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We present a simple and accurate method for dealing with phonons in superlattices, and illustrate

it with the example of GaAs/A1As heterostructures. In this approach the vibrations of the super-

lattice are described in terms of planar force constants, which are determined ab initio for one con-
stituent (e.g. , GaAs bulk) and extended to the other constituent (e.g. , A1As) by introduction of the
"mass and charge approximation. " Within this approximation, the dynamical problem of the su-

perlattice is represented as that of an infinite bulk crystal (e.g., GaAs), which is modified by a se-

quence of on-site perturbations. We systematically develop the formalism for the one-dimensional

description of phonons propagating along the superlattice growth direction, derive its relation with

the general three-dimensional description, and clarify its physical meaning. The representation of
the Coulomb interactions in the one-dimensional formalism is described in some detail. Applica-
tions of the method to (GaAs) /{A1As)„superlattices of several thicknesses are discussed.

I. INTRODUCTION

In recent years the interest in the vibrational properties
of semiconductor superlattices has been growing very
rapidly, most because of the great amount of structural
information which can become experimentally accessible
by studying phonons via light-scattering experiments.
Most of the work has been devoted to Ga, „Al„As sys-
tems (see, e.g. , the reviews in Ref. 1). In particular, in the
last few years the attention has been focused on the role
of interfaces: for example, superlattices (SL's) with very
sharp or with artificially disordered interfaces have
been studied by Raman, in order to clarify the effect of
interface inhomogeneities on the spectra; the research on
GaAs/AlAs systems has also developed towards ul-
trathin SL's (Ref. 4) and SL's with more complex periodic
or aperiodic stacking sequences. Moreover, the interest
is now extending to SL's made of other materials, such
as, e.g. , Si/Ge (Refs. 6 and 1) or GaAs/InAs, where
strain effects are often important.

The first theoretical microscopic understanding of the
main features of GaAs/AlAs SL phonon spectra have
been provided by modeling the SL structure with a linear
chain with first-neighbor interactions. ' Although
these models were based on a very simplified description
of the bonding in GaAs/AlAs, they were able to describe
the main features of phonons propagating along the SL
growth direction, namely the appearance of folding in the
acoustical frequency range and confinement in the optical
range. The success of this simple model results from the
fact that the linear-chain equations of motion actually de-

scribe the vibrations of a chain of atomic planes, which is
an exact picture of phonons propagating in the growth
direction. Indeed, the transformation of the three-
dimensional (3D) dynamical problem into three one-
dimensional (1D) (linear-chain) problems is exact, as the
high-symmetry atomic planes are made of a single atomic
species and vibrate as a whole.

After the more detailed experimental data obtained by
Raman were gathered —giving information mainly on
modes propagating along the growth direction —we have
put forward a model" ' which is capable of providing a
more quantitative description of both optical and acousti-
cal branches, without abandoning the conceptual simpli-
city of the linear-chain approach. This can be achieved
by use of interplanar force constants based on a more
refined description of the bulk components, such as long-
range force constants derived by first-principles calcula-
tions, as will be shown in detail in the following sections.

Our approach uses as its starting point results obtained
in first-principles calculations; however, only a very sim-
ple formalism is then emp1oyed for the description of the
phonons. The size of the problem remains tractable even
when dealing with thick SL's, ' ' and the method has al-
ready proven its usefulness in describing other superlat-
tices, such as InAs/GaSb (Refs. 16—18) and Si/Ge. '

The method satisfies two important requirements: (i) it
reproduces the bulk-phonon spectra of the SL constitu-
ents, and (ii) it describes the two constituent materials in
terms of the same interactions: their difference is reduced
to different on-site properties, namely masses and
effective charges ("mass and charge approximation"). It
is then naturally suitable to treat layered materials and
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FIG. 1. Structure of the three-dimensional unit cell of a (GaAs)7/(AlAs)7 (001) superlattice. The projection onto a one-
dimensional chain is shown at the bottom. Larger circles represent As atoms (~ atomic planes), smaller solid and open circles
represent Ga and Al atoms ( ~ atomic planes). a is the bulk lattice parameter.

their interfaces.
The purpose of this paper is to give a detailed deriva-

tion of our method, and to provide explicitly the in-
gredients which are needed to apply it to difFerent situa-
tions. In Sec. II we present the bulk lattice dynamics and
introduce the "mass and charge approximation" for the
bulk constituents. In Sec. III the "mass and charge ap-
proximation" is extended to construct the dynamical ma-
trix of GaAs/AlAs SL's. Typical calculated phonon
spectra are presented in Sec. IV.

