aR )o]/[2r, ] .

(14)

e,„/ek;„= —(2.432. . . )r, [ln(r, )+—,'+In(4a'/mRo)] .

(15)

Comparing Eq. (15) with Eq. (1) we find that first the pre-
factor of the r,' term is enhanced and that second an
additional singular ln(r, a /Ro) behavior is present for
QID ES. Equation (15) demonstrates that exchange

0

In Fig. 5 we show ck;„, c.,„,and c.&;„+c,„versus electron
density N for Ro=a'l2 and Ro=a'. The inclusion of
c„„and the comparison with ground-state energies of
nonjellium ground states will certainly give new informa-
tion on possible phase transitions. We mention that the
occurrence of the Peierls transition was recently ques-
tioned for long-range Coulomb potentials. It is clearly
seen in Fig. 5 that the exchange energy is more important
for Q ID ES than in higher dimensions: For r, = 1 we ob-
tain e,„/ek;„= —6. 1 for Ro=a /2 and e,„/ek;„= —4. 3
for Ro=a*. From Eq. (1) we get e,„/c,k;„=—0.41 for
d =3 and —1.20 for d =2. For r, a'/Ro»1 we find

SEp)(k=kF}
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FIG. 4. 6E»(k =0) and 5E»(k =kF ) vs N for Ro=a*, see
Eq. (10b).

FIG. 5. c,k,„(dotted line), c,„(dashed lines), and c,k;„+c.,„
(solid lines) vs electron density N for Ra=a*/2 and Ra=a*.
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effects are strongly enhanced in Q ID ES in comparison to
electron gases in higher dimensions.

IV. SUMMARY

To summarize, the exchange energy for quasi-one-
dimensional wires was calculated and the renormalization
of the intersubband energy distance due to Coulomb and
exchange interactions was evaluated. The implications of
our calculations for future experiments on quasi-one-
dimensional wires, where only one subband is partially
filled, are evident and important.
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