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The calculation of the mobility of the two-dimensional electron gas limited by the remote ion
scattering is presented which takes into account the correlation in the spatial distribution of the
charged impurities caused by the Coulomb interaction. The correlation function of the charge is
characterized by the freezing temperature To. The low-temperature distribution of the charge is
supposed to be a snapshot of the equilibrium distribution corresponding to this temperature. At
low enough To this distribution corresponds to the ground state of the system consisting of the
charged and neutral impurities. The effect of the correlation is shown to be very essential at low To
and at large spacer thickness. The numerical calculations are performed for modulation-doped
Al„Ga& „As/GaAs heterostructures. Input parameters are as follows: spacer width (s), tempera-
ture (To}, density of the channel electrons (N, ), and density of the charge in the depletion layer
(Xd,pi).

I. INTRODUCTION

The low-temperature mobility of the two-dimensional
electron gas (2D EG) is determined mainly by ionized im-
purity scattering. It can be either remote impurity
scattering, which comes from the ionized impurities,
separated by the spacer layer from the 2D EG, or the re-
sidual ion scattering by ions located within undoped re-
gions on both sides of the 2D EG. In what follows, the
heterostructures Al„Ga, „As/GaAs are discussed. In
this case the first scattering mechanism usually prevails if
the thickness of the spacer layer (s) is less than approxi-
mately 40 nm.

Modern technology tends to decrease the residual ion
concentration (which is usually not less than 10' cm ),
while the remote ion density cannot be decreased essen-
tially at a given concentration of the 2D EG because the
remote impurities are the main source of the electrons in
the channel. That is why it is interesting to estimate the
mobility which is only limited by scattering by remote
ions. This is the maximum mobility which can be
reached at a given concentration of the 2D EG and at a
given s.

It is supposed in the course of the usual mobility calcu-
lations that there is no correlation in the distribution of
the charged impurities. ' It is known, however, that the
correlation can strongly eff'ect the mobility both in three-
dimensional ' and two-dimensional cases. It has been
shown in Refs. 5 and 6 that in the case of the heterostruc-
tures the correlation has to appear due to the Coulomb
interaction between the charged impurities if not all of
them are ionized. It occurs because at high enough tem-

peratures the electrons can move from one impurity to
the other to establish the equilibrium distribution at a
given temperature. Due to this mechanism the spatial
distribution of the charged impurities becomes correlated
even if the total impurity distribution obeys Poisson's
law.

Two diff'erent models of the correlation have been
developed in Refs. 5 and 6. The first model assumes that
the thermodynamic equilibrium in the system of electrons
localized at the impurities exists only in the temperature
range T & To, where To is a freezing temperature. Below
To, electron transitions between the impurities do not
lead to the equilibrium in a reasonable experimental time.
Therefore, the low-temperature spatial distribution of the
charged impurities represent a snapshot of the distribu-
tion at T = To. We call this model nonequilibrium. One
can think that To is of the order of the critical tempera-
ture for the persistent photoconductivity, i.e., To should
be about 100-150K.

The second model supposes that the equilibrium exists
even at helium temperatures. Then the interaction ener-
gy is much larger than the temperature, and the space
distribution of the charge corresponds to the ground state
of the interacting system. We call this model equilibri-
um. It is assumed in the both models that donors in
Al„Ga, „As are either positively charged with a single
charge or neutral.

It is difficult at present to choose between these mod-
els. We think that the experimental confirmation of the
nonequilibrium model would be the dependence of the
low-temperature mobility on the cooling regime. The
most important in this case must be the cooling rate
within the temperature interval near To.
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II. NONEQUILIBRIUM MODEL

In the framework of the nonequilibrium model one can
calculate the fluctuations of the charge analytically. '

Let c(r) be the deviation of the area concentration of the
charged impurities from its average value. For the
scattering-time calculations one should know the correla-
tion function D(r) of the charges:

D(r —r') = (c(r)c(r') ),

Here it is supposed that all the charged impurities are
in one plane. It is the case for the 5 doping. For the
thick doped layer, one should take into account the fluc-
tuations of the positions of the charged impurities in the
direction perpendicular to the 2D EG. It can be shown,
however, that in the nonequilibrium model this fluctua-
tions give a small contribution to the random potential as
compared with the fluctuations of the charge given by
Eq. (4).

where r and r' are the vectors in the plane parallel to the
2D EG.