It should be noted that recently full 3D calculations
based on models of different complexity ' (rigid-ion
model, bond-charge model) have appeared, which can
also treat the dispersion along other directions and, in
principle, can be extended to include in-plane inhomo-
geneities. Some of them have contributed, in particular,
to the understanding of the microscopic origin of the ob-
served anisotropy of optical modes and SL interface
modes propagating parallel to the interfaces. Such inter-
face modes, observed for the first time by Sood et al. ,
were previously interpreted only in terms of macroscopic
matching of dielectric functions. On the other
hand, first-principles calculations performed on the thin-
nest superlattices are starting to appear. ' Being more
complex, these approaches have only been applied to a
limited number of systems. Nevertheless, the SL pho-
nons with wave vector parallel to the (001) growth direc-
tion, which are those accessible in Raman-backscattering
experiments, can, in many cases, be studied with high ac-
curacy within the relatively simple scheme described in
detail in this work, and which, yet, can be based on the
first-hand information obtained from ab initio calcula-
tions.

unit cell

&k (k
— LOO~ 1

tively accurately for an arbitrary wave vector.
In view of the application to (001)-grown superlattices,

here we concentrate only on wave vectors k
=(2n /a)(0, 0, k, ). For wave vectors along this direction,
it is then advantageous to think in terms of vibrating
(001) atomic planes, each formed by atoms of the same
species (Fig. 1), kept together by forces described by
interplanar force constants k„(Fig. 2). We want to point
out that a 1D representation in this direction does not
imply any approximation, since it can be derived from
the conventional 3D description of vibrations through a
simple transformation to symmetry coordinates.

The point group leaving k=(2~/a)(0, 0, k, ) invariant
is C2„, and the decomposition of the representation in-
duced by the basis u («) (a=x,y, z and «=I and 2, re-
spectively for cation and anion) is

2A ) +253+254 =2 A
&
+2B2 +2B )

and corresponds to longitudinal (L) and transverse
(T&,Tz) eigenvibrations.

Transformation (Al) in Appendix A block diagonalizes
the dynamical matrix, and the eigenvalue problem splits
into three 2 X 2 secular equations, belonging to the sym-
metries 53, 6&, and 6&. two transverse and one longitudi-
nal. Every 2 X 2 block in (A 1) can then be thought of as a
separate dynamical matrix, belonging to one of the three

II. LATTICE DYNAMICS OF THE BULK CRYSTALS

A. Phonons in bulk GaAs:
One-dimensional representation

kac

t) kcc k, ')

-4 -3 -2 0 i 2 3 4
Several phenomenological models describing lattice vi-

brations in bulk GaAs in terms of fitted parameters have
been developed in the past: the rigid-ion model, five
different versions of shell models, ' and the bond-
charge model. ' Also, as the corresponding computer
codes are readily available for most of these models,
phonons in bulk GaAs can be generated easily and rela-

o cation ~ anion

FIG. 2. Some of the interplanar force constants connecting
atomic planes perpendicular to the (001) direction. The num-
bering of the planes is chosen so that the atom at (0,0,0) is in the
plane 0, the atom at ( —', —', —') in the plane + 1, and the plane —1

contains the sites ( —', ——', ——') and ( ——', —', ——').
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symmetries; the corresponding vibrations can be visual-
ized as those of a linear chain of atomic planes, held to-
gether by interplanar forces (see Figs. 1 and 2). Interpla-
nar force constants can then be defined as the negative of
the force acting on the plane n per unit displacement of
the plane 0, i.e.,

I k„j connecting each "atom" to its nth neighbor (Fig. 2).
In the zinc-blende structure the force constants k„ for

even n also depend on the atomic species in planes 0 and
n (cation-cation or anion-anion); in the following we will
either specify additional superscripts (e.g. , k„"),or use the
alternative notation

F = —kun n 0 & (2a)
F(l, lr) = —g IC (l, a;I', Ir')u (I', a.'),

and every 2X2 dynamical matrix can be constructed
without reference to the original three-dimensional
dynamical matrix C(k) of Eq. (Al), merely as the dynam-
ical matrix of a diatomic linear chain with "springs"

where (i,a) labels the ath atom in the Ith unit cell. The
dynamical matrix then may be written as

C ""(K,K';k) =(M„M„.) ' g K(O, lr;I', Ir')exp I(2n /a)ik[x (I', v') —x (O, lr)] j (3)

and the eigenmodes are obtained from the secular equa-
tion

detjjC ""(k)—[a)(k)] I2~j =0; (4)

I2 is the 2 X 2 identity matrix.
The decomposition of the 3D problem into three 1D

problems can be done only within the harmonic approxi-
mation, where the force F and the displacement u in (2)
are parallel; as the displacements have one of the three
directions shown in (A2) (transverse or longitudinal),
three distinct sets of tk„j are needed to provide a full
description of the k=(2n /a)(0, 0, k, ) vibrations. In fact,
only two of them are significantly different: the longitu-
dinal and transverse sets; the distinction the two trans-
verse types is a matter of labeling only: k„(b,~)
=k „(b,3). Note that in this description the difference
between the co„o(I ) and the coro(I ) frequencies results
from the difference between the longitudinal and trans-
verse force constants. Moreover, it holds that k„Pk
for T and k„=k „ for L.