For Poisson distribution of charged impurities one has

D(q)=c, (2)

where c is the average area concentration of the charged
impurities, and

D(q) =fD(r)exp(iq r)d r . (3)

It has been shown ' that the correlation function
D(q), corresponding to the snapshot of the distribution at
T = Tp, looks like in the nonideal plasma:

D(q)=
q +qo[1 —exp( —2qs }]

(4)

where q0=2nce I«TO is the reciprocal screening length
of the nondegenerate plasma at temperature Tp and K is
the dielectric constant. The case q «qp is of interest.
At qs ))1,one gets

D(q) =qa. TOI2rre (5)

At q «qp the fluctuations are much smaller than it fol-
lows from Eq. (2). At qs ((1,one obtains equation

D(q)=«TOI4n. e s (6)

(Q') =e'c,R' (7)

because each charged impurity has a charge e. In the
nonideal plasma the charge (Q ) should be estimated
from the condition that the interaction energy of the fluc-
tuations in the neighboring squares (Q )/«R is of the
order of To. It gives that ( Q ) is of order of «R To. One
can get the same estimate from Eqs. (5) and (7) using c,ff
as obtained from Eq. (5) at q =R '. However, the above
expression for interaction energy is valid only if R «s,
otherwise one should take into account the screening of
the electric field by the plane with 2D EG, which works
like a metallic film. The interaction energy at R )&s is of
the order of energy of the plane condenser with the area
R and distance s between plates. This is (Q )s j«R
(here we neglect numerical factors which cannot be taken
into account exactly in this estimate). Then ( Q ) is of
the order of TpKR /s. This is the same result, as follows
from Eqs. (6) and (7).

with the same q dependence as in Eq. (2), but with a small
effective concentration KTp/4vre s.

The interpretation of Eqs. (4)—(6) is very simple. If
D(q)=c,ff, then the mean-square fluctuation of charge
( Q ) in a square R X R is

III. EQUILIBRIUM MODEL

In the equilibrium model, the spatial distribution of
charged impurities corresponds to the ground state of the
system, i.e., to the minimum of electrostatic energy of the
random electric field created by all charges. We suppose
that the total distribution of impurities obeys Poisson's
law. If a very small part of impurities is ionized, so that
the distance between charges is much larger than the dis-
tance between points, where these charges can be located,
the ground-state distribution of ions looks like the
Wigner crystal (but without long-range order }. We con-
sider a more realistic case when these distances are com-
parable, and the aim is to calculate the spatial fluctua-
tions of the charge in the ground state.

This problem has been solved by computer simulation
in Ref. 6. In that simulation, however, the screening of
the Coulomb interaction of the charged impurities by the
2D EG has not been taken into account. Therefore, the
simulation results of Ref. 6 cannot be used directly for
the mobility calculations.

In this paper we use an analytical approach to this
problem which has also been proposed in Ref. 6 to de-
scribe the fluctuations of area density of charge. This ap-
proach does take into account the screening by the 2D
EG, but ignores the fluctuations of the impurity coordi-
nates in the direction perpendicular to the 2D EG.
Therefore, it is valid for 5-doped layers with a thickness
of order of the mean distance between impurities or
smaller. It has been shown in Ref. 6 that for thick layers
the perpendicular fluctuations give the same or even
larger contribution to the random potential as the fluc-
tuations of the area density.

The main idea of this approach is to connect the func-
tion D(q) with the mezoscopic fluctuations of chemical
potential EF in the finite sample. Suppose that the plane
with impurities is divided into squares R XR, where R is
larger than the distance between impurities. Assume that
we have found the distribution of charged impurities in
each square, rninirnizing the total electrostatic energy at
an additional condition that each square is neutral. The
neutrality in this system is provided by the negative
homogeneous background charge, which is equal to the
average charge of impurities. So the additional condition
assumes that the total number of charged impurities in
each square is fixed and equal to the average number.
The above distribution does not correspond to the ground
state of the system because the energy can be reduced due
to the exchange of charges between the squares. That is
why chemical potentials of the different squares are
different.
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5E~=(dE~IdNd ),(Nd(r) Nd ) .—

For Gaussian fluctuations one has

(9)

Let Ez(r) be the smooth random function which is the
chemical potential averaged over many squares in the vi-

cinity of point r. This is a work function of a random
two-dimensional system. Potential P(r), which appears
in the ground state due to the transfer of electrons be-
tween the squares can be obtained from the following
condition:

E~(r)+ey(r) =Ep(N„,C),

where E~(Nd, c) is the equilibrium chemical potential of
the infinite system. It depends both on the total impurity
concentration Nd and on the concentration of charged
impurities c.

The function 5E+=E+(r) Ez(N—d, c) must be related
to the fiuctuations of impurity concentration. Following
Ref. 6, we assume that this relation is local. Then,

IV. CALCULATIONS OF THE MOBILITY

In this paper we present calculations of the mobility
limited by remote impurity scattering, taking into ac-
count the correlation in the distribution of the charged
impurities. Both nonequilibrium and equilibrium models
are considered. In the first case, the correlator Eq. (4) is
used, and the results are valid for both thick and thin
doped layers. For the second model, we used the correla-
tor Eq. (14), with the function (dE~/dNd ), as obtained
by the special computer simulation. These results are
valid for 5-doped layers only. To estimate the effect of
the correlation we have also performed the mobility cal-
culations without the correlation. In this case D(q)=e
for all q.