Although the tk„j can be related ' to the usual (in-

TABLE I. Interplanar force constants k„ for GaAs as calcu-
lated in Ref. 40. In units of 10' dyn/cm. The numbering of the
planes and the positive sense of the [001]direction are defined in

Fig. 2. The transverse force constants given here are pertinent
to the 63 symmetry; those for the h4 symmetry can be obtained
as k„(64)=k „(b3).

teratomic) force constants 4 &(1,~;I',a') which enter the
3D dynamical matrix C(k), the relation is of little in-
terest here, as long as we write the 2X2 dynamical ma-
trices directly from t k„j, having the 1D picture (Fig. 2)
in mind. For GaAs the numerical values of interplanar
force constants were determined ab initio from definition
(2) in Ref. 40, within the Hohenberg-Kohn-Sham local-
density approximation; they are given in Table I, and the
corresponding dispersion along (001) is shown in Fig. 3
(dashed lines). It is apparent from Table I that the trans-
verse forces extend relatively far, up to the fifth-neighbor
plane: this would make any fit to the experimental co(k)
rather arbitrary.

400-.

300——
I

Longitudinal
(~])

k"=2 038
ko
k+, = —0.931

k+2 = —0.117
k+~ = —0.081
k+3 =0.029

k p4= 0.000
k+4 =0.000
k+q =0.000

Transverse
(43)

k"= 1.470
k ()' = 1.760
k+, = —1.470
k

1
= —0.127

k+, =0.095
k i2= —0.020
k+3 = —0.019
k 3

= —0.076
k ~4=0.028
k+4= —0.002
k+5 = —0.018
k 5

= —0.006

100-

0
0 (ooz)

WAVE VECTOR (7r/ —")
FIG. 3. Bulk dispersion along the [001] direction (I ~X) for

GaAs and AlAs obtained with the force constants of Table I.
Dashed lines, "mass approximation"; solid lines, "mass and
charge approximation. "
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On the other hand, the present set of force constants
suffers from imprecisions in the ab initio determination
(due, in particular, to the use of local pseudopotentials
and to the limited size of cell used in those early calcula-
tions) which are responsible for the somewhat shifted
transverse-acoustic (TA) and transverse-optical (TO)
branches, as well as for underestimating the splitting be-
tween the longitudinal-optical (LO) and the TO modes at
point I (LO-TO splitting). (See the experimental
neutron-scattering data of Refs. 33 and 43.) Besides these
problems, which are of essentially computational nature,
it is worth noting that the "one-dimensional" description
discussed in this subsection is exact, in the sense that no
approximation was introduced when going from three di-
mensions to one dimension. Moreover, we wish to re-
mind the reader that also all "long range" electrostatic
interactions are included in the planar forces [k„];the
finite LO-TO splitting at point I is obtained without us-
ing any formal separation into "short-range" and "long-
range" interactions, as is customary in the conventional
treatment.

B. Phonons in the AlAs: Mass approximation

The details of phonon spectra of A1As are largely un-
known. In the absence of neutron-scattering data, the ex-
perimental information is limited to optical measure-
ments, yielding the frequencies only at I and X points,
and to some recent measurement of sound velocity.
The amplitudes of the displacements at point X are avail-
able from ab initio predictions of frozen phonons using

the density-functional formalism. It has been not-
ed, ' ' however, that the known phonons in AlAs can
be fairly well described by assuming the same bonding as
in GaAs (i.e., the same force constants), with only the
cation masses modified. As an example, the phonon
dispersion in A1As, calculated in this approximation
within one of the shell models for GaAs, is shown in Fig.
4 by dashed lines.

The above finding is not a coincidence: more than a
decade ago it was shown ' that for nearly all III-V and
II-VI compounds the origin of the most varied shapes of
the different phonon dispersions co(lt } is mainly due to the
different masses of atoms rather than to different bond-
ing, especially when relating compounds with the same
anion (e.g., GaAs~A1As, GaSb~lnSb).

In Fig. 3 we show (dashed lines) the A1As phonons cal-
culated in this "mass approximation" from the GaAs pla-
nar force constants of Table I. Obviously, this descrip-
tion combines the imperfections of both approaches: the
"mass approximation" and the imperfection of the avail-
able set of GaAs planar forces. The main disturbing
feature in the co(k} of A1As is the far too narrow LO-TO
splitting at P.

However imperfect, the mass approximation will intro-
duce a considerable simplification in the description of
GaAsiA1As superlattices: by representing A1As as mere-

ly a mass defect in GaAs, it brings the treatment of the
superlattice to that of GaAs with on-site perturbations,
which do not affect any interaction between atoms. This
is of special importance in the superlattice, where it con-
siderably simplifies the description of the interactions
around the interfaces.

12 IQ

AlAs (VOSM)
masI approxo
male and charge approx.
exp erimeni

0
O m ae O.e O.I 1.01' OS O.e Q4 0.2

[%0] X K [1%]
0 0 0.1 Qg 03 OA OS

r [111] L

FIG. 4. Bulk dispersions of AlAs calculated with the valence overlap shell model (VOSM) of Ref. 34 assuming the same interac-
tions as in GaAs and the "mass approximation" (dashed lines) or the "mass and charge approximation" (solid lines).
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C. Beyond the mass approximation

Cd'" (k)=C (k)+M ' Z C '"'(k)Z M (5)

where C is the short-range dynamical matrix and
C '"'(k) is the matrix of Coulomb coefficients (with the
macroscopic field included);

M(Ga)
M1= (6)

0
M(As)

is the matrix of masses;

z'(Ga) 0
—z*(Ga) eI, (7)

is the matrix of effective charges, given by

2
M1M2 a

M +M 16

(Szigeti charge at zero polarizability); and I3 is the
direct product with the 3X3 unit matrix. Notice that in

our planar-force description z* only depends on longitu-
dinal and transverse force constants, and the dependence
on masses cancels out. Although it is not written explic-
itly in (5), both C ""and C depend on masses M~, M2 as
well, in a similar way as the Coulomb part: a matrix mul-

tiplied from left and right by M, '

The mass approximation discussed in Sec. II B consists
of replacing M, in (5) by

M(A1) 0
M(As)M2=

while keeping all other terms unmodified.
The explicit expression (5) suggests another, somewhat

weaker approximation: instead of C +ZC '"'Z, we
might assume only the C ("short-range" forces) to be
equal to both CxaAs and AlAs; then, besides the masses,
also the matrix of charges would have to be replaced by

z '(A1)

0

0
—z'(Al }

with z*(Al) determined through (8) from the experimen-
tal LO,TO (I ) frequencies of A1As. Equation (5) then
becomes

Although the general shape of the A1As dispersion is
well accounted for by the "mass approximation, " the
LO-TO splitting at I point (Fig. 2) is not reproduced
correctly, because it reAects the difference in the micro-
scopic polarizabilities and "deformabilities" of GaAs and
A1As, while the assumption underlying the "mass ap-
proximation" is precisely embodied in the equality of Ga
and Al potentials. We can improve on this point without
abandoning the idea of on-site modifications only.

Let us adopt for a while the framework of phenomeno-
logical lattice dynamics; there, the traditional division of
forces into "short-range" and Coulomb ones leads to
writing the dynamical matrix, in terms of the rigid-ion
model (RIM) (Ref. 44) as

XM-'"
2 (1 lb)

the artificial division of forces into "short range" and
"long range" is no longer needed: we can identify

Cg,"z,(k) in (lib) with the dynamical matrix constructed
within some scheme more sophisticated than the RIM,
such as a shell model or the ab initio scheme of Ref. 40,
so that only the difference between the interactions in
GaAs and A1As is treated within the RIM. Whenever
Zz&z„we refer to (lib) as "mass and charge approxi-
mation. "

As an example, the dispersion of A1As —calculated
with the (valence-overlap) shell model (VOSM) of Kunc
and Bilz for CN,"~,(k)—is shown in Fig. 4 by solid lines.

In order to use the "mass and charge approximation"
within the "one-dimensional" description in terms of the
interplanar forces, we have to apply the transformations
(Al) and (A2), which block diagonalize the 3D dynamical
matrix, also to the Coulomb matrix C '"'. While the ex-
plicit block diagonalization of C "" is not needed (one
directly writes the "small" dynamical matrices for the
linear chain, using interplanar force constants), the result
of block diagonalization of the Coulomb part C '"'(k)
will be discussed in Sec. III.

Anticipating the results, the phonon dispersion in
A1As calculated by this method with planar force con-
stants of GaAs (Ref. 40) is shown in Fig. 3 by solid lines.
(Here the effective charge of A1As was taken to be
0.763~e~, as deduced from the LO-TO splitting in Ref.
45.)