Calculations of the mobility are performed using the
standard procedure

27TPl e

K fg o (q+ )

( [N&(r) Nd][Nd—(r') Nd]) =—Nd5(r —r') . (10) (16)

The mean-square fluctuation of the chemical potential in
a finite sample with area s, as obtained from Eqs. (9) and
(10), is

' 2
dEF Nd

dNd, s

The correlation function of the potential, obtained from
Eqs. (8)-(10) is given by

where F(q) is the form factor
'I 3

F(q)= b

b+q (17)

Here b is the characteristic size of the wave function of
the 2D EG in the perpendicular direction:

48mme (Nd, ~+ —,",N, )b=
]cfi

e (P(r)P(r')) =[(dE~/dNd), ] Nd5(r r') . —(12)
q

=2kzsin(8/2),
(18)

The potential P(r) is related to the excess charge ec(r) by
the following equation:

1

[(r—r') +4$ ]'

(13)

The screening of the Coulomb interaction be the 2D EG
is taken into account by the second term of Eq. (13). Us-
ing Eqs. (1), (12), and (13) one obtains

T

1 K q dEF Nd
D(q)=

(2m ) e dNd, [1—exp( —2qs)]

One gets from Eqs. (11)and (14) at q =2'/R
T

2
27T Ic (5E2 ) 1

417$

k~=(2nN, )' is the Fermi wave vector and m =0.07mo
is the effective mass of the electrons. N, is the concentra-
tion of the 2D EG and Nd, ~&

is the area concentration of
charges in the depletion layer. q, =2me /aA' is the in-
verse screening radius of the 2D EG. We do not distin-
guish between the dielectric constants of GaAS and
GaA1As and put a =12.55.

Our results are good at large enough s because in this
case the small values of q give the main contribution to
the integral Eq. (16), and the expressions Eqs. (4) and (14)
for D(q) are valid. Therefore, the deviation of the form
factor F(q) from the unity is not important for our calcu-
lations and that is why we ignore the q dependence of the
dielectric constant.

The thickness of the spacer layer s can be related to the
other parameters in the following way:

Equation (15) relates the correlation function of the
charge to the mezoscopic fluctuations of the chemical po-
tential. This relation has been checked up by the com-
puter simulation in Ref. 6. [See also discussion of the va-
lidity of the local approximation used in Eq. (9).] Equa-
tion (14) relates D(q) to the thermodynamic function
(dE+IdNq), . To calculate E~(Nd, c) one should find the
spatial distribution of the ionized impurities in the
ground state of the system. This problem has been solved
by computer simulation.

~( Vb EDb Eo vrR —N, Im—)—
4~e (Nd )+N, )

(19)

where Vb is the barrier height and EDb is the donor bind-
ing energy in the barrier. It is assumed here that each
donor in the Al Ga& As alloy gives rise to a deep level.
Stern has argued that this is the case at x )0.2, where x
is the concentration of aluminum in the A1„Ga& „As al-
loy.

Following Ref. 10 we use the equations
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V„=600(1.425x —0.9x —l. lx ) meV,

EDb =707X —146 meV,

(20)

(21)

where Eo is the energy of the lowest subband of the chan-
nel electrons:

5/3
3

2

4me A

1/2

2/3 55
de pl 96 s

Note that the area concentration of the charged impur-
ities c can be found from the equation

c=Nd, )+N, . (23)

The mobility calculations discussed in the next section
use Eqs. (16)—(23).

V. RESULTS AND DISCUSSION

A. Nonequilibrium model

In this case Eqs. (4) and (23) are used for D(q). The re-
sults of the mobility calculations at the different values of
To, s, X„and Nd, p~

are shown in Figs. 1 and 2. In Figs.
1(a) and l(b) the reciprocal mobility is plotted against N,
at five different values of s, at TO=100 and 150 K, and
two different values of N„,„~. The thickness of the spacer

layer and the electron density N, are considered here as
independent variables. That is why p

' decreases with
the increasing density. The dotted lines show the re-
ciprocal mobility calculated without taking into account
the correlation. One can see that the effect of the correla-
tion is very strong, especially for large s and N, . In this
case the correlation enhances the mobility approximately
25 times. The effect of the correlation increases with de-
creasing temperature To.

The physical interpretation of these results is as fol-
lows. At large s the harmonics of the random potential
with q of the order of s ' give the main contribution to
the scattering. Indeed, the short-range harmonics are
small as exp( —2qs) at a distance s from the plane with
impurities [see Eq. (16)],and long-range harmonics give a
small contribution to the transport cross section. At
such values of q the function D(q) is given by Eq. (6). It
is independent of the concentration of charged impurities
c, it increases with To and decreases as s increases. The
influence of the density of depletion charges is essential at
small N, only as it follows from Eq. (23).

In Fig. 2 the reciprocal mobility is plotted against N,
for three different values of the aluminum concentration
x, taking into account that X, and s are connected by Eq.
(19). In this case p

' increases with N, because s de-

creases with increasing N, .
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Our main conclusion is that the correlation in the dis-
tribution of the charged impurities caused by the impuri-
ties Coulomb interaction essentially increases the calcu-
lated values of the mobility of the channel electrons limit-
ed by the remote ion scattering. This- correlation neces-
sarily occurs if the impurities in the doped layer of a het-
erostructure are partly ionized and partly neutral. The
efT'ect of the correlation increases as the freezing tempera-
ture To decreases and as the spacer thickness s increases.
In the equilibrium model, at small relative concentrations

c/Xd, the correlation increases the mobility by a few or-
ders of magnitude.
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