Now the charge approximation not only yields the
correct LO-TO splitting, but it also straightens the TA
dispersion. Notice, however, the shift of the LO and TO
branches; its amount is not large and its experimental
value depends on the temperature.

A similar treatment can also be applied to GaAs, for
the force constants of Table I give a too small LO-TO
splitting at point I: its value corresponds to the effective
charge of 0.367~e~, as compared with the actual experi-
mental value of 0.673~e~, calculated through Eq. (8) from
measurements of Ref. 33.

Writing (1 lb) with M& =Mz, and evaluating the right-
hand side with 0.367~e~ and 0.673~e~ for Z, and Z~, re-
spectively, and with force constants from Table I, we ob-
tain the GaAs phonon dispersion depicted in Fig. 3 by
solid lines, which shows the same kind of changes as in
A1As (shown in Fig. 3}. However, here also the
modification of the effective charges produces some
change in the dispersion (shift plus broadening of band

Cd&" (k) —M
—1/ZM1/2CsR (k)M1/2M —1/2

A1As 2 1 GaAs 1 2

+M "Z,C""'(k)Z M

where CG,~, is pertinent to GaAs, C '"'(k) depends only
on the crystal structure, and the M1 terms "take away"
the M(Ga),M(As) dependence from Co,~„ in order to let
it be replaced by the M(A1),M(As) dependence. Rewriting
(1 la) as

Cdi (k) —M
—1/2M1/2Cdz (k)M i/2M —1/2

A1AS 2 1 GaAS 1 2

+ M ' [Z C '"'(k)Z —Z C '"'(k)Z ]
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width). The modification of the eigenvectors is, on the
other hand, negligible.

In our approach Table I is thus seen merely as a "refer-
ence set" of force constants (rather than an actual repre-
sentation of GaAs) and the "mass and charge approxima-
tion" (1 lb) is written in a somewhat more general form:

C""(k)= M-'"M'"C""(k)M'"M-'"
act act ref ref ref act

+M ' [Z C '"'(k)Z

—Z tc '"'(k)Z„„]M ' (l2)

where the subscript "act" stands for the actual com-
pound in question (GaAs or A1As), and "ref" denotes the
reference system (presently GaAs as characterized by the
force constants of Table I).

Notice that, in practice, dealing with the "mass and

charge approximation" of Eq. (12) is not more involved
than dealing with the "mass approximation, " once the
Coulomb matrix is known; also, the "mass and charge ap-
proximation" retains the most prominent feature of the
"mass approximation, " i.e., the "perturbation"
(Z„t~Z„,) is still localized on the sites and does not
affect pair interactions. It will be shown in the next sec-
tion that the Coulomb matrix can be generated in a sim-
ple way, formally analogous to the construction of the
dynamical matrix from interplanar force constants.

We note that the applicability of the approximation in
Eq. (12) is not restricted to the GaAs~A1As relation
only; the relation GaSb~lnAs has already been tested in
Ref. 17 following the treatment outlined in the present
paper. It would be worth checking how many different
phonon dispersions can be generated from a single set of
force constants, and how precisely, by simply varying
masses and controlling the LO-TO splitting.

III. DYNAMICAL MATRIX FOR GaAs/AlAs SUPERLATTICES IN THE MASS AND CHARGE APPROXIMATION

The one-dimensional representation in terms of planar constants lends itself to an easy extension to a GaAs/A1As su-
perlattice: as shown in the previous sections, the interactions can be assumed to be identical all along the superlattice,
and only masses and charges are modified from one component to the other. While the extension of Sec. II B to the
case of superlattices is straightforward in the mass approximation, the treatment of the corrective Coulomb term used
in the charge approximation merits some caution. It is useful to return for a moment to the standard three-dimensional
formulation.

For a general 3D lattice, the dynamical matrix within the RIM may be written as

4~ k, kp Z„Z„. Z„Z„ Z„
C~~p"(K, K', k) =CQp(K, K',k), —,Q p(K, K',k)+5„„/Z„Q p(K, K"; k=O)

k ' (M„M„,)'" (M„M„,)'" (13)

[see Eq. (31.17) of Ref. 44], where U, is the volume of the unit cell. Here the second term corresponds to the macroscop-
i'c electric field, and Q (k) are the "nondivergent" Coulomb coefficients.

The second and third terms are the elements of C '"'(k) which already appeared in Eq. (5), i.e.,

4~ k kp
C $" (x,a';k)= —

Q &(a, a', k) .k' (14)

The last term in (13) guarantees the translational invariance of the dynamical matrix; it is zero by symmetry in the bulk
zinc-blende structure, but not in a superstructure, when there are two different sets of effective charges.

With this in mind, the dynamical matrix for the (GaAs) /(A1As)„superlattice in the mass and charge approxima-
tion" reads like the dynamical matrix of the bulk —Eq. (12)—but with the Q (k =0) term added:

M' 'c ","(k)M' '=M' c t"(k)M' '+[z c '"'(k)z„,—z„,fc '"'(k)z, ,]+f (k=o), (isa)

where

f p(K, K'; k=O) =5„.Z, g Z,-Q t3(a, ~"; k=O), (15b)
K

and wherever the superscript "ref" or "act" is missing, it
is understood that Z:—Z„,. A term like (15b) with
Z=—Z„,t is not written in (15a) because the reference sys-
tem is zinc-blende (GaAs) +„and symmetry makes it
vanish. The Coulomb matrices C '"' will be discussed
later.

A simple way of evaluating expression (15b) is to calcu-
late the dynamical matrix as in Eq. (12) at k=O and to
"correct" the diagonal elements so as to make the ele-
ments of each line sum to zero (condition of translational
invariance). The correction term found in this way at
k =0 can then be used in the dynamical matrix at any k.

The diagonal matrices M and Z contain the actual
masses and effective charges, as they occur along the su-
perlattice. The variation of the effective charge along the
superlattice is to some extent a matter of assumption:
deep in the interior of each layer, one can expect the
effective charges to be the same as in bulk GaAs or AlAs.
When approaching the interface, however, one expects
the +ZG,A, to go, smoothly or abruptly, into +ZA&A, .
As no individual atomic values are accessible to direct
measurement, we adopt the hypothesis that the interface
As atom, which is "common" to both components, car-
ries an effective charge which is the average of those in
GaAs and AlAs bulks; for all other atoms the "regular"
bulk values of z* are taken. A few test calculations have
shown that reasonable changes in this assumption around
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TABLE II. e X(Coulomb coefficients) (see Appendix B) cal-
culated by Ewald summation for (0,0,k, )~(0,0,0) and lattice

0
constant a=5.65 A. In units of 10 dyn/cm. The conventions
for the numbering of the planes are as in Table I. In order to
obtain the planar force constants corresponding to Coulomb in-

teractions in Eqs. (12) and (15a), one multiplies the a;,b, from
the table by the charges Z in atu. (When expressed in units of
e /v„ these planar Coulomb interactions are universal
coefficients for the zinc-blende structure, independent of the lat-
tice constant a.)

Longitudinal
(~])

ap =0.326 80
a+] =0.213 67

ag2 =0.051 71
a+3 =0.00063

ag4 = —0.000 82

ag5 =0.00000

Transverse
(43)

bp = —0.16340
b+] = —0.37483
b, =0.161 16

bg2 = —0.025 86
b+3 =0.003 32
b 3

= —0.003 96
bg4 =0.00041
b+5 = —0.00004
b 5 =0.00004

IV. CALCULATED SUPERLATTICE
PHONON SPECTRA

We have discussed elsewhere several aspects of the
phonon spectra of GaAs/A1As, obtained with the present

the interface have a negligible effect on the eigenfrequen-
cies.

The Coulomb coefficients depend only on the crystal
structure [zinc-blende, (m+n)-times supercell] and not
on the atomic species occupying the sites. The 6(m +n)
X6(m +n) matrices C '"' are easily evaluated by Ewald
summation in three dimensions; they are then
transformed by the matrices P and U [Eqs. (Al) —(A3)]
with I2 replaced by I2~ +„]to the form compatible with
the linear-chain equation (5), and can be viewed as
"Coulomb coefficients in one dimension. " The resulting
Coulomb matrix shows a regular pattern, in analogy with
the dynamical matrix (see Appendix B). In particular, it
shows a structure in bands, such that all the atoms which
are nth neighbors are coupled by the same coefficient.
The important finding is that these coefficients decrease
with the distance between the planes, and that they are
short ranged: they extend essentially to the third- to
fifth-neighbor planes. ' The Coulomb coefficients of Ref.
12 are reported here for convenience in Table II. Their
short range demonstrates one advantage of dealing with
planes of atoms rather than with individual atoms, and is
a consequence of the fact that dipole-dipole interactions
between planes decay faster than those between individu-
al atoms (see Ref. 50).

This allows us to deal with the Coulomb coefficients as
with interplanar Coulomb force constants originating
from purely electrostatic interaction. This fact brings
about a dramatic simplification: the phonons of a super-
lattice of any thickness at any k can be calculated in
terms of the force constants of Table I and of the small
number of Coulomb coefficients given in Table II, and by
imposing translational invariance.
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FIG. 5. Longitudinal dispersion of the (GaAs ),/(A1As ),
(solid lines) and (GaAs), /{A1As)& (dashed-dotted lines) superlat-
tices grown along [001]. The [001]dispersions of the bulk GaAs
and AlAs constituents are also shown (dashed lines) to illustrate
the origin of the different superlattice branches.

approach. In particular, the frequencies of confined opti-
cal modes and their relation with the bulk dispersion
have been described in Refs. 11, 12, and 1(c). Selected
displacernent patterns for both longitudinal and trans-
verse polarizations are also shown in Refs. 11 and 13. A
critical discussion of the comparison between theory and
experiments, and of the possible role of interfaces for
(001)-propagating modes is given in Ref. 1(c). This refer-
ence also presents a comparison between GaAs/AlAs
SL's and SL's made of other materials. The easy applica-
bility of the present method to systems with a very large
number of atomic planes was demonstrated in Ref. 15 by
studying finite SL's with ideal unreconstructed surfaces.
In that case, it was shown how the availability of dis-

placements allows one to perform a model calculation of
Raman intensities easily.

We give here a few more applications with the purpose
of illustrating the method. In order to clarify the transi-
tion from bulk to superlattice, we show in Fig. 5 the thin-
nest possible superlattice, a (GaAs), /(A1As), periodic se-

quence; although this is an extreme configuration, its
modes can still be to some extent related to the bulk
modes of the two materials. The folding due to the dou-
bled periodicity brings the branches labeled with primes
into the new Brillouin zone (BZ) (extending from point I
to x/2), the modes of the previous zone boundary at
point X now being at point I . However, the substitution
Ga~A1 results in the splitting of the folded modes at the
new Bz boundary and in shifts of the "folded" branches.
While the small splitting of the acoustic branches can still
be considered a perturbation, the effect on optical modes
is so strong that the idea of folding —implying small de-
viation from continuity of the branches at the zone
boundary —becomes meaningless. This is even more evi-
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dent for (GaAs)2/(A1As)2, also displayed in Fig. 5. Here,
contrary to acoustic modes, the optical ones have become
almost dispersionless, so that the relation with the origi-
nal bulk modes is not longer easy to trace back. This
essential dift'erence between folded acoustic and "folded"
optical modes is visible on the displacement patterns in
Fig. 6; the folded acoustic modes keep their acoustic
character, cations and anions moving in phase. The al-
most overlapping ranges of bulk GaAs and A1As LA fre-
quencies make the folded acoustic modes propagate
through the whole superlattice. This contrasts with the
behavior of the optical modes (Fig. 6), which are essen-
tially confined in one layer or the other; since their eigen-
frequencies fall outside the bands of allowed frequencies
of either GaAs or A1As, their amplitudes are strongly re-
duced in the GaAs and A1As layers, respectively. This is
why they are usually referred to as GaAs-like or A1As-
like confined modes.

It is interesting to note that for the same reasons
confined A1As-like modes can appear also in the acoustic
range of frequency, since the A1As transverse-acoustic
continuum extends to higher frequency than that of
GaAs. In other words, the interval between the TA(X)
of GaAs and the TA(X) of A1As is forbidden for vibra-
tions of GaAs, and only allowed for A1As-like modes.

The two cases described up to now are peculiar since
the layers are thinner than the range of interactions, so
that successive layers of the same material still interact
directly with each other. Next, we present results for the
L polarization in a (GaAs)4/(A1As)~ superlattice, where
this is no longer the case. In Fig. 7 we show the frequen-
cy spectrum of the superlattice and the corresponding
displacement patterns at the I point. Indeed, the charac-
ter of confined and extended modes becomes very ap-
parent here.

Let us focus on optical modes: the confinement is
more pronounced for the AlAs-like than for the GaAs-
like ones, and for transverse modes more than for longi-
tudinal ones. Moreover, the confinement of the LO
GaAs-like modes increases with increasing frequency.
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All this can be understood in terms of complex branch
dispersion of the bulk constituents. For instance, the
lowest GaAs-like optical mode would be strictly confined
in the TO case, where the allowed bulk continua of A1As
are very far away, whereas in the LO case the corre-
sponding mode spills substantially into A1As since the
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FIG. 8. Dependence of the I -point frequencies of
GaAs/A1As superlattices vs the thickness of one layer when the
other is kept at the constant thickness of 5 monolayers. The ar-
rows on the right-hand side represent the edges of the bulk-
phonon continua.
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AlAs acoustic continuum lies very close in energy.
The transverse case is very similar. " The only new

feature is the appearance of several confined acoustic
modes in the range between the bulk TA(X) frequency of
GaAs and AlAs. It would be interesting to test the ex-
istence of these confined acoustic modes experimentally,
by checking the Raman enhancement under resonance
conditions with one material or another.

Finally, in Fig. 8 we show the dependence of the I"-
point frequency of all modes on the thickness of one layer
when the thickness of the other is kept fixed. The charac-
teristic behavior of optical modes confirms their confined
character: the AlAs (GaAs) -like modes remain constant
when the adjacent GaAs (A1As) thickness is varied, while
their frequency decreases when the thickness of the AlAs
(GaAs) layer itself is decreased.

The stronger confinement of A1As-like LO modes com-
pared to the GaAs-like ones is confirmed by the fact that
they are not influenced by the decrease in the thickness of
the GaAs barrier, not even when it reaches its thinnest
extreme; the GaAs-like modes, instead, are appreciably
sensitive to a decrease in the thickness of the AlAs bar-
rier below 4 monolayers.

In summary, we have given a detailed description of a
method which allows one to calculate the phonon spectra
of (001)-grown superlattices along the growth direction.
We have shown how a one-dimensional (linear-chain) rep-
resentation can include also long-range forces and how it
can be used for a simple and quantitative description of
superlattice phonon spectra.¹teadded in proof. A recent paper ' provides new
dispersions of bulk GaAs and AlAs, calculated ab initio
within linear response theory, using norm-conserving
pseudopotentials. These dispersions are probably more
accurate than the ones we are using (taken from the very
first ab initio calculations, Ref. 40), and show some
significant di8'erence particularly for what concerns the
flat A1As LO branch. However, a "mass and charge ap-
proximation" relation between GaAs and A1As holds
also for these new results (already with Z„,=Z„t, i.e.,
with the simple "mass approximation, " the A1As disper-
sion can be obtained with good accuracy from the GaAs
force constants '), and therefore we believe that the va-
lidity and practical use of our approach is—if ever—
increased by the possibility of combining it with new im-
proved sets of force constants.

symmetry coordinates by the transformation

P 'U 'C ""(k)UP . (Al)

The matrix

ly&Z 1 y&Z 0
U=I,e ix&Z —ly&Z 0

0 0 1

(A2)

has the symmetry coordinates (63,b,~, h, ) for its columns,
and the u„u, u, components as rows; I2 stands for
the direct product with the 2X2 identity matrix. The
multiplications by the permutation matrix,

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

(A3)

merely mean interchanging rows and columns in order to
bring together the elements belonging to the same repre-
sentations (viz. , in the order 53,A~, b, , ).

ao a~

ao

a'
2

(B1)

which corresponds to the longitudinal modes (b, , ), and
(ii) a band matrix,

bo b+& b2

bo

bo

b2

b+]

b2 b')
b*

2

(B2)

APPENDIX B

The 6m X6m Coulomb matrix C '"'(k)—Eq. (14)—
for the zinc-blende structure described by the (001) su-
percell (GaAs) can be brought into symmetry coordi-
nates by the transformation (Al) (with Iz replaced by
I2 ), and it decomposes into three matrices: (i) a cyclic
matrix,

ao a] a2 a2 a,
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APPENDIX A

All representations in Eq. (1) are one dimensional, and
the last two are degenerate by time-reversal invariance;
the 6X6 dynamical matrix C(k) can be brought into

corresponding to the transverse 53 modes. The third ma-
trix, pertinent to the A4 symmetry, can be obtained from
(B2) by interchanging the elements b„~b „ in the bands
with odd n.

In the (0,0,k, )~(0,0,0) limit, all the coefficients be-
come real numbers and can be viewed as longitudinal or
transverse force constants relating to Fig. 2 and satisfying
the relations: a+„=a „(longitudinal) and bz„=bz'„
(transverse). (Unlike the actual force constants k„, the
Coulomb planar forces must be the same for cation-
cation and anion-anion interactions). The numerical
values of a„and b„, calculated for k, ~0 along the [001]
direction by the usual Ewald summation in three dimen-
sions ' on the (001) supercell (GaAs)t4 with a=5.65



41 PLANAR FORCE-CONSTANT METHOD FOR LATTICE ~ . . 8311

A for lattice constant, are given in Table II. They de-
crease rapidly with the interplanar distance, so that the
nonzero bands "on the left" and "on the right" in (Bl)
and (82) are separated by several (17—19) bands of zeros.

Viewing the a„and b„of Table II as planar force con-
stants allows one to calculate the Coulomb matrix

C '"'(k) for any n, as a dynamical matrix, i.e., through
formula (3), rather than by a new Ewald summation.
This interpretation also allows one to construct the ma-
trices (Bl) and (B2) easily, even when m ~5, i.e., when
the bands "on the left" and "on the right" are no longer
separated by zeros but they overlap.
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